New Directions in Civil Engineering

Series Editor
W. F. CHEN
Hawaii University

Published Titles
Advanced Analysis of Steel Frames: Theory, Software, and Applications
W.F. Chen and Shouji Toma

Analysis and Software of Cylindrical Members
W.F. Chen and Shouji Toma

Artificial Intelligence and Expert Systems for Engineers
C.S. Krishnamoorthy and S. Rajeev

The Civil Engineering Handbook, Second Edition
W.F. Chen and J.Y. Richard Liew

Cold Weather Concreting
Boris A. Krylov

Concrete Beams with Openings: Analysis and Design
M.A. Mansur and Kiang-Hwee Tan

Concrete Buildings: Analysis for Safe Construction
W.F. Chen and K.H. Mosallam

Earthquake Engineering Handbook
W.F. Chen and Charles Scawthorn

The Finite Strip Method
Y.K. Cheung and L.G. Tham

Flexural-Torsional Buckling of Structures
N.S. Trahair

Flood Frequency Analysis
Ramachandro A. Rao and Khaled Hamed

Fracture Processes of Concrete
Jan G.M. van Mier

Fracture and Size Effect in Concrete and Other Quasibrittle Materials
Zdenek P. Bazant and Jaime Planas

Introduction to Environmental Geotechnology
Hsai-Yang Fang

Limit Analysis and Concrete Plasticity
M.P. Nielsen

LRFD Steel Design Using Advanced Analysis
W.F. Chen and Seung-Eock Kim

Response Spectrum Method in Seismic Analysis and Design of Structures
Ajaya Kumar Gupta

Simulation-Based Reliability Assessment for Structural Engineers
Pavel Marek, Milan Gustar, and Thalia Anagnos

Stability Design of Steel Frames
W.F. Chen and E.M. Lui

Stability and Ductility of Steel Structures under Cyclic Loading
Yudshi Fukumoto and George C. Lee

Theory of Adaptive Structures: Incorporating Intelligence into Engineered Products
Senol Utku

© 2003 by CRC Press LLC
Published Titles (Continued)

Unified Theory of Reinforced Concrete
Thomas T.C. Hsu

Water Treatment Processes: Simple Options
S. Vigneswaran and C. Visvanathan

Forthcoming Titles

Transportation Systems Planning: Methods and Applications
Konstandinos Goulias
THE CIVIL ENGINEERING HANDBOOK
SECOND EDITION

EDITED BY
W.F. CHEN
J.Y. RICHARD LIEW

CRC PRESS
Boca Raton London New York Washington, D.C.
Preface

The second edition of the Civil Engineering Handbook has been revised and updated to provide a comprehensive reference work and resource book covering the broad spectrum of civil engineering. This book has been written with the practicing civil engineer in mind. The ideal reader will be a BS- or MSc-level engineer with a need for a single reference source to use to keep abreast of new techniques and practices as well as to review standard practices.

The Handbook stresses professional applications, placing great emphasis on ready-to-use materials. It contains many formulas and tables that give immediate solutions to common questions and problems arising from practical work. It also contains a brief description of the essential elements of each subject, thus enabling the reader to understand the fundamental background of these results and to think beyond them. Traditional as well as new and innovative practices are covered.

As a result of rapid advances in computer technology and information technology, a revolution has occurred in civil engineering research and practice. A new aspect, information technology and computing, has been added to the theoretical and experimental aspects of the field to form the basis of civil engineering. Thorough coverage of computational and design methods is essential in a knowledge-based economy. Thus, computational aspects of civil engineering form the main focus of several chapters. The Civil Engineering Handbook is a comprehensive handbook, featuring a modern CAD/CAE approach in advancing civil engineers in the 21st century. The Handbook is organized into eight sections, covering the traditional areas of civil engineering: construction engineering, materials engineering, environmental engineering, structural engineering, geotechnical engineering, surveying engineering, hydraulic engineering, and transportation engineering.

The subdivision of each section into several chapters is made by the associate editors and is somewhat arbitrary, as the many subjects of the individual chapters are cross-linked in many ways and cannot be arranged in a definite sequence. To this end, in addition to the complete table of contents presented at the front of the book, an individual table of contents precedes each of the eight sections and gives a general outline of the scope of the subject area covered. Finally, each chapter begins with its own table of contents. The reader should look over these tables of contents to become familiar with the structure, organization, and content of the book. In this way, the book can also be used as a survey of the field of civil engineering, by the student or civil engineer, to find the topics that he or she wants to examine in depth. It can be used as an introduction to or a survey of a particular subject in the field, and the references at the end of each chapter can be consulted for more detailed studies.

The chapters of the Handbook have been written by many authors, all experts in their fields, and the eight sections have been carefully edited and integrated by the various associate editors in the School of Civil Engineering at Purdue University and the Department of Civil Engineering at the National University of Singapore. This Handbook is a testimonial to the dedication of the associate editors, the publisher, and the editorial associates. I wish to thank all of the authors for their contributions and the
reviewers for their constructive comments. I also wish to acknowledge at CRC Press, Helena Redshaw, Elizabeth Spangenberger, Susan Fox, and Cindy Carelli for their professional support in revising this handbook.

W. F. Chen
J. Y. Richard Liew
Editors-in-Chief
Editors-in-Chief

W. F. Chen is presently Dean of the College of Engineering at the University of Hawaii. He was a George E. Goodwin Distinguished Professor of Civil Engineering and Head of the Department of Structural Engineering at Purdue University from 1976 to 1999.

He received his B.S. in civil engineering from the National Cheng-Kung University, Taiwan, in 1959, M.S. in structural engineering from Lehigh University, PA, in 1963, and Ph.D. in solid mechanics from Brown University, RI, in 1966. He received the Distinguished Alumnus Award from the National Cheng-Kung University in 1988 and the Distinguished Engineering Alumnus Medal from Brown University in 1999.

Dr. Chen’s research interests cover several areas, including constitutive modeling of engineering materials, soil and concrete plasticity, structural connections, and structural stability. He is the recipient of several national engineering awards, including the Raymond Reese Research Prize and the Shortridge Hardesty Award, both from the American Society of Civil Engineers, and the T. R. Higgins Lectureship Award from the American Institute of Steel Construction. In 1995, he was elected to the U.S. National Academy of Engineering. In 1997, he was awarded Honorary Membership by the American Society of Civil Engineers. In 1998, he was elected to the Academia Sinica (National Academy of Science) in Taiwan.

A widely respected author, Dr. Chen authored and coauthored more than 20 engineering books and 500 technical papers. His books include several classical works such as Limit Analysis and Soil Plasticity (Elsevier, 1975), the two-volume Theory of Beam-Columns (McGraw-Hill, 1976–77), Plasticity in Reinforced Concrete (McGraw-Hill, 1982), and the two-volume Constitutive Equations for Engineering Materials (Elsevier, 1994). He currently serves on the editorial boards of more than 10 technical journals. He has been listed in more than 20 Who's Who publications.

He has been a longtime member of the Executive Committee of the Structural Stability Research Council and the Specification Committee of the American Institute of Steel Construction. He has been a consultant for Exxon Production Research on offshore structures, for Skidmore, Owings, and Merrill in Chicago on tall steel buildings, and for the World Bank on the Chinese University Development Projects, among many others.

Dr. Chen has taught at Lehigh University, Purdue University, and the University of Hawaii.
J.Y. Richard Liew is presently associate professor with the Department of Civil Engineering at the National University of Singapore. He received his B.Eng. and M.Eng in Civil Engineering from the National University of Singapore, in 1986 and 1988, respectively, and Ph.D. in Structural Engineering from Purdue University, West Lafayette, IN, in 1992.

Dr Liew published more than 100 papers covering topics such as steel design, frame stability, and steel-concrete composite structures. He is actively involved in research on innovative lightweight structures covering wide aspects of structural mechanics problems, including joint effects, composite actions between various materials, cable tensioning problems, and high temperature and high strain rate effects. He also worked on product development using fiber-reinforced polymer materials for structural applications. Dr. Liew authored and coauthored two books and more than ten engineering book chapters. He served on two editorial boards of technical journals related to steel and composite structures.

He is a member of the American Society of Civil Engineers and the Institute of Structural Engineers in the U.K. He is a Chartered Engineer of the U.K. He is currently (2002) the president of the Singapore Structural Steel Society. He has been serving as a specialist advisor to several national organizations on steel specifications and projects, to consultants and steel fabricators for special projects related to large span steel structures and high-rise steel buildings, among others.
Contributors

Arch Alexander
Purdue University
West Lafayette, Indiana

Amrou Atassi
Camp Dresser and McKee — CDM
Chicago, Illinois

David Bernstein
George Mason University
Department of Computer Science
Harrisonburg, Virginia

James S. Bethel
Purdue University
West Lafayette, Indiana

Jonathan D. Bray
University of California
Walnut Creek, California

Christopher B. Burke
Christopher B. Burke Engineering, Ltd.
Rosemont, Illinois

Thomas Burke
Christopher B. Burke Engineering, Ltd.
Rosemont, Illinois

Susan Burns
University of Virginia
Charlottesville, Virginia

W. F. Chen
University of Hawaii
Honolulu, Hawaii

David K.H. Chua
National University of Singapore
Kent Ridge, Singapore

Wesley G. Crawford
Purdue University
West Lafayette, Indiana

Jacques W. Delleur
Purdue University
West Lafayette, Indiana

Richard Deschamps
Purdue University
West Lafayette, Indiana

Said M. Easa
Ryerson Polytechnic University
Toronto, Ontario, Canada

Steve Ernst
Christopher B. Burke Engineering, Ltd.
Indianapolis, Indiana

Bengt H. Fellenius
Urkkada Technology Ltd.
Ottawa, Ontario, Canada

Patrick J. Fox
University of California
Los Angeles, California

J.D. Frost
Georgia Institute of Technology
Atlanta, Georgia

Peter G. Furth
Northeastern University
Boston, Massachusetts

T.-F. Fwa
National University of Singapore
Kent Ridge, Singapore

B.H.W. van Gelder
Purdue University
West Lafayette, Indiana

Aldo Giorgini (Deceased)
Purdue University
West Lafayette, Indiana

Sanjiv Gokhale
Vanderbilt University
Nashville, Tennessee

Donald D. Gray
West Virginia University
Morgantown, West Virginia

Donn E. Hancher
University of Kentucky
Lexington, Kentucky

Milton E. Harr
North Kingstown, Rhode Island

© 2003 by CRC Press LLC
SECTION I Construction

Introduction Donn E. Hancher

1 Construction Estimating James E. Rowings, Jr.

2 Construction Planning and Scheduling Donn E. Hancher

3 Equipment Productivity Tom Iseley and Sanjiv Gokhale

4 Design and Construction of Concrete Formwork Arch Alexander

5 Contracts and Claims Gary R. Smith

6 Construction Automation Jeffrey S. Russell and Sung-Keun Kim

7 Value Improvement Methods David K.H. Chua

SECTION II Environmental Engineering

Introduction Robert B. Jacko

8 Water and Wastewater Planning Robert M. Sykes and E.E. Whitlatch

9 Physical Water and Wastewater Treatment Processes Robert M. Sykes and Harold W. Walker

10 Chemical Water and Wastewater Treatment Processes Robert M. Sykes, Harold W. Walker, and Linda S. Weavers

11 Biological Wastewater Treatment Processes Robert M. Sykes
SECTION III Geotechnical Engineering

Introduction Milton E. Harr

15 Soil Relationships and Classification Thomas F. Wolff

16 Accounting for Variability (Reliability) Milton E. Harr

17 Strength and Deformation Dana N. Humphrey

18 Groundwater and Seepage Milton E. Harr

19 Consolidation and Settlement Analysis Patrick J. Fox

20 Stress Distribution Milton E. Harr

21 Stability of Slopes Roy E. Hunt and Richard Deschamps

22 Retaining Structures Jonathan D. Bray

23 Foundations Bengt H. Fellenius

24 Geosynthetics R.D. Holtz

25 Geotechnical Earthquake Engineering Jonathan D. Bray

26 Geo-Environment Pedro C. Repetto

27 In Situ Subsurface Characterization J. David Frost and Susan E. Burns

28 In Situ Testing and Field Instrumentation Rodrigo Salgado and Marika Santagata
SECTION IV Hydraulic Engineering

Introduction Jacques W. Delleur

29 Fundamentals of Hydraulics D.A. Lyn

30 Open Channel Hydraulics Aldo Giorgini and Donald D. Gray

31 Surface Water Hydrology A.R. Rao

33 Quality of Urban Runoff Amrou Atassi, Steve Ernst, and Ronald F. Wukash

34 Groundwater Engineering Jacques W. Delleur

35 Sediment Transport in Open Channels D.A. Lyn

36 Coastal Engineering William L. Wood and Guy A. Meadows

37 Hydraulic Structures Jacques Delleur

39 Water Resources Planning and Management J.R. Wright and M.H. Houck

SECTION V Materials Engineering

Introduction D. W. S. Ho

40 Constituents and Properties of Concrete C.T. Tam

41 Durability of Concrete D.W.S. Ho

42 Special Concrete and Application V. Sirivivatnanon, C.T. Tam, and David Ho

© 2003 by CRC Press LLC
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>Structural Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>J.Y. Richard Liew</td>
</tr>
<tr>
<td>46</td>
<td>Mechanics of Materials</td>
<td>Austin D.E. Pan and Egor P. Popov</td>
</tr>
<tr>
<td>47</td>
<td>Theory and Analysis of Structures</td>
<td>J.Y. Richard Liew and N.E. Shanmugam</td>
</tr>
<tr>
<td>48</td>
<td>Design of Steel Structures</td>
<td>E.M. Lui</td>
</tr>
<tr>
<td>49</td>
<td>Cold Formed Steel Structures</td>
<td>J. Rhodes and N.E. Shanmugam</td>
</tr>
<tr>
<td>50</td>
<td>Structural Concrete Design</td>
<td>Julio A. Ramirez</td>
</tr>
<tr>
<td>51</td>
<td>Composite Steel–Concrete Structures</td>
<td>Brian Uy and J.Y. Richard Liew</td>
</tr>
<tr>
<td>52</td>
<td>Structural Reliability</td>
<td>Ser-Tong Quek</td>
</tr>
<tr>
<td>VII</td>
<td>Surveying Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>Edward M. Mikhail</td>
</tr>
<tr>
<td>53</td>
<td>General Mathematical and Physical Concepts</td>
<td>Edward M. Mikhail</td>
</tr>
<tr>
<td>54</td>
<td>Plane Surveying</td>
<td>Steven D. Johnson and Wesley G. Crawford</td>
</tr>
<tr>
<td>55</td>
<td>Geodesy</td>
<td>B.H.W. van Gelder</td>
</tr>
<tr>
<td>56</td>
<td>Photogrammetry and Remote Sensing</td>
<td>J.S. Bethel</td>
</tr>
<tr>
<td>57</td>
<td>Geographic Information Systems</td>
<td>Jolyon D. Thurgood and J.S. Bethel</td>
</tr>
</tbody>
</table>

© 2003 by CRC Press LLC
SECTION VIII Transportation Engineering

Introduction Kumares C. Sinha

58 Transportation Planning David Bernstein

59 Airport Planning and Design Robert K. Whitford

60 High-Speed Ground Transportation: Planning and Design Issues
 Robert K. Whitford, Matthew Karlaftis, and Konstantinos Kepapisoglu

61 Urban Transit Peter G. Furth

62 Highway and Airport Pavement Design T.F. Fwa

63 Geometric Design Said M. Easa

64 Highway Traffic Operations Andrzej P. Tarko

65 Intelligent Transportation Systems Yorgos J. Stephanedes

66 Highway Asset Management Zongzhi Li, Samuel Labi, and Kumares
 C. Sinha

67 Environmental Considerations during Transportation Planning Roger
 L. Wayson

APPENDIX Mathematics, Symbols, and Physical Constants

Greek Alphabet
International System of Units (SI)
Conversion Constants and Multipliers
Physical Constants
Symbols and Terminology for Physical and Chemical Quantities
Elementary Algebra and Geometry
Determinants, Matrices, and Linear Systems of Equations
Trigonometry
Analytic Geometry
Series