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58.1 Introduction

Transportation plays an enormous role in our everyday lives. Each of us travels somewhere almost every
day, whether it be to get to work or school, to go shopping, or for entertainment purposes. In addition,
almost everything we consume or use has been transported at some point.

For a variety of reasons that are beyond the scope of the Handbook, many of the transportation services
that affect our lives are provided by the public sector (rather than the private sector) and, hence, come
under the aegis of civil engineering. This portion of The Civil Engineering Handbook deals with the role
that transplantation planners play in the provision of those services.

What Is Transportation Planning?

It is somewhat difficult to define transportation planning since the people who call themselves trans-
portation planners are often involved in very different activities. For the purposes of the Handbook the
easiest way to define transportation planning is by comparing it to other public sector activities related
to the provision of transportation services. In general, these activities can be characterized as follows:

Management/Administration: Activities related to the transportation organization itself.
Operations/Control: Activities related to the provision of transportation services when the system is

in a stable (or relatively stable) state.
Planning/Design: Activities related to changing the way transportation services are provided (i.e., state

transitions).

Transportation planning activities are often characterized as being either strategic (i.e., with a fairly long
time horizon) or tactical (i.e., with a fairly short time horizon).

Unfortunately, these definitions, in and of themselves, are not really enough to characterize transpor-
tation planning activities. To do so requires some concepts from systems theory.

A system, as defined by Hall and Fagen [1956], is a set of objects (the parameters of the system), their
attributes, and the relationships between them. Any system can be described at varying levels of resolution.
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The resolution level of the system is, loosely speaking, defined by its elements and its environment. The
environment is the set of all other systems, and the elements are treated as “black boxes” (i.e., the details
of the elements are ignored; they are described in terms of their inputs and their outputs).

Thus, it is possible to talk about a variety of different transportation systems including (in increasing
order of complexity):

1. Car
2. Driver + Car
3. Road + Driver + Car
4. Activities generating flows + Road + Driver + Car
5. Surveillance and control devices + Activities generating flows + Road + Driver + Car

Transportation planning is concerned with the fourth system listed above, treating the Road + Driver +
Car subsystem as a black box. For example, transportation planners are interested in how activities
generating flows interact with this black box to create congestion, and how congestion influences these
activities. In contrast, automotive engineering is concerned with the vehicle as a system, human factors
engineering is concerned with the Driver + Vehicle system, geometric design and infrastructure man-
agement are concerned with the Road or the Road + Car systems, and highway traffic operations and
Intelligent Vehicle Highway Systems are concerned with the surveillance and control systems and how
they interact with the Activities + Road + Driver + Car subsystem.

The Transportation Planning Process

The transportation planning process almost always involves the following six steps (in some form or
another):

1. Identification of goals/objectives (anticipatory planning) or problems (reactive planning)
2. Generation of alternative methods of accomplishing these objectives or solving these problems
3. Determination of the impacts of the different alternatives
4. Evaluation of different alternatives
5. Selection of one alternative
6. Implementation

Some people have argued that this process is/should be completely “rational” or “scientific” and hence
that the above steps are/should be performed in order (perhaps with a loop between evaluation of
alternatives and generation of alternatives).1 However, many others argue that the transportation planning
process is not nearly this scientific. For example, Grigsby and Bernstein [1993] argue that there are a
variety of factors that shape the transportation planning process:

Societal Setting: The laws, regulations, customs, and practices that distribute decision-making powers
and that set limits on the process and on the range of alternatives.

Organizational Setting: The orbit and administrative rules and practices that distribute decision-
making powers and that set limits on the process and on the range of alternatives.

Planning Situation: The number of decision makers, the congruity and clarity of values, attitudes and
preferences, the degree of trust among decision makers, the ability to forecast, time and other
resources available, quality of communications, size and distribution of rewards, and the perma-
nency of relationships.

For these and other reasons, a variety of other “less-than-rational” descriptions of the planning
processes have been presented. For example, Lindblom [1959] described what he called the “science of
muddling through,” in which planners build out from the current situation by small degrees rather than

1This is sometimes called the 3C process: continuing, comprehensive, and coordinated.
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starting from the fundamentals each time. Etzioni [1967] described a mixed scanning approach which
combines a detailed examination of some aspects of the “problem” with a truncated examination of others.

Fortunately, the exact process used has little impact on the day-to-day tasks that transportation
planners are involved in. Transportation planners typically evaluate alternative proposals and sometimes
generate alternative proposals. Hence, the transportation planner’s job is primarily to determine the
demand for the proposed alternatives (i.e., how the proposed alternatives affect the activities which
generate flows).

Given that transportation planners are principally concerned with determining the demand changes
that result from proposed projects, it would be natural to assume that they use the tools of the micro-
economist (i.e., models of consumer and producer behavior). While this is true in some sense, the generic
demand models used in microeconomics are usually not powerful enough to support the transportation
planner. That is, for most applications it is not possible to reliably estimate the demand for a project/facil-
ity as a function of the attributes of that project/facility. This is because of the complex interactions that
exist between different people and different facilities. Instead, transportation planners use a variety of
different models depending on the specific decision they are trying to predict.

58.2 Transportation Planning Models

In order to determine the demand for a transportation project/facility the transportation planner must
answer the following questions:

• Who travels?

• Why do they travel?

• Where do they travel?

• When do they travel?

• How do they travel?

The who and why questions are actually fairly easy to answer. In general, transportation planners need
to distinguish between commuters, shoppers, holiday travelers, and business travelers. To answer the
where, when, and how (and the aggregate question “how much”) transportation planners develop theories
and models of the decision-making processes that different travelers go through.

To do so, the transportation planner considers the following:

• The decision to travel

• The choice of a destination (and/or an origin)

• The choice of a mode

• The choice of a path (or route)

• The choice of a departure time

Models of the first four of these decisions are traditionally referred to as trip generation, trip distribution,
modal split, and traffic assignment models. These types of models have been widely studied and applied.
Departure-time choice has, for the most part, been ignored or handled in an ad hoc fashion.

It is important to observe that not all of these models need to be applied in all situations. In practice,
the models used should depend on the time frame of the forecast being generated. For example, in the
very short run, people are not likely to change where they live or where they work, but they may change
their mode and/or path. Hence, when trying to predict the short-run reactions of commuters to a project,
it does not make sense to run a trip generation or trip distribution model. However, it is important to
run both the modal split and the traffic assignment models.

It is also important to note that it is often necessary to combine different models, and this can be done
in one of two ways. Continuing the example above, if the choice of mode and path are tightly intertwined,
then it may make sense to solve/run the two models simultaneously. If, on the other hand, people first
© 2003 by CRC Press LLC
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choose a mode (based on some estimate of the costs on the two modes) and then choose the path on
that mode, then it may make sense to solve/run the models sequentially. This will be discussed more
fully below. For the time being, the models will be presented as if they are used sequentially.

The subsections that follow contain some of the more common models of each type. It is important
to recognize at the outset that some of these models are very disaggregate while others are quite aggregate
in nature. Disaggregate models consider the behavior of individuals (or sometimes households). They
essentially consider the choices that individuals make among different alternatives in a given situation.
Aggregate models, on the other hand, consider the decisions of a group in total. The groups themselves
can be based either on geography (resulting in zonal models) of socioeconomic characteristics.2

Though each of the decisions that travelers make are modeled differently in the subsections that follow,
it is important to realize that many of the techniques described in one subsection may be appropriate in
others. In general, they are all models of how people make choices. Hence, they are applicable in a wide
variety of different contexts (both inside and outside of transportation planning).

The Decision to Travel

In general, trip generation models relate the number of trips being taken to the characteristics of a “group”
of travelers. The models themselves are usually statistical in nature. Zone-based models use aggregate
data while household-based models use disaggregate data. These models typically fall into two groups:
linear regression models and category analysis models. The output of a trip generation model is either
trip productions (the number of trips originating from each location), trip attractions (the number of
trips destined for each location), or both.

These models have, in general, received very little attention in recent years. That is, the techniques
have not changed much in the past twenty years; only new parameters have been estimated. This is, in
large part, because transportation planners have traditionally been concerned with congestion during
the peak period, and it is relatively easy to model the decision to travel for work trips (i.e., everyone with
a job takes a trip). However, this is beginning to change for several reasons:

• Congestion is increasingly occurring outside of the traditional morning and evening peaks. Hence,
more attention needs to be given to nonwork trips.

• New technologies are changing the way in which people consider the decision to travel. The advent
of telecommuting means that people may not commute to work every day. Similarly, teleshopping
and teleconferencing can dramatically change the way people decide to take trips.

These trends have created a great deal of renewed interest in trip generation models.

Linear Regression Models

In a liner regression model a statistical relationship is estimated between the number of trips and some
characteristics of the zone or household. Typically, these models take the form

(58.1)

where Y (called the dependent variable) is the number of trips, X1, X2,…, Xn (called the independent
variables) are the n factors that are believed to affect the number of trips that are made, b1, b2,…, bn are
the coefficients to be estimated, and � is an error term. Such models are often written in vector notation
as Y = b0 + bX¢ + � where b = (b1,…,bn) and X = (X1,…, Xn). Clearly, since bi = ∂Y/∂Xi, the coefficients
represent the contribution of the independent variables to the magnitude of the dependent variable.

In a disaggregate model, Y is normally measured in trips (of different trips) per household, whereas
in an aggregate model it is measured in trips per zone. In general, the independent (or explanatory)

2In some cases, disaggregate models are statistically estimated using aggregate data and knowledge of the distri-
butional of the groups.

Y X Xn n= + + + +b b b0 1 1 L �
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variables should not be (linearly) related to each other, but should be highly correlated with the dependent
variable. The selection of which dependent variables to include is part of the “art” of developing such
models.

Such models are traditionally estimated using a technique known as least squares estimation. This
technique determines the parameter estimates that minimize the sum of the squared differences between
the observed and the expected values of the observations. It is described in almost every book on
econometrics (see, for example, Theil [1971]).

In general, it is important to realize that linear regression models are much more versatile than one
might immediately expect. In particular, observe that both the independent variables and the dependent
variable can be transformed in nonlinear ways. For example, the model

(58.2)

can be estimated using ordinary least squares. In this case, the values of the coefficients can be interpreted
as elasticities since

(58.3)

Category Analysis Models

In category analysis, a mean trip rate is determined for different types (i.e., categories) of people and
trips. The categories are typically based on social, economic, and demographic characteristics. The
resulting models are nonparametric and have the following form (see, for example, Doubleday, [1977]):

(58.4)

where W p
zc denotes the trip rate for people in category z for purpose p during time period c, Op

rc denotes
the number of trips by person r for purpose p during time period c, and nz denotes the number of people
in category z.

Models of this type are generally presented in tabular form as follows:

where the entries in the table would be the trip rates. These trip rates can then be used to predict future
trip attractions and productions simply by predicting the number of people in each category and
multiplying.

Origin and Destination Choice

Of course, each trip that a person takes must have an origin and a destination. For commuters, this
origin/destination choice process is fairly long-term in nature. For morning trips to work, the origin is
usually the person’s place of residence and the destination is usually the place of work, and for evening
trips from work it is exactly the opposite. Hence, for commuting trips the origin and destination choice
processes are tantamount to the residential location and job choice processes. For shopping trips, the
origin choice process is long-term in nature (i.e., the choice of a residence), but the destination choice
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process is very short-term in nature (i.e., where to go shopping for this particular trip). For holiday travel
things are somewhat more confusing. However, in many cases we can treat holiday travel as if it involves
short-term origin and short-term destination choices. For example, consider the holiday travel that occurs
on Thanksgiving. You know that your family is going to get together, but where? Hence, the origin/des-
tination choice process corresponds to determining where you will meet and, hence, who will be traveling
from where and to where.

There are two widely used types of trip distribution models: gravity models and Fratar models. Gravity
models are typically used to calculate a trip table from scratch, whereas Fratar models are used to adjust
an existing trip table. Both types of models are aggregate in nature and use trip production and/or trip
attractions to determine specific trip pairings (often called a trip table).

Gravity Models

The most popular models of origin/destination choice are collectively called gravity models (see, for
example, Hua and Porell [1979]), Erlander and Stewart [1989], and Sen and Smith [1994]). These models
get their name because of their similarity to the Newtonian model of gravity. At the most basic level,
these models assume that the movements of people tend to vary directly with the size of the attraction
and inversely with the distance between the points of travel. So, for example, one could have a gravity
model of the following kind:

(58.5)

where Tij denotes the number of trips between origin zone i and destination zone j, Mi denotes the
population of zone i, Mj denotes the population of zone j, dij denotes the distance between i and j, and
a is the so-called demographic gravitational constant.

Many models of this kind have been estimated and used over the years. However, they have also
received a great deal of criticism. First, there is no particular reason to use d2

ij in the denominator; this
seems to be carrying the Newtonian analogy farther than is justified. Second, there is no reason to use
Mi Mj in the numerator; it makes just as much sense to weight each of these terms (e.g., to use wi M

b
i uj M

l
j).

Finally, these models suffers from a small distance problem: as the distance between the origin and
destination decreases, the number of trips increases without bound (i.e., as dij Æ 0, Tij Æ •).

These criticisms led researchers to try many other forms of the gravity model. One of the more general
specifications was given by Hua and Porell [1979]:

(58.6)

where A(i) and B( j) are weighting functions and F(dij) is a distance deterrence function. Most of the
variants of this model have differed in the form of the deterrence functions used. For example, the classical
doubly constrained gravity models is given by

(58.7)

where Oi is the number of trips originating at , Dj is the number of trips destined for j, and Ai and Bj are
defined as follows:

(58.8)

(58.9)
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Though these variants have been motivated in a number of different ways, some formal and others
more ad hoc (see, for example, Stouffer [1940], Niedercorn and Bechdolt [1969], and T. E. Smith [1975,
1976a, 1976b, 1988]), perhaps the most appealing to date are those based on the most probable state
approach (see, for example, Wilson [1970] and Fisk [1985]).

In this approach, each individual is assumed to choose an origin and/or destination (the set of such
choices are referred to as the microstates of the system). Any particular microstate will have associated
with it a macrostate, which is simply the number of trips to and/or from each zone. A macrostate is
feasible if it reproduces known properties referred to as system states (e.g., total cost of travel, total
number of travelers). Letting � denote the set of feasible macrostates and W(n) the number of microstates
that are consistent with macrostate n, then the total number of possible microstates is given by

(58.10)

Finally, if each microstate is equally likely to occur then the probability of a particular (feasible) macrostate
is

(58.11)

To develop specific gravity models using the most probable state approach one need simply derive an
expression for W(n) and then find the macrostate which maximizes (58.11). Fisk [1985] discusses several
such models.

For shopping trips (from given origins), the following gravity model can be derived:

(58.12)

where Tj denotes the number of trips to destination j, N is the total number of travelers, Dj is the number
of possible stores at destination j, and b is a parameter of the model. In general, b is expected to be negative.

For commuting trips, the following gravity model can be derived (assuming that the number of jobs
is shown and that one trip end is permitted per job):

(58.13)

where Dj is the number of jobs at location j, and z–1 is found by substituting this expression into the
equations defining the system states. For example, if the total number of travelers, N, and the total travel
cost, C, are both known, z–1 would be obtained using

(58.14)

(58.15)

These models are typically estimated using maximum likelihood techniques. These techniques attempt
to find the value of the parameters that make the observed sample most likely. That is, a likelihood
function is formed which represents the probability of the sample conditioned on the parameter estimates,
and this likelihood function is then maximized using techniques from mathematical programming.
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Fratar Models

A popular alternative to gravity models are Fratar models. While not as theoretically appealing, the Fratar
model is sometimes used to adjust existing trip tables. The “symmetric” Fratar model, which is the only one
presented here, requires that the number of trips from i to j equals the number of trips from j to i (i.e., Tij = Tji).

Letting T0 denote the original trip table and O denote the future trip-end totals, this approach can be
summarized as follows:

Step 0: Set the iteration counter to zero (i.e., k = 0).
Step 1: Calculate trip production totals. That is, set Pk

i  = Âj T k
ij .

Step 2. Set k = k + 1 and calculate the adjustment factors f k
i = Oi/Pk–1

i for all i. If f k
i ª 1 for all i then

STOP.
Step 3. Set N k

ij = (T k–1
ik f k

j/Ân T k–1
in f k

n)Oi.
Step 4. Set T k

ij = (T k
ij +T k

ji)/2 and GOTO step 1.

Note that this algorithm does not always converge and that it cannot be used at all when the number of
zones changes.

Mode Choice

Mode choice models are typically motivated in a disaggregate fashion. That is, the concern is with the
choice process of individual travelers. As might be expected, there are many theories of individual choice
that can be applied in this context.

One of the most successful theories of individual choice is the classical microeconomic theory of the
consumer. This theory postulates that an individual chooses the consumption bundle that maximizes
his or her utility given a particular budget. It assumes that the alternatives (i.e., the components of the
consumption bundle) are continuously divisible. For example, it assumes that individuals can consume
0.317 units of good x, 5.961 units of good y, and 1.484 units of good z. As a result, it is not possible to
directly apply this theory to the typical mode choice process in which travelers make discrete choices
(e.g., whether to drive, take the bus, or walk).

Of course, one could modify the traditional theory of the consumer to incorporate discrete choices.
In fact, such models have received a great deal of attention. The goal of these models is to impute the
weights that an individual gives to different attributes of the alternatives based on the choices that are
observed (again assuming that the individual chooses the alternative with the highest utility).

Unfortunately, however, these models do not always work well in practice. There are at least two
reasons for this. First, individuals often select different alternatives when faced with (seemingly) identical
choice situations. Second, individuals sometimes (seem to) make choices (or express preferences) that
violate the transitivity of preferences. That is, they choose A over B, choose B over C, but choose C over A.

Two explanations have been given for these seeming inconsistencies. Some people, so-called random
utility theorists, have argued that we (as observers) are unable to fully understand and measure all of the
relevant factors that define the choice situation. Others, so-called constant utility theorists, have argued
that decision makers actually behave based on choice probabilities. Both theories result in probabilistic
models of choice rather than the deterministic models discussed thus far.

In the discussion that follows, a probabilistic model of choice will be motivated using random utility
theory. However, it could just as easily have been motivated using constant utility theory. For the purposes
of this Handbook, the end result would have been the same.

A General Probabilistic Model of Choice

Following the precepts of random utility theory, assumes that individual n selects the mode with the
highest utility but that utilities cannot be observed with certainty. Then, from the analyst’s perspective,
the probability that individual n chooses mode i given choice set Cn is given by

(58.16)P i C U U j Cn in jn n( ) = ≥ " Œ[ ]Prob ,
© 2003 by CRC Press LLC
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where Uin is the utility of mode i for individual n. In other words, the probability that n chooses mode i
is simply the probability that i has the highest utility.

Now, since the analyst cannot observe the utilities with certainty they should be treated as random
variables. In particular, assume that

(58.17)

where Vin is the systematic component of the utility and �in is the random component (i.e., the disturbance
term). Combining (58.16) and (58.17) yields the following:

(58.18)

Specific random utility models can now be derived by making assumptions about the joint probability
distributions of the set of disturbances, {�jn, j Œ Cn}.

As with gravity models, these models are typically estimated using maximum likelihood techniques.
In practice, it is generally assumed that the systematic utilities are linear functions of their parameters.
That is,

(58.19)

where xing is the gth attribute of alternative i for individual n, and bing is the “weight” of that attribute.
However, as discussed above, this is not a very restrictive assumption.

Probit Models

Suppose that the disturbances are the sum of a large number of unobserved independent components.
Then, by the central limit theorem, the disturbances would be normally distributed. The resulting model
is called the probit model.

For the case of two alternatives, the (binary) probit model is given by

(58.20)

where F(◊) denotes the cumulative normal distribution function and s is the standard deviation of the
difference in the error terms, �jn – �in. For more detail see Finney [1971] or Daganzo [1979].

Logit Models

Observe that the probit model above does not have a closed-form solution. That is, the probability is
expressed in terms of an integral that must be evaluated numerically. This makes the probit model
computationally burdensome. To get around this, a model has been developed which is probitlike but
much more convenient. This model is called the logit model.

The logit model can be derived by assuming that the disturbances are independently and identically
Type-I Extreme Value (i.e., Gumbel) distributed. That is,

(58.21)

where F(�in) denotes the cumulative distribution function of �in, m is a positive scale parameter, and h
is a location parameter.

With this assumption it is relatively easy to show that

(58.22)
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where j represents an arbitrary mode. For a more complete discussion see Domencich and McFadden
[1975], McFadden [1976], Train [1984], and Ben-Akiva and Lerman [1985].

It is important to point out that, while widely used, the logit model has one serious limitation. To see
this, consider the relative probabilities of two modes, i and k. It follows from (58.22) that

(58.23)

Hence, the ratio of the choice probabilities for i and k is independent of all of the other modes. This
property is known as independence from irrelevant alternatives (IIA).

Unfortunately, this property is problematic in some situations. Consider, for example, a situation in
which there are two modes, automobile (A) and red bus (R). Assuming that that VAn = VRn it follows
from (58.22) that P(AΩCn) = P(RΩCn) = 0.50. Now, suppose a new mode is added, blue bus (B), that is
identical to R except for the color of the vehicles. Then, one would still expect that P(AΩCn) = P(BusΩCn) =
0.50 and hence that P(RΩCn) = P(BΩCn) = 0.25. However, in fact, it follows from (58.22) that P(AΩCn) =
P(RΩCn) = P(RΩCn) = P(BΩCn) = 0.333. Thus, the logit model would not properly predict the mode
choice probabilities in this case. What is the reason? �Rn and �Bn are not independently distributed.

Nested Logit Models

In some situations, an individual’s “choice” of mode is actually a series of choices. For example, when
choosing between auto, bus, and train the person may also have to choose whether to walk or drive to
the bus or train. This can be modeled in one of two ways. On the one hand, the choice set can be thought
of as having five alternatives: auto, walk + bus, auto + bus, walk + train, auto + train. On the other hand,
this can be viewed as a two-step process in which the person first chooses between auto, bus, and train,
and then, if the person chooses bus or train, she must also choose between walk access and auto access.

The reason to use this second approach (i.e., multidimensional choice sets) is that some of the observed
and some of the unobserved attributes of elements in the choice set may be equal across subsets of
alternatives. Hence, the first approach may violate some of the assumptions of, say, the logit model. To
correct for this it is common to use a nested logit model.

To understand the nested logit model, consider a mode and submode choice problem of the kind
discussed above. Then, the utility of a particular choice of mode and submode (for a particular individual)
is given by

(58.24)

where
~
Vm is the systematic utility common to all elements of the choice set using mode m,

~
Vs is the

systematic utility common to all elements of the choice set using submode s,
~
Vms is the remaining

systematic utility specific to the pair (m, s), ~�m is the unobserved utility common to all elements of the
choice set using mode m, ~�s is the unobserved utility common to all elements of the choice set using
submode s, and ~�s is the remaining unobserved utility specific to the pair (m, s).

Now, assuming that ~�m has zero variance and ~�s and ~�ms are independent for all m and s, the terms ~�ms

are independent and identically Gumbel distributed with scale parameter mm, and ~�s is distributed so
that maxm Ums is Gumbel distributed with scale parameter ms, then the choice probabilities can be
represented as follows:

(58.25)

where the notation indicating the individual’s choice set has been dropped for convenience, t denotes an
arbitrary submode, and
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(58.26)

The conditional probability of choosing mode m given the choice of submode s is then given by

(58.27)

where j is an arbitrary mode. That is, the conditional probabilities for this nested logit model are defined
by a scaled logit model that omits the attributes that vary only across the submodes. Ben-Akiva [1973],
Daly and Zachary [1979], Ben-Akiva and Lerman [1985], and Daganzo and Kusnic [1993] provide
detailed discussions of these models.

Path Choices

While the shortest distance between any two points on a plane is described by a straight line, it is often
impossible to actually travel that way. When using an automobile or bicycle you must, for the most part,
use a path that travels along existing roads; when using a bus or train you must use a path that consists
of different predefined route segments; even when flying you often must use a path that consists of
different flight legs.

In some respects, it is pretty amazing that people are able to make path choices at all, given the
enormous number of possible paths that can be used to travel from one point to another. Fortunately,
people are able to make these choices and it is possible to model them.

The basic premise which underlies almost all path choice models is that people choose the “best” path
available to them (where the “best” may be measured in terms of travel time, travel cost, comfort, etc.).
Of course, in general, this assumption may fail to hold. For example, infrequent travelers may not have
enough information to choose the best path and may, instead, choose the most obvious path. As another
example, in some instances it may be too difficult to even calculate what the actual best path is, as is
sometimes the case with complicated transit paths that involve numerous transfers or when a shopper
needs to choose the best way to get from home to several destinations and back to home. Nonetheless,
this relatively simplistic approach does seem to work fairly well in practice.3

Automobile Commuters

The most important thing to capture when modeling the path choices of automobile commuters is
congestion. In other words, the path choice of one commuter affects the path choices of all other
commuters. Hence, one can imagine that each day commuters choose a particular path, evaluate that
path, and the next day choose a new path based on their past experiences. Given that the number of
automobile commuters and the characteristics of the network are relatively constant from day to day,
such an adjustment process might reasonably be expected to settle down at some point in time. Most
models of automobile commuter path choice assume that this process does settle down and, in fact, only
consider the final equilibrium point.

These models are typically set on a network comprised of a set of nodes N and a set of arcs (or links)
A. Within this context, a path is just a sequence of links that a commuter can travel along from his/her
origin to his/her destination. If arc a is a part of path k (connecting r and s) then d rs

ak = 1; otherwise d rs
ak  = 0.

Most such models assume that the number of people traveling from each origin to each destination by

3It is important to note that many behavioral models consider idealized situations in which people make the best
possible choice. For example, this is the basic assumption that underlies most of microeconomics. Though this
assumption has received a great deal of criticism, as yet nobody has been able to propose as workable an alternative.
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automobile is known (i.e., the mode-specific trip table is known) and that each path uses a single link
at most once.

The most popular behavioral theory of the path choices of automobile commuters was proposed by
Wardrop [1952]. He postulated that, in practice, commuters will behave in such a way that “the journey
times on all routes actually used are equal, and less than those which would be experienced by a single
vehicle on any unused route.” When this situation prevails, Wardrop argued that “no driver can reduce
journey time by choosing a new route,” and hence that this situation can be thought of as an equilibrium.
Mathematically, this definition of a Wardrop equilibrium can be expressed as follows:

(58.28)

where f rs
k  denotes the number of people traveling from origin r to destination s on path k, c rs

k denotes
the cost on path k (from r to s),4 �rs denotes the set of paths connecting r and s, � denotes the set of all
origins, and � denotes the set of all destinations.

As it turns out, Wardrop was not completely correct in claiming that when (58.28) holds, no driver
can reduce his or her travel cost by changing routes. This has led other researchers to define other notions
of equilibrium that incorporate this latter idea explicitly. The first such definition was the user equilib-
rium concept proposed by Dafermos and Sparrow [1969] which requires that no portion of the flow on
a path can reduce their costs by swapping to another path. A somewhat weaker definition of user
equilibrium was proposed by Dafermos [1971] in which no small portion of the users on any path can
reduce their travel costs by simultaneously switching to any other path connecting the same OD-pair.
An even weaker definition was proposed by Bernstein and Smith [1994] which is closer in spirit to the
notion of a Nash equilibrium in which there is no coordination. From a behavioral viewpoint, their
definition makes no assertion about potential gains from simultaneous route shifts by any positive portion
of the commuters. Rather, it simply asserts that no gains are possible for arbitrarily small shifts. A very
different equilibrium concept was proposed by Heydecker [1986]. He says that equilibrated path choices
exist when no portion of the flow on any path, p, can switch to any other path, r, connecting the same
OD-pair without making the new cost on r at least as large as the new cost on p. We will ignore such
differences here. In most cases of practical interest, the different definitions of user equilibrium and
Wardrop equilibrium turn out to be identical.

To simplify the analysis, it is common to assume that commuters are infinitely divisible (i.e., that it
makes sense to talk about fractions of commuters on a particular path). It is also common to assume
that the cost on link a, which we denote by ta, is a function only of the number of vehicles on arc a,
which we denote by xa. In this case, the cost functions are said to be separable, and the equilibrium can
be found by solving the following nonlinear program:

(58.29)

(58.30)

(58.31)

(58.32)

4Though Wardrop [1952] includes only travel time in his definition, it is clear that his ideas can easily be extended
to include other costs as well.
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where qrs is the number of automobile commuters from r to s. The solution of this nonlinear program
is an equilibrium because of the Kuhn-Tucker conditions, which are both necessary and sufficient, are
equivalent to the equilibrium conditions in (58.28). This result was first demonstrated by Beckman et al.
[1956]. This problem can be solved using a variety of different nonlinear programming algorithms (see,
for example, LeBlanc, Morlok, and Pierskalla [1975], and Nguyen [1974, 1978]).

For cases where the arc cost functions are not separable we must instead solve a variational inequality
problem in order to find the equilibrium.5 In particular, letting H denote the set of all vectors x =
(xa : a Œ �) and f = (f rs

k  : r Œ �, s Œ �, k Œ �rs) that satisfy

(58.33)

(58.34)

(58.35)

we must find vectors (~x,
~
f ) Œ H that satisfy

(58.36)

for all (x, f ) Œ H. Fortunately, the solution to this variational inequality problem can be obtained in a
variety of ways, one of which is to solve a sequence of nonlinear programs related to the one described
above (see, for example, Dafermos and Sparrow [1969], Nagurney [1984, 1988], Harker and Pang [1990]).

It is important to note that such equilibria are known to exist and be unique in most cases of practical
interest (see Smith [1979] and Dafermos [1980]). It is also important to note that the assumption of
perfect information can be relaxed and a stochastic version of the model developed (see, for example,
Daganzo and Sheffi [1977], Sheffi and Powell [1982], and Smith [1988]). For a more complete discussion
of these models see Friesz [1985], Sheffi [1985], Boyce et al. [1988], or Nagurney [1993].

Transit Travelers

The path choice problem faced by transit travelers is actually quite different from that faced by auto
travelers. In particular, transit users must decide (based on a schedule, if one exists) how to best get from
their origin to their destination using a group of vehicles traveling along predetermined routes. Of course,
they make these choices knowing full-well that almost all aspects of transit service are stochastic (e.g.,
running times, vehicle arrival times, crowding, etc.).

Early models of transit path choice assumed that travelers essentially choose the path with the mini-
mum expected cost. In the case of a tie (either on the entire path or a portion of the path), travelers are
assumed to choose different routes in proportion to their frequency. Models of this kind are discussed
by Dial [1967] and le Clercq [1972].

Recently, more attention has been given to how travelers might actually choose between multiple routes
that service the same locations (whether they are intermediate points in the path or the actual origin
and destination). These models assume that, because of the stochastic nature of vehicle departure and
travel times, passengers will probably be willing to use several paths and will actually choose one based
on the actual departure times of specific vehicles.

5This is not, strictly speaking, true. When the cost functions are nonseparable but symmetric it is still possible to
develop a math programming formulation of the equilibrium problem. This is discussed more fully in Dafermos
[1971], Abdulaal and LeBlanc [1979], and Smith and Bernstein [1993].

f x ak
rs

ak
rs

ksr

a

rs

d
ŒŒŒ
ÂÂÂ = " Œ

���

�      

f q r sk
rs

k

rs

rsŒ
Â = " Œ Œ

�

� �      ,

f r s kk
rs

rs≥ " Œ Œ Œ0       , ,� � �

t x x xa a a

a

( ) -( ) ≥
Œ

Â
�

0

© 2003 by CRC Press LLC



58-14 The Civil Engineering Handbook, Second Edition
Chriqui and Robillard [1975] assume that travelers will first choose a set of routes they would be
willing to use, and then actually choose the first vehicle that arrives which services one of the routes in
that set. This model can be formalized as follows. Let n denote the number of routes providing service
between two locations, let fWi denote the probability density function of the waiting times (for the next
vehicle) on route i, let

~
FWi denote the complement of the cumulative distribution function of the waiting

times on route i, let X = (x1,…, xn) denote the choice vector where xi = 1 if route i is chosen and xi = 0
otherwise, and let ti denote the expected travel time after boarding a vehicle on route i. Then, following
Hickman [1993], the problem of determining the optimal route set is given by

(58.37)

(58.38)

(58.39)

In this problem, the expression xi fWi Pjπ1

~
FWj(z)xj denotes the probability that a vehicle on route i will

arrive before any other vehicle in the choice set.
The solution technique proposed by Chriqui and Robillard [1975] is not guaranteed to find an optimal

solution except when the waiting time distributions and in-vehicle travel times for all routes are identical
and when the headways are exponentially distributed. Their heuristic proceeds as follows:

Step 0. Enumerate all of the possible routes. Set k = 1.
Step 1. Sort the routes by expected in-vehicle travel “cost” (e.g., time) letting route i denote the ith

“cheapest” route.
Step 2. Let the initial guess at the choice set be given by X1 = (1, 0,…, 0) and let C1 denote the

expected travel cost associated with this choice set.
Step 3. Let the guess at iteration k be given by Xk = (11,…, 1k, 0k+1,…, 0n) where 1i denotes a 1 in

the ith position of the vector X and 0i denotes a 0 in the ith position of the vector X. Calculate
the expected cost of this choice set and denote it by Ck.

Step 4. If Ck > Ck–1 then STOP (the optimal choice set is given by Xk–1). Otherwise GOTO step 3.

This work is discussed and extended by Marguier [1981], Marguier and Ceder [1984], Janson and
Ridderstolpe [1992], and Hickman [1993]. Other models of transit path choice are discussed in de Cea
et al. [1988], Spiess and Florian [1989], and Nguyen and Pallottino [1988].

Departure-Time Choice

Traditionally, little attention has been given to the modeling of departure-time choice. Hence, this section
will briefly discuss some of the approaches to modeling departure-time choice that have been proposed
in the theoretical literature but, as yet, have not been widely implemented.

Automobile Commuters

In practice, the departure-time choices of automobile commuters are usually modeled very crudely. That
is, the day is normally divided into several periods (e.g., morning peak, midday, evening peak, night)
and a trip table is created for each period. Within-period departure-time choices are simply ignored.

The theoretical literature has considered two approaches for modeling within-period departure-time
choice. The first approach makes use of the kinds of probabilistic choice models discussed above. These
models, however, typically fail to consider congestion effects. The other approach accounts for congestion
in a manner that is very similar to the path choice models described above. That is, this approach assumes
that each person chooses the best departure-time given the behavior of all other commuters.
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Transportation Planning 58-15
To understand this second approach, consider a simple example of the work-to-home commute in
which each person chooses a departure time after 5:00 p.m. (denoted by t = 0) and before some time

~
t

in such a way that his or her cost is minimized given the behavior of all other commuters. Assuming
that travel delays are modeled as a deterministic queuing process with service rate 1/b and the cost of
departing at time t is given by

(58.40)

where x(t) is the size of the queue at time t and g < 1 is a penalty for late departure, an equilibrium can
be characterized as a departure pattern, h, that satisfies

(58.41)

(58.42)

The first condition ensures that the costs are equal for all departure times, while the second ensures that
everyone actually departs (where the total number of commuters is denoted by N).

In equilibrium, g N people will depart at exactly t = 0 (assuming that each individual member of this
group will perceive the average cost for the entire group), and over the interval (0, bN) the remaining
commuters will depart at a rate of (1 – g)/b.

To see that this is indeed an equilibrium, observe that as long as there are commuters in the queue
throughout the period [0,

~
t], the size of the queue at time t is given by

(58.43)

Hence, the cost at time t is given by

(58.44)

Substituting for x(0) and h yields C(t) = bgN + (1 – g)t – t + gt = bgN for t Œ (0,
~
t). And, since x(0) =

gN it follows that C(0) = bgN and that the flow pattern is, in fact, an equilibrium.
These models are discussed in greater detail by Vickrey [1969], Hendrickson and Kocur [1981],

Mahmassani and Herman [1984], Newell [1987], and Arnott et al. [1990a,b]. Stochastic versions are
presented by Alfa and Minh [1979], de Palma et al. [1983], and Ben-Akiva et al. [1984].

Transit Travelers

Traditionally, transit models have assumed that (particularly when headways are relatively short) people
depart from their homes (i.e., arrive at the transit stop) randomly. In other words, they assume that the
interarrival times are exponentially distributed.

There has been some research, however, that has attempted to model departure time choices in more
detail. This work is described by Jolliffe and Hutchinson [1975], Turnquist [1978], and Bowman and
Turnquist [1981].

Combining the Models

The discussion above treated each of the different models in isolation. However, as mentioned at the
outset, many of the decisions being modeled are actually interrelated. Hence, it is common practice to
combine these models when they are actually applied.

The most obvious way to combine these models is to apply them sequentially. That is, obtain origin
and/or destination totals from a trip generation model, use those totals as inputs to a trip distribution
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model and obtain a trip table, use the trips by origin-destination pair as inputs to a modal split model,
and then assign the mode-specific trips to paths using an assignment model. Unfortunately, however,
this process is not as “trouble free” as it might sound. For example, trip distribution models often have
travel times as an input. What travel time should you use? Should you use a weighted average across
different modes? Perhaps, but you have not yet modeled modal shares. In addition, since you have not
yet modeled path choice you do not know what the travel times will be.

This has led many practitioners to apply the models sequentially but to do so iteratively, first guessing
at appropriate inputs to the early models and then using the outputs from the later models as inputs in
later iterations. Continuing the example above, you estimate travel times for the trip distribution model
in the first iteration, then use the resulting trip table and an estimate of mode-specific travel times as an
input to a modal split model. Next, you could use the output from the modal split model as an input to
a traffic assignment model. Then, you could use the travel costs calculated by the traffic assignment
model as inputs to the next iteration’s trip distribution model, and so on.

Of course, one is naturally led to ask which approach is better. Unfortunately, there is no conclusive
answer. Some people have argued that the simple sequential approach is an accurate predictor of observed
behavior. In other words, they argue that the estimates of travel times that people use when choosing
where to live and work often turn out to be inconsistent with the travel times that are actually realized.
As a result, they are not troubled by the inconsistencies that arise using what is traditionally referred to
as the “four-step process” (i.e., first trip generation, then trip distribution, then modal split, and finally
traffic assignment).

Others have argued that the number of iterations should depend on the time frame of the analysis.
That is, they believe that the iterative approach can be used to describe how these decisions are actually
made over time. Hence, by iterating they believe that they can predict how the system will evolve over time.

Still others have argued that, while the iterative approach does not accurately describe how the system
will evolve over time, it will eventually converge to the long-run equilibrium that is likely to be realized.
That is, they believe that the trajectory of intermediate solutions is meaningless, but that the final solution
(i.e., when the outputs across different iterations settle down) is a good predictor of the long-run
equilibrium that will actually be realized.

Finally, others have argued that it makes sense to iterate until the outputs converge not because the
final answer is likely to be a good predictor (since too many other things will change in the interim), but
simply because it is internally consistent. They argue that it is impossible to compare the impacts of
different projects otherwise.

Regardless of how you feel about the above debate, one thing is known for certain. There are more
efficient ways of solving for the long-run equilibrium than iteratively solving each of the individual models
until they converge. In particular, it is possible to solve most combinations of models simultaneously.

As an example, consider the problem of solving the combined mode and route choice problem,
assuming that there are two modes (auto and train), that there is one train path for each OD-pair, that
the two modes are independent (i.e., that neither node congests the other), that the cost of the train is
independent of the number of users of the train, and that the arc cost functions for auto are separable.
Then, the combined model can be formulated as the following nonlinear program:

(58.45)
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(58.48)

(58.49)

where ~qrs denotes the total number of travelers on both modes and ûrs denotes the fixed transit travel cost.
Of course, there are far too many different combinations of the basic models to review them all here.

Various different combinations of the traditional “four steps” are discussed by Tomlin [1971], Florian
et al. [1975], Evans [1976], Florian [1977], Florian and Nguyen [1978], Sheffi [1985], and Safwat and
Magnanti [1988]. There is also a considerable amount of activity currently being devoted to simultaneous
models of route and departure-time choice. As these models are quite complicated, in general, they are
beyond the scope of this Handbook. For auto commuters, see, for example, the deterministic models of
Friesz et al. [1989], Smith and Ghali [1990], Bernstein et al. [1993], Friesz et al. [1993], Ran [1993] and
the stochastic models developed by Ben-Akiva et al. [1986] and Cascetta [1989]. For transit travel, see
the models developed by Hendrickson and Plank [1984] and Sumi et al. [1990].

58.3 Applications and Example Calculations

In this section, several examples are presented and solved. Unfortunately, due to the complexity of some
of the models and the ways in which they interact, these examples are not exhaustive.

The Decision to Travel

A number of different trip generation models have been developed over the years. This section contains
examples of several.

The first example is a disaggregate regression model estimated by Douglas [1973]:

(58.50)

where Y denotes the number of trips per household per day, X1 denotes the number of people per
household, X2 denotes the number of employed people per household, and X3 denotes the monthly
income of the household (in thousands of U.K. pounds). The symbol * indicates that the estimate of the
coefficient is significantly different from 0 at the 0.95 confidence level. As one example of how to use
this model, observe that ∂Y/∂X1 = 0.63. Hence, this model says that, other things being equal, an additional
unemployed member of the household would make (on average) 0.63 additional trips per day.

The second model is an example of a disaggregate category analysis model developed by Doubleday
[1977]:

where the numbers in the table are the number of trips per person per day. It should be relatively easy
to see how such a model would be used in practice.

The third example is an aggregate regression model estimated by Keefer [1966] for the city of Pitts-
burgh:

Type of Person Total Trip Rate Regular Trips Nonregular Trips

Employed males w/o a car 3.7 2.46 0.55
with a car 5.7 2.80 1.38

Employed females w/o a car 4.5 2.20 1.30
with a car 6.0 2.39 2.13

Homemakers w/o a car 4.1  — 3.25
with a car 5.7  — 4.78

Retired persons w/o a car 2.2  — 1.75
with a car 4.1  — 3.16
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(58.51)

where Y denotes the total number of automobile trips to shopping centers, X1 denotes the number of
work trips, X2 denotes the distance of the shopping center from major competitions (in tenths of miles),
X3 denotes the reported travel speed of trip makers (in miles per hour), and X4 denotes the amount of
floor space used for goods other than shopping and convenience goods (in thousands of square feet).
The R2 for this model is 0.920. What distinguishes this model from the disaggregate model above is that
it does not focus on the individual household. Instead, it uses aggregate data and estimates the total
number of automobile trips to shopping centers.

The final example is an aggregate category analysis model also developed by Keefer [1966]:

where the numbers in the table are the total number of trips taken. Again, this is an aggregate model
because, unlike the earlier category analysis model, it does not focus on the behavior of the individual.
Instead, it is based on aggregate data about trip making.

Origin and Destination Choice

This section contains an example of an estimated gravity model and several iterations of an application
of the Fratar model.

An Example of the Gravity Model

Putman [1983] presents an interesting example of a gravity model of commuter origin/destination choice.
In this model

(58.52)

where Tij denotes the number of commuting trips from i to j, Li denotes the size of zone i, cij is the cost
of traveling from i to j, and a, b, and d are parameters.

He estimated this model for several cities (in slightly different years) and found the following:

Land-Use Category Square Feet (1000s) Person Trips Trips per 1000 sq. ft

Residential 2,744 6,574 2.4
Retail 6,732 54,733 8.1
Services 13,506 70,014 5.2
Wholesale 2,599 3.162 1.2
Manufacturing 1,392 1,335 1.0
Transport 1,394 5,630 4.0
Public buildings 31,344 153,294 4.9

City a b d

Gosford-Wyong, Australia 0.09 –0.03 –2.31
Melbourne, Australia 1.04 –0.06 0.13
Natal, Brazil 0.93 –0.01 0.48
Rio de Janeiro, Brazil 1.08 –0.01 0.60
Monclova-Frontera, Mexico 2.73 –0.14 0.24
Ankara, Turkey 0.64 –0.14 –0.31
Izmit, Turkey 0.90 –0.03 1.05

Y X X X X= + + - -3296 5 5 35 291 9 0 65 22 311 2 3 4. . . . .
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Transportation Planning 58-19
To see how this type of model would be applied, consider the following two-zone example in which
L1 = 3000, L2 = 1000, c11 = 2, c12 = 10, c21 = 7, and c22 = 3, and suppose that these zones are in Melbourne,
Australia. Then, for T11, the numerator of (58.52) is given by �d

1 c a
11 exp(bc11) = 30000.13 ◊ 21.04 ◊ exp(0.13 ◊ 2) =

2.83 ◊ 2.06 ◊ 0.89 = 5.16. Continuing in this manner, the other numerators in (58.52) are given by 17.04
for i = 1, j = 2, 12.20 for i = 2, j = 1, and 6.43 for i = 2, j = 2. It then follows that

(58.53)

(58.54)

(58.55)

(58.56)

Thus, the model predicts that there will be 698 + 655 = 1353 trips to zone 1, and 2302 + 345 = 2647
trips to zone 2.

In order to understand the sensitivity of this model, it is worth performing these same calculations
using the parameters estimated for Ankara, Turkey. In this case, the resulting trip table is given by

(58.57)

(58.58)

(58.59)

(58.60)

An Example of the Fratar Model

Consider the following hypothetical example of the Fratar model in which there are four zones and the
original trip table is given by

(58.61)

and the forecasted trip-end totals are given by

(58.62)

In step 1, the production totals are calculated as

T11

5 16

5 16 17 04 12 20 6 43
698=

+ + +
=.

. . . .

T12

17 04

5 16 17 04 12 20 6 43
2302=

+ + +
=.

. . . .

T21

12 20

5 16 17 04 12 20 6 43
655=

+ + +
=.

. . . .

T22

6 43

5 16 17 04 12 20 6 43
345=

+ + +
=.

. . . .

T11 1567=

T12 1433=

T21 496=

T22 504=

T 0

0 00 10 00 40 00 15 00

10 00 0 00 20 00 30 00

40 00 20 00 0 00 10 00

15 00 30 00 10 00 0 00

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

. . . .

. . . .

. . . .

. . . .

O =

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

130 00

140 00

225 00

90 00

.

.

.

.
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(58.63)

Then, in step 2, the factors are calculated as

(58.64)

Next, in step 3, the temporary (asymmetric) trip table is calculated as

(58.65)

Finally, the first iteration is concluded by calculating the symmetric trip table:

(58.66)

In step 1 of the second iteration, the trip-end totals are calculated as

(58.67)

Then in step 2 of iteration 2:

(58.68)

And in step 3 of iteration 2:

(58.69)

P1

65 00

60 00

70 00

55 00

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

.

.

.

.

f 1

2 00

2 33

3 21

1 64

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

.

.

.

.

N1

0 00 17 19 94 73 18 08

20 99 0 00 67 48 51 53

125 85 73 41 0 00 25 74

20 43 47 68 21 89 0 00

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

. . . .

. . . .

. . . .

. . . .

T1

0 87 0 00 19 09 110 29

1 01 19 09 0 00 70 44

1 10 110 29 70 44 0 00

0 97 19 26 49 60 23 82

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

. . . .

. . . .

. . . .

. . . .

P2

148 64

139 13

204 55

92 68

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

.

.

.

.

f 2

0 87

1 01

1 10

0 97

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

.

.

.

.

N 2

0 00 15 68 99 05 15 27

16 42 0 00 76 21 47 37

113 95 83 73 0 00 27 32

16 31 48 32 25 37 0 00

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

. . . .

. . . .

. . . .

. . . .
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And, finally in step 4 of iteration 2:

(58.70)

In step 1 of iteration 3:

(58.71)

And, in step 2 of iteration 3:

(58.72)

Since all of these values are approximately equal to 1 the algorithm terminates at this point.

Mode Choice

Suppose the utility function for individual n is given by

(58.73)

where tj is the travel time on mode j, oj is the out-of-pocket cost on mode j, and Yn is the income of
individual n. Now, consider the following three modes:

and consider this person’s choices when her income was $15,000 and not that it is $30,000.
When her income was $15,000 the (symmetric) utilities of the three modes were given by –1.17 for

driving alone, –1.08 for carpooling, and –1.25 for taking the bus. Now that her income has increased to
$30,000, the utilities have gone to –0.88 for driving alone, –0.92 for carpooling, and –1.13 for taking the
bus. (Note: The utilities are negative because commuting itself decreases your overall utility.)

Using a deterministic choice model, one would conclude that this individual would choose the mode
with the highest utility (i.e., the lowest disutility). In this case, when she earned $15,000 she would have
carpooled, but now that she earns $30,000 she drives alone.

On the other hand, using a logit model with m = 1, the resulting probabilities are given by

(58.74)

Mode t o

Drive alone 0.50 2.00
Carpool 0.75 1.00
Bus 1.00 0.75

T 2

0 00 16 05 106 50 15 79

16 05 0 00 79 97 47 85

106 50 79 97 0 00 26 35

15 79 47 85 26 35 0 00

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

. . . .

. . . .

. . . .

. . . .

P3

138 34

143 87

212 81

89 98

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

.

.

.

.

f 3

0 94

0 97

1 06

1 00

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

.

.

.

.

V t
o

Yjn j
j

n

= - -
5

P i C
e

e
n

V

V

j

in

jn
( ) =

Â
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Hence, in this choice situation with Y = 15:

(58.75)

Continuing in this way, one finds that

Roughly speaking, this says that when her income was $15,000 she drove alone 33% of the time, carpooled
36% of the time, and took the bus 31% of the time. Now, however, she drives alone 38% of the time,
carpools 34% of the time, and takes the bus 28% of the time.

Path Choice

This section contains an example of both highway path choice and transit path choice.

Highway Path Choice

A nice way to illustrate equilibrium path choice models is with a famous example called Braess’s paradox.
Consider the four-link network shown in Fig. 58.1, where t1(x1) = 50 + x1, t2(x2) = 50 + x2, t3(x3) = 10x3,
and t4(x4) = 10x4. Since these cost functions are separable, the following nonlinear program can be solved
to obtain the equilibrium:

(58.76)

(58.77)

(58.78)

(58.79)

FIGURE 58.1 A four-link network. FIGURE 58.2 A five-link network.

Mode P(iΩCn) for Y = 15 P(iΩCn) for Y = 30

Drive alone 0.33 0.38
Carpool 0.36 0.34
Bus 0.31 0.28

O D

1

3
2

4

O D

3
2

1
4

5

P Drive alone( ) =
+ +

= =0 31

0 31 0 34 0 29

0 31

0 94
0 33

.

. . .

.

.
.

min      50 50 10 10
0 0 0 0

1 2 3 4

+( ) + +( ) + ( ) + ( )Ú Ú Ú Úw w w w w w w wd d d d
x x x x

s.t.       f x1 1=

f x2 2=

f x2 3=
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(58.80)

(58.81)

(58.82)

(58.83)

The solution to this problem is given by x1 = 3, x2 = 3, x3 = 3, x4 = 3. To verify that this is, indeed, an
equilibrium, the costs on the two paths can be calculated as follows:

(58.84)

(58.85)

The total cost to all commuters is thus (3 ◊ 83) + (3 ◊ 83) = 498.
Now, suppose link 5 is added to the network as in Fig. 58.2, where t5(x5) = 10 + x5. Then, it follows

that the following nonlinear program can be solved to obtain the new equilibrium:

(58.86)

(58.87)

(58.88)

(58.89)

(58.90)

(58.91)

(58.92)

(58.93)

(58.94)

(58.95)

The solution to this problem is given by x1 = 2, x2 = 2, x3 = 4, x4 = 4, x5 = 2 (with two commuters using
each of the three paths). To verify that this is, indeed, an equilibrium, the costs on the three paths can
be calculated as follows:

(58.96)

(58.97)

f x1 4=

f f1 2 6+ =

f1 0≥

f2 0≥

c t x t x1 1 1 4 4 50 3 10 3 83OD = ( ) + ( ) = +( ) + ◊( ) =

c t x t x2 3 3 2 2 10 3 50 3 83OD = ( ) + ( ) = ◊( ) + +( ) =

min      50 50 10 10 10
0 0 0 0 0

1 2 3 4 5

+( ) + +( ) + ( ) + ( ) + ( )Ú Ú Ú Ú Úw w w w w w w w w wd d d d d
x x x x x

s.t.       f x1 1=

f x2 2=

f f x2 3 3+ =

f f x1 3 4+ =

f x3 5=

f f f1 2 2 6+ + =

f1 0≥

f2 0≥

f3 0≥

c t x t x1 1 1 4 4 50 2 10 4 92OD = ( ) + ( ) = +( ) + ◊( ) =

c t x t x2 3 3 2 2 10 4 50 2 92OD = ( ) + ( ) = ◊( ) + +( ) =
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(58.98)

Now, however, the total cost to all commuters is (2 ◊ 92) + (2 ◊ 92) + (2 ◊ 92) = 552.
This example has received a great deal of attention because it illustrates that it is possible to increase

total travel costs when you add a link to the network, and this seems counterintuitive. Of course, one is
led to ask why people don’t simply stop using path 3. The reason is that with 3 people on paths 1 and 2
(and hence with x1 = 3, x2 = 3, x3 = 3, x4 = 3) the cost on path 3 is given by

(58.99)

and hence people using paths 1 and 2 will want to switch to path 3. And, once they switch, even though
their costs will go up they will not want to switch back. To see this, consider the equilibrium with the
new link in place, and suppose someone on path 3 switches to path 1. Then, the resulting link volumes
are x1 = 3, x2 = 2, x3 = 3, x4 = 4, and x5 = 1. Hence

(58.100)

which is higher than the cost of 92 they would experience without switching.

Transit Path Choice

Consider an origin-destination pair that is serviced by four bus routes with the following characteristics:

The expected travel times in this table are calculated assuming that passengers arrive at the origin
randomly and that the vehicle headways are randomly distributed. The expected waiting time for any
particular route is half of the headway.

If one assumes that people simply choose the route with the lowest expected travel time, then it is
clear that route A will be chosen. On the other hand, the Chriqui and Robillard [1975] model would
predict that both routes A and B would be chosen. Their algorithm proceeds as follows.

In step 1 the routes are sorted based on their expected in-vehicle travel time. Hence, route B will be
denoted by 1, route A will be denoted by 2, route C will be denoted by 3, and route D will be denoted by 4.

In step 2, the initial choice set is determined. In this case, X1 = (1, 0, 0, 0) and C1 = 25.
In step 3, routes are iteratively added to this choice set until the expected travel time increases. So, in

the first iteration the choice set is assumed to be X2 = (1, 1, 0, 0). To calculate the expected travel time
for this choice set, observe that (given the above headways) 14 vehicles per hour from this choice set
serve the OD-pair. Hence, the expected waiting time (for a randomly arriving passenger) is 4.29/2 =
2.14 minutes. The expected travel time for this choice set is given by the probability-weighted travel times
on the member routes. Hence, the expected travel time is (2/14) ◊ 10 + (12/14) ◊ 20 = 17.14 + 1.43 =
18.57 minutes. Thus, the expected total travel time for this choice set, C2, is 18.57 minutes. Since this is
less than C1, the algorithm continues.

In the second iteration the choice set is assumed to be X3 = (1, 1, 1, 0). Now, 16 vehicles per hour
from this choice set serve the OD-pair. Hence, the expected waiting time is 3.75/2 = 1.875 minutes.
Further, the expected travel time is given by [(2/16) ◊ 10] + [(12/16) ◊ 20] + [(2/16) ◊ 30] = 1.25 + 15 +
3.75 = 20 minutes. Thus, the expected total travel time for this choice set, C3, is 21.875 minutes. Since
this is greater than C2, the algorithm terminates.

Route E[In-Vehicle Time] E[Headway] E[Travel Time]

A 20 5 22.5
B 10 30 25
C 30 30 45
D 35 25 47.5

c t x t x t x3 3 3 5 5 4 4 10 4 10 2 10 4 92OD = ( ) + ( ) + ( ) = ◊( ) + +( ) + ◊( ) =

c t x t x t x3 3 3 5 5 4 4 10 3 10 0 10 3 70OD = ( ) + ( ) + ( ) = ◊( ) + +( ) + ◊( ) =

c t x t x1 1 1 4 4 50 3 10 4 93OD = ( ) + ( ) = +( ) + ◊( ) =
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Departure-Time Choice

As discussed above, the equilibrium departure pattern for a simple model of departure-time choice can
be characterized as x(0) = gN, h(t) = (1 – g)/b for t Œ (0, bN]. Assuming N = 10,000, the service rate of
the queue is 5000 vehicles/hr (i.e., b = 1/5000), and the late departure penalty is given by g = 0.1, it
follows that in equilibrium x(0) = 1000, the peak period end at 

~
t = 2 (i.e., lasts for 2 hours after 5:00 p.m.),

and the departure rate during the peak period is 4500 vehicles/hr.
It also follows that the queue at time t is given by

(58.101)

and hence that the queue is initially 1000 vehicles (at time t = 0) and decreases linearly at a rate of
500 vehicles/hr.

Combined Models

In this example, a hypothetical city is thinking about changing the fare on its transit line from $1.50 to
$3.00 and would like to be able to predict how ridership and congestion levels will change. The network
is shown in Fig. 58.3. Node D is the single destination (the central business district) and node O is the
single origin (the residential area). The solid line represents the highway link and the dotted line represents
the transit link.

The Models

Highway travel times (in-vehicle) will be modeled using the following function recommended by the
Bureau of Public Roads (BPR):

(58.102)

where t0 is the free-flow travel time (in minutes) and ka is the practical capacity of link a.
Mode choice will be modeled using the following logit model:

(58.103)

where P(T) is the probability that a commuter chooses to go to work by transit (train), P(A) is the
probability that a commuter chooses to go to work by auto, VT is the systematic component of the utility
of transit, and VA is the systematic component of the utility of auto.

Path choices obviously do not need to be modeled since there is only one path available to each mode.
Hence, all of the commuters that choose a particular mode can simply be assigned to the single path for
that mode.

FIGURE 58.3  A multimodal network.

x t N t t N( ) = - Œ[ ]g g
b

b,       ,0

t t
x

ka
a

a

= +
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙0

4

1 0 15.

P T
V

V V
T

A T

( ) = ( )
( ) + ( )

exp

exp exp

O D

Transit

Highway
© 2003 by CRC Press LLC



58-26 The Civil Engineering Handbook, Second Edition
The Data

There are 15,000 people, in total, commuting from node O to node D. Currently (i.e., with a transit fare
of $1.50) 12,560 people use transit and 2,440 people use the highway.

The systematic utilities for the logit model have been estimated as

(58.104)

(58.105)

where i is the in-vehicle travel time, o is the out-of-vehicle travel time, and c is the monetary cost per
trip on that mode.

For transit, i = 45 (in minutes), o = 10, and c = 150 (cents). For the highway, o = 5, c = 560 ($0.28 per
mile times 20 miles), and, under current conditions, i = 24.5.

The practical capacity of the highway is 4,000, and the free-flow speed is 50 mph. Hence, since the
highway is 20 miles long, the free-flow time, t0 is 24 minutes.

Using the Models

It would seem as though it should be relatively easy to use the logit model of mode choice to determine
the impact of the fare increase. However, observe that this model requires the auto travel time as input
and it is not clear what value should be used. Assuming that the highway will continue to operate at its
current level of service, the travel time will be 24.5 minutes. Using this value, one finds that the systematic
utilities are given by

(58.106)

and

(58.107)

Hence, the choice probabilities are given by PA = 0.3569 and PT = 0.6431. In other words, 0.3569 ◊ 15,000 =
5353 people will use the highway and 0.6431 ◊ 15,000 = 9647 people will use transit after the fare hike.

However, observe that these values are not consistent with the original assumption that the road would
operate in near free-flow conditions. In particular, with 5353 highway users the travel time [calculated
using (58.102)] will actually be 35.5 minutes, not 24 minutes. Hence, though people may make their
initial choices based on free-flow speeds, they are likely to change their behavior in response to their
incorrect estimate of the auto travel time.

If one believes that people will keep changing their paths until the travel time that is used as an input
to the mode choice model is the same as the travel time that actually results, then it is necessary to solve
the two models simultaneously. Doing so in this case, it turns out that ta = iA = 33.38, VA = –3.48, VT =
–2.81, and hence that 5082 people will use auto and 9918 will use transit.

Of course, we could take this one step further. In particular, suppose there was another residential
neighborhood, and that residential location choice could be modeled as follows:

(58.108)

where nj is the number of commuters that choose to live in zone j, N is the total number of commuters,
Aj is the “attractiveness” of the zone j, cj is the commuting “cost” to the central business district, and q
is the cost sensitivity parameter. Then, it is easy to see that, since the cost of commuting has changed,
the number of people living in each zone will also change (at least in the long run). Hence, one might
want to simultaneously solve all three models.

V i o cA A A a= - ◊ - ◊ - ◊0 893 0 00897 0 0308 0 007. . . .

V i o cT T T t= - ◊ - ◊ - ◊0 00897 0 0308 0 007. . .

VA = - ◊ - ◊ - ◊ = -0 893 0 00897 24 5 0 0308 5 0 007 560 3 4. . . . . .

VT = - ◊ - ◊ - ◊ = -0 00897 45 0 0308 10 0 007 300 2 8. . . .

n N
A c

A c
j

j j

i i
i

= ◊
-( )

-( )Â
exp

exp

q

q

© 2003 by CRC Press LLC



Transportation Planning 58-27
Defining Terms

Aggregate models: Aggregate models consider the decisions of a group in total. The groups themselves
can be based either on geography or socioeconomic characteristics.

Alternatives: The set of possible decisions that an individual can make.
Choice: The alternative that an individual selects in a given situation.
Disaggregate models: Disaggregate models consider the behavior of individuals (or sometimes house-

holds). They essentially consider the choices that individuals make among different alternatives in
a given situation.

Equilibrated path choices: Path choices are equilibrated when no portion of the flow on any path, p,
can switch to any other path, r, connecting the same OD-pair without making the new cost on r
at least as large as the new cost on p.

Independence from irrelevant alternatives (IIA): The property that the ratio of the choice probabilities
for i and k is independent of all of the other alternatives (within the context of probabilistic choice
models).

Macrostate: The number of trips to and/or from each zone (within the context of a gravity model).
Management/administration: Activities related to the transportation organization itself.
Microstate: The set of such choices made by a group of individuals (within the context of a gravity model).
Modal split: This term is used to refer to both the process of modeling/predicting mode choices and

the results of that process.
Operations/control: Activities related to the provision of transportation services when the system is

in a stable (or relatively stable) state.
Organizational setting: The organization and administrative rules and practices that distribute deci-

sion-making powers and that set limits on the process and on the range of alternatives.
Planning/design: Activities related to changing the way transportation services are provided (i.e., state

transitions).
Planning situation: The number of decision makers, the congruity and clarity of values, attitudes and

preferences, the degree of trust among decision makers, the ability to forecast, time and other
resources available, quality of communications, size and distribution of rewards, and the perma-
nency of relationships.

Resolution: The resolution of a system is defined by how the system of interest is seen in relation to
the environment (i.e., all other systems) and its elements which are treated as black boxes.

Societal setting: The laws, regulations, customs, and practices that distribute decision-making powers
and that set limits on the process and on the range of alternatives.

System: A set of objects, their attributes, and the relationships between them.
System state: The known properties of the system (within the context of a gravity model).
Telecommuting: Using telecommunications technology (e.g., telephones, FAX machines, modems) to

interact with coworkers in lieu of actually traveling to a central location.
Teleshopping: Using telecommunications technology (e.g., telephones, FAX machines, modem) to

either acquire information about products or make purchases.
Traffic assignment: The term is used both to describe the process of modeling/predicting path choices

and the results of that process.
Transitivity of preferences: Preferences are said to be transitive if whenever A is preferred to B and B

is preferred to C it also follows that A is preferred to C.
Transportation planning: Activities related to changing the way transportation services are provided.

Typical activities include the generation and evaluation of alternative proposals.
Trip attractions: The number of trips destined for a particular location.
Trip distribution: This term is used both to describe the process of modeling/predicting origin and

destination choices and the result of that process.
Trip generation: Determining the number of trips that will originate from and terminate at each zone

in the network. Trip generation models attempt to explain/predict the decision to travel.
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Trip productions: The number of trips originating from a particular location.
Trip table: The number of trips traveling between each origin-destination pair.
User equilibrium: Several slightly different definitions of user equilibrium exist. The essence of these

definitions is that no traveler can reduce his or her travel cost by unilaterally changing paths.
Wardrop equilibrium: A situation in which the cost on all of the paths between an origin and desti-

nation actually used are equal, and less than those which would be experienced by a single vehicle
on any unused path.
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Further Information

In addition to the references listed above, there are several introductory texts devoted to transportation
planning, including Fundamentals of Transportation Systems Analysis by M. L. Manheim, Introduction to
Transportation Engineering and Planning by E. K. Morlok, and Fundamentals of Transportation Engineering
by C. S. Papacostas.

A variety of journals are also devoted (in whole or in part) to transportation planning, including the
Journal of Transport Economics and Policy, Transportation, Transportation Research, the Transportation
Research Record, and Transportation Science.
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