THE ARUP STRUCTURAL SCHEME DESIGN GUIDE

CONTENTS
VER 3.0 / Aug 1998

1. Building Geometry & Anatomy
 1.1 Typical grid dimensions
 1.2 Typical sections
 1.3 Typical service zone requirements
 1.4 Car parks
 1.5 References

2. Guide to Costs
 2.1 Comparative European costs for material supply
 2.2 Relative costs of steel subgrades

3. Loads
 3.1 Density of materials
 3.2 Dead loading
 3.3 Typical imposed loading
 3.4 Imposed loads on barriers
 3.5 References

4.1 Properties of Structural Materials

4.2 Reinforced Concrete
 4.2.1 Rules of thumb
 4.2.2 Load factors
 4.2.3 Beams
 4.2.4 Slabs
 4.2.5 Stiffness
 4.2.6 Columns
 4.2.7 Creep and Shrinkage
 4.2.8 Bar and mesh areas and weights
 4.2.9 References

4.3 Prestressed Concrete
 4.3.1 Rules of thumb
 4.3.2 Common strands
 4.3.3 Common tendons
 4.3.4 Equivalent loads
 4.3.5 Allowable stresses at service loads
 4.3.6 Ultimate bending strength
 4.3.7 Shear
 4.3.8 References

4.4 Steel (Non-Composite)
 4.4.1 Rules of thumb
 4.4.2 Load factors
 4.4.3 Design strength
 4.4.4 Beam design
 4.4.5 Columns (and beam columns)
 4.4.6 Portal Frame sizing
 4.4.7 Element stiffness
 4.4.8 Connections
 4.4.9 Corrosion protection
 4.4.10 Section properties
 4.4.11 References

4.5 Composite Steel and Concrete
 4.5.1 Rules of thumb
 4.5.2 Load factors
 4.5.3 Bending resistance
 4.5.4 Shear connectors

4.6 Timber
 4.6.1 Rules of thumb
 4.6.2 Materials supply
 4.6.3 Grade stresses
 4.6.4 Sizing of elements in domestic construction
 4.6.5 Outline of design rules for timber members
 4.6.6 Selected timber modification factors
 4.6.7 Modification factor combinations
 4.6.8 Deflection
 4.6.9 Fasteners

4.7 Masonry
 4.7.1 Rules of thumb
 4.7.2 Load factors
 4.7.3 Material factors
 4.7.4 Modular dimensions
 4.7.5 Typical unit strengths
 4.7.6 Masonry compressive strength
 4.7.7 Sizing external wall panels
 4.7.8 Flexural strength of masonry
 4.7.9 Internal non-loadbearing masonry walls
 4.7.10 Freestanding masonry walls
 4.7.11 Joints
 4.7.12 Other issues

4.8 Aluminium
 4.8.1 Main structural alloys
 4.8.2 Durability
 4.8.3 Typical physical properties
 4.8.4 Design

4.9 Stainless Steel
 4.9.1 Material grades
 4.9.2 Mechanical properties
 4.9.3 Physical properties
 4.9.4 Design strength
 4.9.6 Availability
 4.9.7 References

5. Foundations
 5.1 General Principles
 5.2 Appropriate foundation solutions
 5.3 Presumed allowable bearing values under vertical, non-eccentric static loading
 5.4 Shallow foundations
 5.5 Piled foundations

6. Water Resistant Basements
 6.1 Rules of thumb
 6.2 Establish client's requirements/expectations
 6.3 Construction options
 6.4 Waterproofing options
 6.5 Critical points
 6.6 Construction joints
 6.7 Movement joints

4.5.5 Bending strength (during construction)
4.5.6 Stiffness
4.5.7 Safe load tables
4.5.8 References

4.6.1 Rules of thumb
4.6.2 Materials supply
4.6.3 Grade stresses
4.6.4 Sizing of elements in domestic construction
4.6.5 Outline of design rules for timber members
4.6.6 Selected timber modification factors
4.6.7 Modification factor combinations
4.6.8 Deflection
4.6.9 Fasteners

4.7.1 Rules of thumb
4.7.2 Load factors
4.7.3 Material factors
4.7.4 Modular dimensions
4.7.5 Typical unit strengths
4.7.6 Masonry compressive strength
4.7.7 Sizing external wall panels
4.7.8 Flexural strength of masonry
4.7.9 Internal non-loadbearing masonry walls
4.7.10 Freestanding masonry walls
4.7.11 Joints
4.7.12 Other issues

4.8.1 Main structural alloys
4.8.2 Durability
4.8.3 Typical physical properties
4.8.4 Design

4.9.1 Material grades
4.9.2 Mechanical properties
4.9.3 Physical properties
4.9.4 Design strength
4.9.6 Availability
4.9.7 References

5.1 General Principles
5.2 Appropriate foundation solutions
5.3 Presumed allowable bearing values under vertical, non-eccentric static loading
5.4 Shallow foundations
5.5 Piled foundations

6.1 Rules of thumb
6.2 Establish client's requirements/expectations
6.3 Construction options
6.4 Waterproofing options
6.5 Critical points
6.6 Construction joints
6.7 Movement joints

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98
6.8 References

7. Fire
7.1 Minimum periods of fire resistance
7.2 Fire protection to steel elements
7.3 Fire protection for reinforced concrete
7.4 Fire protection for masonry
7.5 Fire requirements for timber

APPENDIX A Mathematical Formulae
A.1 Trigonometric functions
A.2 Hyperbolic functions
A.3 Standard indefinite integrals
A.4 Standard substitutions for integration
A.5 Geometrical properties of plane sections
A.6 Conversion factors

APPENDIX B Analysis Formulae
B.1 Elastic bending formulae
B.2 Elastic torsion formulae
B.3 Taut wires, cables or chains
B.4 Vibration
B.5 Design formulae for beams - cantilever
B.6 Design formulae for beams - fixed both ends
B.7 Design formulae for beams - simply supported
B.8 Design formulae for beams - propped cantilever

APPENDIX C Useful Design Data
C.1 Road transportation limitations
C.2 Craneage data - double girder
C.3 Craneage data - double hoist
C.4 Standard rail sections
C.5 Typical bend radii - rolled sections
C.6 Safe loads for 25 tonne capacity mobile crane
C.7 Standard durbar plate sections
C.8 RHS sections - standard lengths
C.9 CHS Sections - standard lengths
C.10 Carbon steel plate sections - standard sizes
C.11 Carbon and carbon manganese wide flats - standard sizes
C.12 Fasteners - mechanical properties and dimensions of typical bolts
C.13 Fasteners - clearance for tightening
C.14 Fasteners - high strength friction grip bolts
C.15 Staircase dimensions

APPENDIX D Proprietary Components
D.1 Macalloy bars
D.2 Composite decking [Richard Lees Ltd] [Ward Multideck 60]
D.3 Purlin systems [Metsec]
D.4 Precast hollow composite concrete floors [Bison]
D.5 Heavy duty anchors [Hilti-Feb 1994]