

4.3 PRESTRESSED CONCRETE

4.3.1 RULES OF THUMB

Advantages of using prestressed concrete

- Increased clear spans
- Thinner slabs
- Lighter structures
- Reduced cracking and deflections
- Reduced storey height
- Rapid construction
- Water tightness

Note: use of prestressed concrete does not significantly affect the ultimate limit state (except by virtue of the use of a higher grade of steel).

Maximum length of slab

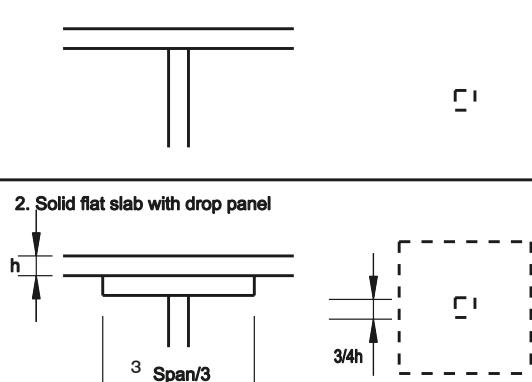
50m, bonded or unbonded, stressed from both ends.
25m, bonded, stressed from one end only.

Mean prestress

Typically: $P/A \approx 1$ to 2 N/mm^2

Cover

Take minimum cover to be 25mm.


Allow sufficient cover for (at least) nominal bending reinforcement over the columns, in both directions (typically T16 bars in each direction).

Effect of restraint to floor shortening

Post-tensioned floors must be able to shorten to enable the prestress to be applied to the floor.

Typical span/total depth ratios for a variety of section types of multi-span prestressed floors²

Section type	Total imposed loading kpa	Span/depth ratio 6m:143m	Additional requirement
1. Solid flat slab	2.5	40	A
	5.0	36	
	10.0	30	
2. Solid flat slab with drop panel	2.5	44	A
	5.0	40	
	10.0	34	

4.3 Prestressed Concrete (2/6)

[Typical span/total depth ratios for multi-span prestressed floors (cont.)]

Section type		Total imposed loading kpa	Span/depth ratio	Additional requirement
3. Coffered flat slab (not meeting the requirement of types 4 or 5)		2.5	25	B
		5.0	23	
		10.0	20	
4. Coffered flat slab with solid panels		2.5	28	B
		5.0	26	
		10.0	23	
5. Coffered flat slab with band beams		2.5	28	B
		5.0	26	
		10.0	23	
6. Ribbed slab		2.5	30	B
		5.0	27	
		10.0	24	
7. one way slab with broad beam		2.5	SLAB 45 BEAM 25	A
		5.0	40 22	
		10.0	35 18	
8. One way slab with narrow beam		2.5	SLAB 42 BEAM 18	A
		5.0	38 16	
		10.0	34 13	

*Additional requirements if no vibration check to be carried out for normal office conditions

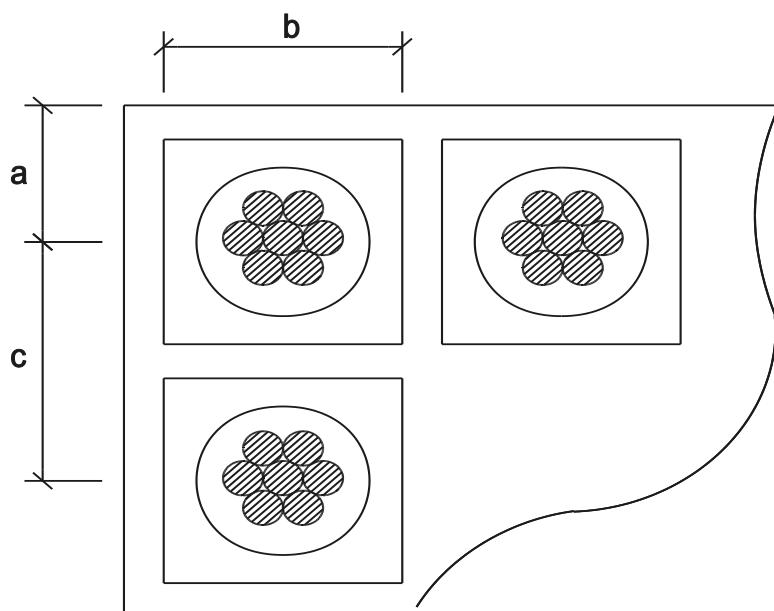
A ≥4 panels and ≥250mm thick slab or ≥8 panels and ≥200mm thick slab

B ≥4 panels and ≥400mm thick overall or ≥8 panels and ≥300mm thick overall

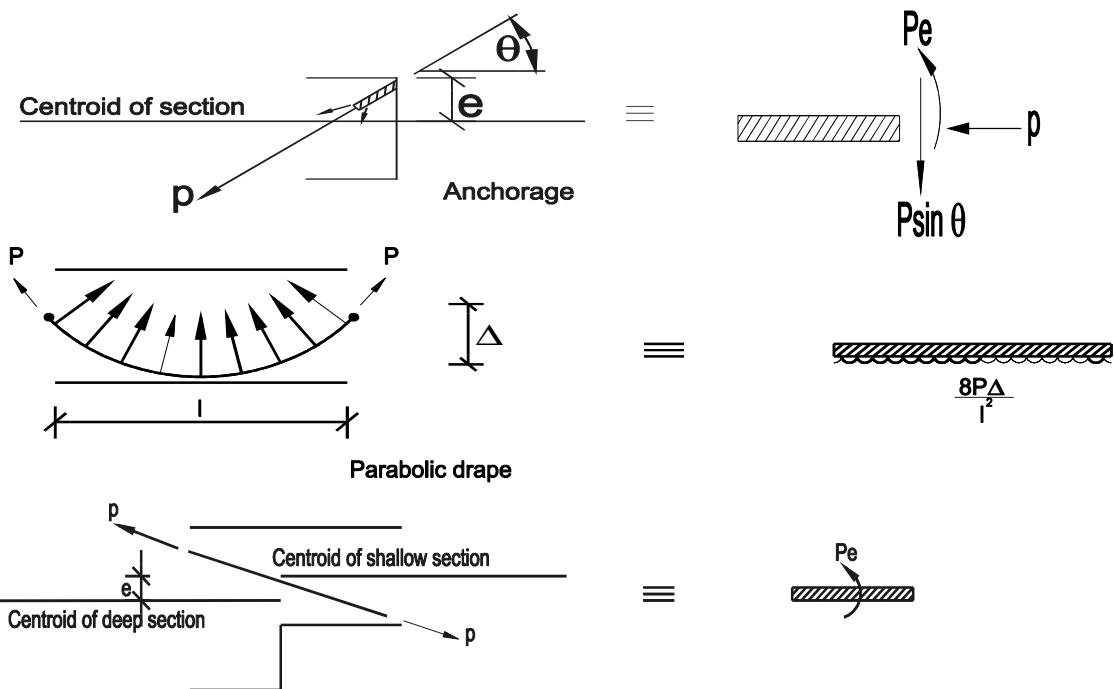
Note

1. All panels assumed to be square

2. Span/depth ratios not affected by column head


4.3.2 COMMON STRANDS⁴

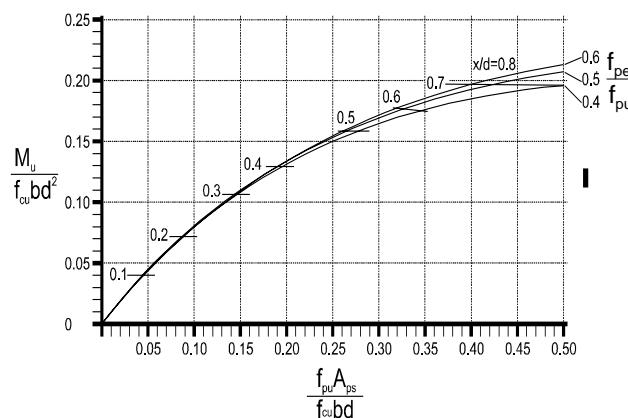
	Nominal diameter (mm)	Steel area (mm ²)	Mass (kg/m)	Nominal tensile strength (N/mm ²)	Characteristic breaking load (kN)	Modulus of elasticity (kN/mm ² or GPa)
Standard	15.2	139	1.090	1670	232	195 ± 10
	12.5	93	0.730	1770	164	195 ± 10
	11.0	71	0.557	1770	125	195 ± 10
	9.3	52	0.408	1770	92	195 ± 10
Super	15.7	150	1.180	1770	265*	195 ± 10
	12.9	100	0.785	1860	186	195 ± 10
	11.3	75	0.590	1860	139	195 ± 10
	9.6	55	0.432	1860	102	195 ± 10
	8.0	38	0.298	1860	70	195 ± 10
Compact/ Dyform	18.0	223	1.750	1700	380	195 ± 10
	15.2	165	1.295	1820	300	195 ± 10
	12.7	112	0.890	1860	209	195 ± 10


* 279 also available, details not yet published

4.3.3 COMMON TENDONS¹

No. strands per duct for 15.7mm "super" strand	70% UTS (kN)	Internal sheath (mm)	Anchor sizes			Jack		
			a	b	c	Length (mm)	ϕ (mm)	Stroke (mm)
1	186	25						
7	1299	65	175	210	270	630	350	150
12	2226	75	200	245	300	750	390	250
15	2783	85				750	390	250
19	3525	95	250	315	375	900	510	250
27	5009	110	300	365	450	950	610	250
37	6864	130	375	450	525	1000	720	250

4.3.4 EQUIVALENT LOADS⁶



4.3.5 ALLOWABLE STRESSES AT SERVICE LOADS

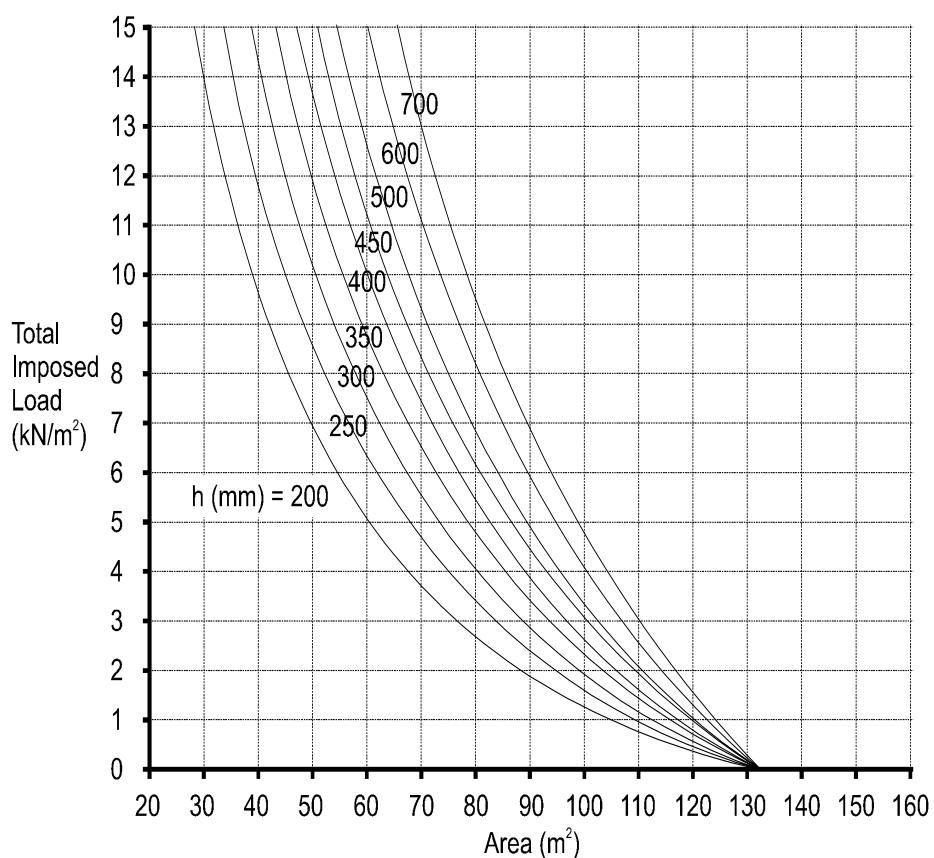
In service		At transfer
Compression	beams: $0.33f_{cu}$ (0.4 f_{cu} at supports for indeterminate beams) columns: $0.25f_{cu}$	bending: $0.5f_{ci}$ compression: $0.4f_{ci}$
Tension	Class 1: No tension Class 2: 2N/mm^2 post-tensioned 3N/mm^2 pre-tensioned Class 3: See BS 8110	1.0 N/mm^2 $0.45 \sqrt{f_{ci}}$ $0.36 \sqrt{f_{ci}}$

4.3.6 ULTIMATE BENDING STRENGTH⁶

For rectangular beams or T beams with neutral axis in flange:

4.3.7 SHEAR

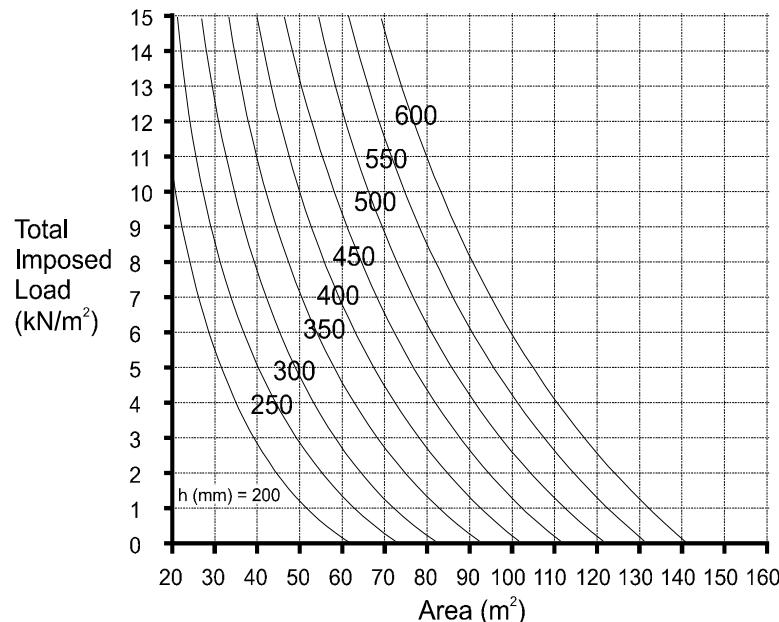
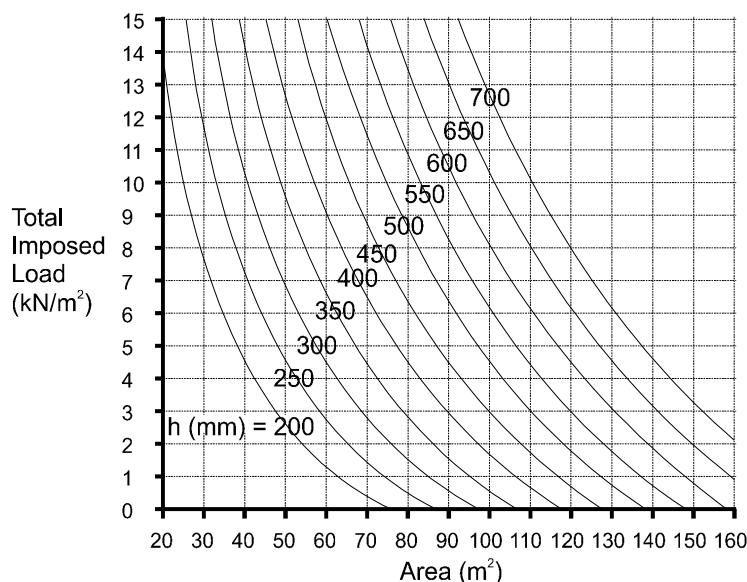
Require that $v_u < 0.8 \sqrt{f_{cu}}$ and 5 N/mm^2


Except that inclined tendons may contribute to a reduced effective shear force on the concrete provided the shear zone is not cracked in bending at M_{ult} .

Ultimate shear check at column face

Column (inc. head) 300 x 300

Note: For column sizes other than 300 x 300, the slab depth should be multiplied by the factor (column perimeter/1200)



Explanation

Information to be used in conjunction with the graph:

1. $f_{cu} = 40 \text{ N/mm}^2$
2. Dead load factor = 1.4
3. Live load factor = 1.6
4. The value of d/h is assumed to be 0.85
5. The ratio of V_{eff}/V is assumed to be 1.15
6. These curves do not take account of elastic distribution effects
7. The maximum shear stress for $f_{cu} = 40 \text{ N/mm}^2$ and more is 5 N/mm^2 .

For $f_{cu} < 40 \text{ N/mm}^2$ the maximum shear stress is $0.8 \sqrt{f_{cu}}$
 For $f_{cu} = 35 \text{ N/mm}^2$ increase slab depth by a factor of 1.06
 For $f_{cu} = 30 \text{ N/mm}^2$ increase slab depth by a factor of 1.14

Column 300 x 300**Punching shear check for preliminary design ($v_c = 0.75 \text{ N/mm}^2$)****Column 500 x 500****Punching shear check for preliminary design ($v_c = 0.75 \text{ N/mm}^2$)****4.3.8 REFERENCES**

1. PSC FREYSSINET, The 'K' Range
2. ARUP, Notes on Structures 29, June 1991
3. BRIDON ROPES, Ropes and Lifting Gear
4. BS 5896 : 1980, High tensile steel wire and strand for the prestressing of concrete
5. ARUP, Notes on Structures 18, June 1989
6. PALLADIAN PUBLICATIONS, Handbook to BS 8110 (1987)