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11.1 Introduction

11.1.1 Overview

Many steel structures, such as elevated water tanks, oil and water storage tanks, offshore structures,
and pressure vessels, are comprised of shell elements that are subjected to compression stresses. The
shell elements are subject to instability resulting from the applied loads. The theoretical buckling
strength based on linear elastic bifurcation analysis is well known for stiffened as well as unstiffened
cylindrical and conical shells and unstiffened spherical and torispherical shells. Simple formulas
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have been determined for many geometries and types of loads. Initial geometric imperfections and
residual stresses that result from the fabrication process, however, reduce the buckling strength of
fabricated shells. The amount of reduction is dependent on the geometry of the shell, type of loading
(axial compression, bending, external pressure, etc.), size of imperfections, and material properties.

11.1.2 Production Practice

The behavior of a cylindrical shell is influenced to some extent by whether it is manufactured in a pipe
or tubing mill or fabricated from plate material. The two methods of production will be referred to
as manufactured cylinders and fabricated cylinders. The distinction is important primarily because
of the differences in geometric imperfections and residual stress levels that may result from the two
different production practices. In general, fabricated cylinders may be expected to have considerably
larger magnitudes of imperfections (in out-of-roundness and lack of straightness) than the mill
manufactured products. Similarly, fabricated heads are likely to have larger shape imperfections than
those produced by spinning. Spun heads, however, typically have a greater variation in thickness
and greater residual stresses due to the cold working. The design rules given in this chapter apply to
fabricated steel shells.

Fabricated shells are produced from flat plates by rolling or pressing the plates to the desired shape
and welding the edges together. Because of the method of construction, the mechanical properties
of the shells will vary along the length and around the circumference. Misfit of the edges to be
welded together may result in unintentional eccentricities at the joints. In addition, welding tends to
introduce out-of-roundness and out-of-straightness imperfections that must be taken into account
in the design rules.

11.1.3 Scope

Rules are given for determining the allowable compressive stresses for unstiffened and ring stiffened
circular cylinders and cones and unstiffened spherical, ellipsoidal, and torispherical heads. The
allowable stress equations are based on theoretical buckling equations that have been reduced by
knockdown factors and by plasticity reduction factors that were determined from tests on fabricated
shells. The research leading to the development of the allowable stress equations is given in [2, 7, 8,
9, 10].

Allowable compressive stress equations are presented for cylinders and cones subjected to uniform
axial compression, bending moment applied over the entire cross-section, external pressure, loads
that produce in-plane shear stresses, and combinations of these loads. Allowable compressive stress
equations are presented for formed heads that are subjected to loads that produce unequal biaxial
stresses as well as equal biaxial stresses.

11.1.4 Limitations

The allowable stress equations are based on an assumed axisymmetric shell with uniform thickness
for unstiffened cylinders and formed heads and with uniform thickness between rings for stiffened
cylinders and cones. All shell penetrations must be properly reinforced. The results of tests on
reinforced openings and some design guidance are given in [6]. The stability criteria of this chapter
maybeused for cylinders that are reinforced inaccordancewith the recommendationsof this reference
if the openings do not exceed 10% of the cylinder diameter or 80% of the ring spacing. Special
consideration must be given to the effects of larger penetrations.

The proposed rules are applicable to shells with D/t ratios up to 2000 and shell thicknesses of 3/16
in. or greater. The deviations from true circular shape and straightness must satisfy the requirements
stated in this chapter.
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Special consideration must be given to ends of members or areas of load application where stress
distribution may be nonlinear and localized stresses may exceed those predicted by linear theory.
When the localized stresses extend over a distance equal to one half the wave length of the buckling
mode, they should be considered as a uniform stress around the full circumference. Additional
thickness or stiffening may be required.

Failure due to material fracture or fatigue and failures caused by dents resulting from accidental
loads are not considered. The rules do not apply to temperatures where creep may occur.

11.1.5 Stress Components for Stability Analysis and Design

The internal stress field that controls the buckling of a cylindrical shell consists of the longitudinal,
circumferential, and in-plane shearmembrane stresses. The stresses resulting fromadynamic analysis
should be treated as equivalent static stresses.

11.1.6 Materials

Steel

The allowable stress equations apply directly to shells fabricated from carbon and low alloy
steel plate materials such as those given in Table 11.1 or Table UCS-23 of [3]. The steel materials
in Table 11.1 are designated by group and class. Steels are grouped according to strength level and
welding characteristics. Group I designates mild steels with specified minimum yield stresses ≤ 40
ksi and these steels may be welded by any of the processes as described in [5]. Group II designates
intermediate strength steels with specified minimum yield stresses > 40 ksi and ≤ 52 ksi. These steels
require the use of low hydrogen welding processes. Group III designates high strength steels with
specified minimum yield stresses > 52 ksi. These steels may be used provided that each application
is investigated with respect to weldability and special welding procedures that may be required.
Consideration should be given to fatigue problems that may result from the use of higher working
stresses, and notch toughness in relation to other elements of fracture control such as fabrication,
inspection procedures, service stress, and temperature environment.

The steels in Table 11.1 have been classified according to their notch toughness characteristics.
Class C steels are those that have a history of successful application in welded structures at service
temperatures above freezing. Impact tests are not specified. Class B steels are suitable for use
where thickness, cold work, restraint, stress concentration, and impact loading indicate the need for
improved notch toughness. When impact tests are specified, Class B steels should exhibit Charpy
V-notch energy of 15 ft-lbs for Group 1 and 25 ft-lbs for Group II at the lowest service temperature.
The Class B steels given in Table 11.1 can generally meet the Charpy requirements at temperatures
ranging from 50◦ to 32◦F. Class A steels are suitable for use at subfreezing temperatures and for critical
applications involving adverse combinations of the factors cited above. The steels given in Table 11.1
can generally meet the Charpy requirements for Class B steels at temperatures ranging from −4◦ to
−40◦F.

Other Materials

The design equations can also be applied to other materials for which a chart or table is provided
in Subpart 3 of [4] by substituting the tangent modulus Et for the elastic modulus E in the allowable
stress equations. The method for finding the allowable stresses for shells constructed from these
materials is determined by the following procedure.
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TABLE 11.1 Steel Plate Materials

Specified Specified
minimum minimum
yield stress tensile stress

Group Class Specification (ksi)a (ksi)a

I C ASTM A36 (to 2 in. thick) 36 58
ASTM A131 Grade A (to 1/2 in. thick) 34 58
ASTM A285 Grade C (to 3/4 in. thick) 30 55

I B ASTM A131 Grades B, D 34 58
ASTM A516 Grade 65 35 65
ASTM A573 Grade 65 35 65
ASTM A709 Grade 36T2 36 58

I A ASTM A131 Grades CS, E 34 58
II C ASTM A572 Grade 42 (to 2 in. thick) 42 60

ASTM A591 required over 1/2 in. thick
ASTM A572 Grade 50 (to 2 in. thick) 50 65
ASTM A591 required over 1/2 in. thick

II B ASTM A709 Grades 50T2, 50T3 50 65
ASTM A131 Grade AH32 45.5 68
ASTM A131 Grade AH36 51 71

II A API Spec 2H Grade 42 42 62
API Spec 2H Grade 50 (to 2 1/2 in. thick) 50 70
API Spec 2H Grade 50 (over 2 1/2 in. thick) 47 70
API Spec 2W Grade 42 (to 1 in. thick) 42 62
API Spec 2W Grade 42 (over 1 in. thick) 42 62
API Spec 2W Grade 50 (to 1 in. thick) 50 65
API Spec 2W Grade 50 (over 1 in. thick) 50 65
API Spec 2W Grade 50T (to 1 in. thick) 50 70
API Spec 2W Grade 50T (over 1 in. thick) 50 70
API Spec 2Y Grade 42 (to 1 in. thick) 42 62
API Spec 2Y Grade 42 (over 1 in. thick) 42 62
API Spec 2Y Grade 50 (to 1 in. thick) 50 65
API Spec 2Y Grade 50 (over 1 in. thick) 50 65
API Spec 2Y Grade 50T (to 1 in. thick) 50 70
API Spec 2Y Grade 50T (over 1 in. thick) 50 70
ASTM A131 Grades DH32, EH32 45.5 68
ASTM A131 Grades DH36, EH36 51 71
ASTM A537 Class I (to 2 1/2 in. thick) 50 70
ASTM A633 Grade A 42 63
ASTM A633 Grades C, D 50 70
ASTM A678 Grade A 50 70

III A ASTM A537 Class II (to 2 1/2 in. thick) 60 80
ASTM A678 Grade B 60 80
API Spec 2W Grade 60 (to 1 in. thick) 60 75
API Spec 2W Grade 60 (over 1 in. thick) 60 75
ASTM A710 Grade A Class 3 (to 2 in. thick) 75 85
ASTM A710 Grade A Class 3 (2 in. to 4 in. thick) 65 75
ASTM A710 Grade A Class 3 (over 4 in. thick) 60 70

a 1 ksi = 6.895 MPa

Step 1. Calculate the value of factor A using the following equations. The terms Fxe, Fhe,
and Fve are defined in subsequent paragraphs.

A = Fxe

E
A = Fhe

E
A = Fve

E

Step 2. Using the value of A calculated in Step 1, enter the applicable material chart in
Subpart 3 of [4] for the material under consideration. Move vertically to an intersection
with the material temperature line for the design temperature. Use interpolation for
intermediate temperature values.

Step 3. From the intersection obtained in Step 2, move horizontally to the right to obtain
the value of B. Et is given by the following equation:

Et = 2B

A

When values of A fall to the left of the applicable material/temperature line in Step 2,
Et = E.
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Step 4. Calculate the allowable stresses from the following equations:

Fxa = Fxe

FS

Et

E
Fba = Fxa Fha = Fhe

FS

Et

E
Fva = Fve

FS

Et

E

11.1.7 Geometries, Failure Modes, and Loads

Allowable stress equations are given for the following geometries and load conditions.

Geometries

1. Unstiffened Cylindrical, Conical, and Spherical Shells

2. Ring Stiffened Cylindrical and Conical Shells

3. Unstiffened Spherical, Ellipsoidal, and Torispherical Heads

The cylinder and cone geometries are illustrated in Figures 11.1 and 11.3 and the stiffener geometries
are illustrated in Figure 11.4. The effective sections for ring stiffeners are shown in Figure 11.2. The
maximum cone angle α shall not exceed 60◦.

FIGURE 11.1: Geometry of cylinders.
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FIGURE 11.2: Sections through rings.

FIGURE 11.3: Geometry of conical sections.

Failure Modes

Buckling stress equations are given herein for four failure modes that are defined below. The
buckling patterns are both load and geometry dependent.
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FIGURE 11.4: Stiffener geometry.

1. Local Shell Buckling—This mode of failure is characterized by the buckling of the shell in
a radial direction. One or more waves will form in the longitudinal and circumferential
directions. The number of waves and the shape of the waves are dependent on the
geometry of the shell and the type of load applied. For ring stiffened shells, the stiffening
rings are presumed to remain round prior to buckling.

2. General Instability—This mode of failure is characterized by the buckling of one or more
rings together with the shell into a circumferential wave pattern with two or more waves.

3. Column Buckling—This mode of failure is characterized by out-of-plane buckling of the
cylinder with the shell remaining circular prior to column buckling. The interaction
between shell buckling and column buckling is taken into account by substituting the
shell buckling stress for the yield stress in the column buckling formula.

4. Local Buckling of Rings—This mode of failure relates to the buckling of the stiffener
elements such as the web and flange of a tee type stiffener. Most design rules specify
requirements for compact sections to preclude this mode of failure. Very little analytical
or experimental work has been done for this mode of failure in association with shell
buckling.

Loads and Load Combinations

Allowable stress equations are given for the following types of stresses.

a. Cylinders and Cones

1. Uniform longitudinal compressive stresses

2. Longitudinal compressive stresses due to a bending moment acting across the full circular
cross-section

3. Circumferential compressive stresses due to external pressure or other applied loads

4. In-plane shear stresses

5. Any combination of 1, 2, 3, and 4

b. Spherical Shells and Formed Heads

1. Equal biaxial stresses—both stresses are compressive

2. Unequal biaxial stresses—both stresses are compressive

3. Unequal biaxial stresses—one stress is tensile and the other is compressive
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11.1.8 Buckling Design Method

The buckling strength formulations presented in this report are based on classical linear theory which
is modified by reduction factors that account for the effects of imperfections, boundary conditions,
nonlinearity of material properties, and residual stresses. The reduction factors are determined from
approximate lower bound values of test data of shells with initial imperfections representative of the
tolerance limits specified in this chapter. The validation of the knockdown factors is given in [7], [8],
[9], and [10].

11.1.9 Stress Factor

The allowable stresses are determined by applying a stress factor, FS, to the predicted buckling
stresses. The recommended values of FS are 2.0 when the buckling stress is elastic and 5/3 when
the buckling stress equals the yield stress. A linear variation shall be used between these limits. The
equations for FS are given below.

FS = 2.0 if Fic ≤ 0.55Fy (11.1a)

FS = 2.407− 0.741Fic/Fy if 0.55Fy < Fic < Fy (11.1b)

FS = 1.667 if Fic = Fy (11.1c)

Fic is the predicted buckling stress, which is determined by letting FS = 1 in the allowable stress
equations. For combinations of earthquake load or wind load with other loads, the allowable stresses
may be increased by a factor of 4/3.

11.1.10 Nomenclature

Note: The terms not defined here are uniquely defined in the sections in which they are first used.
A = cross-sectional area of cylinder A = π(Do − t)t, in.2

AS = cross-sectional area of a ring stiffener, in.2

AF = cross-sectional area of a large ring stiffener which acts as a bulkhead, in.2

Di = inside diameter of cylinder, in.
Do = outside diameter of cylinder, in.
DL = outside diameter at large end of cone, in.
DS = outside diameter at small end of cone, in.
E = modulus of elasticity of material at design temperature, ksi
Et = tangent modulus of material at design temperature, ksi
fa = axial compressive membrane stress resulting from applied axial load, Q, ksi
fb = axial compressive membrane stress resulting from applied bending moment, M , ksi
fh = hoop compressive membrane stress resulting from applied external pressure, P , ksi
fq = axial compressive membrane stress resulting from pressure load, Qp , on the end of a

cylinder, ksi.
fv = shear stress from applied loads, ksi
fx = fa + fq , ksi
Fba = allowable axial compressive membrane stress of a cylinder due to bending moment, M , in

the absence of other loads, ksi
Fca = allowable compressive membrane stress of a cylinder due to axial compression load with

λc > 0.15, ksi
Fbha = allowable axial compressive membrane stress of a cylinder due to bending in the presence

of hoop compression, ksi
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Fhba = allowable hoop compressive membrane stress of a cylinder in the presence of longitudinal
compression due to a bending moment, ksi

Fhe = elastic hoop compressive membrane failure stress of a cylinder or formed head under
external pressure alone, ksi

Fha = allowable hoop compressive membrane stress of a cylinder or formed head under external
pressure alone, ksi

Fhva = allowable hoop compressive membrane stress in the presence of shear stress, ksi
Fhxa = allowable hoop compressive membrane stress of a cylinder in the presence of axial com-

pression, ksi
Fta = allowable tension stress, ksi
Fva = allowable shear stress of a cylinder subjected only to shear stress, ksi
Fve = elastic shear buckling stress of a cylinder subjected only to shear stress, ksi
Fvha = allowable shear stress of a cylinder subjected to shear stress in the presence of hoop com-

pression, ksi
Fxa = allowable compressive membrane stress of a cylinder due to axial compression load with

λc ≤ 0.15, ksi
Fxc = inelastic axial compressive membrane failure (local buckling) stress of a cylinder in the

absence of other loads, ksi
Fxe = elastic axial compressivemembrane failure (local buckling) stress of a cylinder in the absence

of other loads, ksi
Fxha = allowable axial compressive membrane stress of a cylinder in the presence of hoop com-

pression, ksi
Fy = minimum specified yield stress of material, ksi
Fu = minimum specified tensile stress of material, ksi
FS = stress factor
I ′
s = moment of inertia of ring stiffener plus effective length of shell about centroidal axis of

combined section, in.4

I ′
s = Is + AsZ

2
s

Let

As + Let
+ Let

3

12

K = effective length factor for column buckling
Is = moment of inertia of ring stiffener about its centroidal axis, in.4

L = design length of a vessel section between lines of support, in. A line of support is:

1. a circumferential line on a head (excluding conical heads) at one-third the depth of the
head from the head tangent line as shown in Figure 11.1

2. a stiffening ring that meets the requirements of Equation 11.17

LB = length of cylinder between bulkheads or large rings designed to act as bulkheads, in.
Lc = unbraced length of member, in.
Le = effective length of shell, in. (see Figure 11.2)
LF = one-half of the sum of the distances, LB , from the center line of a large ring to the next

large ring or head line of support on either side of the large ring, in. (see Figure 11.1)
Ls = one-half of the sum of the distances from the center line of a stiffening ring to the next line

of support on either side of the ring, measured parallel to the axis of the cylinder, in. A line
of support is described in the definition for L (see Figure 11.1).

Lt = overall length of vessel as shown in Figure 11.1, in.
M = applied bending moment across the vessel cross-section, in.-kips
Ms = Ls/

√
Rot

Mx = L/
√

Rot

P = applied external pressure, ksi
Pa = allowable external pressure in the absence of other loads, ksi
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Q = applied axial compression load, kips

Qp = axial compression load on end of cylinder resulting from applied external pressure, kips

R = radius to centerline of shell, in.

Rc = radius to centroid of combined ring stiffener and effective length of shell, in. Rc = R +Zc

Ro = radius to outside of shell, in.

t = thickness of shell, less corrosion allowance, in.

tc = thickness of cone, less corrosion allowance, in.

Zc = radial distance from centerline of shell to centroid of combined section of ring and effective
length of shell, in. Zc = AsZs

As+Let

Zs = radial distance from center line of shell to centroid of ring stiffener (positive for outside
rings), in.

S = elastic section modulus of full shell cross-section, in.3

S = π
(
D4

o − D4
i

)
32Do

r = radius of gyration of cylinder, in.

r =
(
D2

o + D2
i

)1/2

4

λc = slenderness factor

λc = KLc

πr

(
Fxa · FS

E

)1/2

11.2 Allowable Compressive Stresses for Cylindrical Shells

The maximum allowable stresses for cylindrical shells subjected to loads that produce compressive
stresses are given by the following equations.

11.2.1 Uniform Axial Compression

Allowable longitudinal stress for a cylindrical shell under uniform axial compression is given by Fxa

for values of λc ≤ 0.15and by Fca for values of λc > 0.15. Fxa is the smaller of the values given by
Equations 11.3 and Equation 11.4.

λc = KLc

πr

(
Fxa · FS

E

)1/2

(11.2)

where KLc is the effective length. Lc is the unbraced length. Recommended values for K [1] are
2.1 for members with one end free and the other end fixed, 1.0 for members with both ends pinned,
0.8 for members with one end pinned and the other end fixed, and 0.65 for members with both ends
fixed.

Local Buckling (For λc ≤ 0.15)
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Fxa = Fy

FS
for

Do

t
≤ 135 (11.3a)

Fxa = 466Fy(
331+ Do

t

)
FS

for 135<
Do

t
< 600 (11.3b)

Fxa = 0.5Fy

FS
for

Do

t
≥ 600 (11.3c)

or

Fxa = Fxe

FS
(11.4)

where

Fxe = CxEt

Do

(11.5)

Cx = 409c̄

389+ Do

t

not to exceed 0.9 for
Do

t
< 1247

Cx = 0.25c̄ for
Do

t
≥ 1247

c̄ = 2.64 for Mx ≤ 1.5

c̄ = 3.13

M0.42
x

for 1.5 < Mx < 15

c̄ = 1.0 for Mx ≥ 15

Mx = L

(Rot)
1/2

(11.6)

Column Buckling (For λc > 0.15)

Fca = Fxa for λc ≤ 0.15 (11.7a)

Fca = Fxa [1 − 0.74(λc − 0.15)]0.3 for 0.15 < λc <
√

2 (11.7b)

Fca = 0.88Fxa

λ2
c

for λc ≥ √
2 (11.7c)

11.2.2 Axial Compression Due to Bending Moment

Allowable longitudinal stress for a cylinder subjected to a bending moment acting across the full
circular cross-section is given by Fba .
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Fba = Fxa for
Do

t
≥ 135 (11.8a)

Fba = 466Fy

FS
(
331+ Do

t

) for 100≤ Do

t
< 135 (11.8b)

Fba = 1.081Fy

FS
for

Do

t
< 100 and γ ≥ 0.11 (11.8c)

Fba = (1.4 − 2.9γ )Fy

FS
for

Do

t
< 100 and γ < 0.11 (11.8d)

where Fxa is the smaller of the values given by Equations 11.3 and 11.4 and γ = FyDo

Et
.

11.2.3 External Pressure

The allowable circumferential compressive stress for a cylinder under external pressure is given by
Fha and the allowable external pressure is given by the following equations:

Pa = 2Fha

t

Do

(11.9)

Fha = Fy

FS
for

Fhe

Fy

≥ 2.439 (11.10a)

Fha = 0.7Fy

FS

(
Fhe

Fy

)0.4

for 0.552<
Fhe

Fy

< 2.439 (11.10b)

Fha = Fhe

FS
for

Fhe

Fy

≤ 0.552 (11.10c)

where

Fhe = 1.6ChEt

Do

(11.11)

Ch = 0.55
t

Do

for Mx ≥ 2

(
Do

t

)0.94

Ch = 1.12M−1.058
x for 13 < Mx < 2

(
Do

t

)0.94

Ch = 0.92

Mx − 0.579
for 1.5 < Mx ≤ 13

Ch = 1.0 for Mx ≤ 1.5

11.2.4 Shear

Allowable in-plane shear stress for a cylindrical shell is given by Fva .

Fva = ηvFve

FS
(11.12)
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where

Fve = αvCvEt

Do

(11.13)

Cv = 4.454 for Mx ≤ 1.5 (11.14a)

Cv =
(

9.64

M2
x

)(
1 + 0.0239M3

x

)1/2
for 1.5 < Mx < 26 (11.14b)

Cv = 1.492

M
1/2
x

for 26 ≤ Mx < 4.347
Do

t
(11.14c)

Cv = 0.716

(
t

Do

)1/2

for Mx ≥ 4.347
Do

t
(11.14d)

αv = 0.8 for
Do

t
≤ 500

αv = 1.389− 0.218 log10

(
Do

t

)
for 500<

Do

t
≤ 1000

ηv = 1.0 for
Fve

Fy

≤ 0.48

ηv = 0.43
Fy

Fve

+ 0.1 for 0.48 <
Fve

Fy

< 1.7

ηv = 0.6
Fy

Fve

for
Fve

Fy

≥ 1.7

11.2.5 Sizing of Rings (General Instability)

Uniform Axial Compression and Axial Compression
Due to Bending

When ring stiffeners are used to increase the allowable longitudinal compressive stress, the
following equations must be satisfied. If Mx ≥ 15, stiffener spacing is too large to be effective.

As ≥
[

0.334

M0.6
s

− 0.063

]
Lst and As ≥ 0.06Lst (11.15)

also I ′
s ≥ 5.33Lst

3

M1.8
s

(11.16)

External Pressure

(a) Small Rings

I ′
s ≥ 1.5FheLsR

2
c t

E
(
n2 − 1

) (11.17)

Fhe = stress determined from Equation 11.11 with Mx = Ms .

n2 = 2D
3/2
o

3LBt1/2
and 4 ≤ n2 ≤ 100
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(b) Large Rings Which Act As Bulkheads

I ′
s ≥ IF where IF = FheF LF R2

c t

2E
(11.18)

IF = the value of I ′
s which makes a large stiffener act as a bulkhead. The effective length of

shell is Le = 1.1
√

Dot(A1/A2)

A1 = cross-sectional area of small ring plus shell area equal to Lst , in.2

A2 = cross-sectional area of large ring plus shell area equal to Lst , in.2

Rc = radius to centroid of combined large ring and effective width of shell, in.
FheF = average value of the hoop buckling stresses, Fhe, over length LF where Fhe is determined

from Equation 11.11, ksi

Shear

I ′
s ≥ 0.184CvM

0.8
s t3Ls (11.19)

Cv = value determined from Equation 11.14 with Mx = Ms .

Local Stiffener Buckling

To preclude local buckling of the stiffener prior to shell buckling, the following stiffener prop-
erties shall be met. See Figure 11.4 for stiffener geometry.

(a) Flat Bar Stiffener, Flange of a Tee Stiffener, and Outstanding Leg of an Angle Stiffener

h1

t1
≤ 0.375

(
E

Fy

)1/2

(11.20)

where h1 is the full width of a flat bar stiffener or outstanding leg of an angle stiffener and one-half
of the full width of the flange of a tee stiffener and t1 is the thickness of the bar, leg of angle, or flange
of tee.

(b) Web of Tee Stiffener or Leg of Angle Stiffener Attached to Shell

h2

t2
≤ 1.0

(
E

Fy

)1/2

(11.21)

where h2 is the full depth of a tee section or full width of an angle leg and t2 is the thickness of the
web or angle leg.

11.3 Allowable Compressive Stresses For Cones

Unstiffenedconical transitionsor cone sectionsbetweenringsof stiffenedconeswithanangleα ≤ 60◦
shall be designed for local buckling as an equivalent cylinder according to the following procedure.
See Figure 11.3 for cone geometry.

11.3.1 Uniform Axial Compression and Axial Compression
Due to Bending

Allowable Longitudinal and Bending Stresses

Assume an equivalent cylinder with diameter De = D/ cosα, where D is the outside diameter
of the cone at the cross-section under consideration and length equal to Lc. De is substituted for
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Do in Equations 11.3 to Equations 11.8 to find Fxa and Fba and Lc for L in Equation 11.6. The
allowable stress must be satisfied at all cross-sections along the length of the cone.

Unstiffened Cone-Cylinder Junctions

Cone-cylinder junctions are subject to unbalanced radial forces (due to axial load and bending
moment) and to localized bending stresses caused by the angle change. The longitudinal and hoop
stresses at the junction may be evaluated as follows:

Longitudinal Stress—In lieu of detailed analysis, the localized bending stress at an unstiffened
cone-cylinder junction may be estimated by the following equation.

f ′
b = 0.6t

√
D (t + tc)

t2
e

(fx + fb) tanα (11.22)

where
D = outside diameter of cylinder at junction to cone
t = thickness of cylinder
tc = thickness of cone
te = t to find stress in cylinder section
te = tc to find stress in cone section
α = cone angle as defined in Figure 11.3
fx = uniform longitudinal stress in cylinder section at junction resulting from axial loads
fb = longitudinal stress in cylinder section at junction resulting from bending moment

For strength requirements, the total stress (fx + fb + f ′
b) shall be limited to the minimum tensile

strength given in Table 11.1 or Table U, Subpart 1 of [4] for the cone and cylinder material and fx +fb

shall be less than the allowable tensile stress Ft , where Ft is the smaller of 0.6Fy or Fu/3.
Hoop Stress—The hoop stress caused by the unbalanced radial line load may be estimated from:

f ′
h = 0.45

√
D/t (fx + fb) tanα (11.23)

For hoop tension, f ′
h shall be limited to the tensile allowable. For hoop compression, f ′

h shall be
limited to Fha where Fha is computed from Equation 11.10 with Fhe = 0.4Et/D.

A cone-cylinder junction that does not satisfy the above criteria may be strengthened either by
increasing the cylinder and cone wall thicknesses at the junction, or by providing a stiffening ring at
the junction.

Cone-Cylinder Junction Rings

If stiffening rings are required, the section properties shall satisfy the following requirements:

Ac ≥ tD

Fy

(fx + fb) tanα (11.24)

Ic ≥ tDD2
c

8E
(fx + fb) tanα (11.25)

where
D = cylinder outside diameter at junction
Dc = diameter to centroid of composite ring section for external rings
Dc = D for internal rings
Ac = cross-sectional area of composite ring section
Ic = moment of inertia of composite ring section
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In computing Ac and Ic the effective length of the shell wall acting as a flange for the composite
ring section shall be computed from:

be = 0.55
(√

D/t +√
Dtc/ cosα

)
(11.26)

11.3.2 External Pressure

Allowable Circumferential Compression Stresses

Assume an equivalent cylinder with diameter De = 0.5(DL +DS) and length Le = Lc/ cosα.
This length and diameter shall be substituted into Equations 11.10 and 11.11 to determine Fha .

Intermediate Stiffening Rings

If required, circumferential stiffening rings within cone transitions shall be sized using Equa-
tion 11.17 with Rc = D/2 where D is the cone diameter at the ring, t is the cone thickness, Ls is
the average distance to adjacent rings along the cone axis, and Fhe is the average of the elastic hoop
buckling stress values computed for the two adjacent bays by the method given in the preceding
paragraph.

Cone-Cylinder Junction Rings

A junction ring is not required for buckling due to external pressure if fh < Fha where Fha

is determined from Equation 11.10 with Fhe computed using Ch equal to 0.55 (cosα)(t/D) in
Equation 11.11. D is the cylinder diameter at the junction.

Circumferential stiffening rings required at the cone-cylinder junctions shall be sized such that the
moment of inertia of the composite ring section satisfies the following equation:

Ic ≥ D2

16E

{
tL1Fhe + tcLcFhec

cos2 α

}
(11.27)

where
D = cylinder outside diameter at junction
Lc = distance to first stiffening ring in cone section along cone axis
L1 = distance to first stiffening ring in cylinder section or line of support
Fhe = elastic hoop buckling stress for cylinder (see Equation 11.11)
Fhec = Fhe for cone section treated as an equivalent cylinder
t = cylinder thickness
tc = cone thickness

11.3.3 Shear

Allowable In-Plane Shear Stress

Assume an equivalent cylinder with a length equal to the slant length of the cone between rings
(Lc/ cosα) and a diameter De = D/ cosα, where D is the outside diameter of the cone at the cross-
section under consideration. This length and diameter shall be substituted into Equations 11.12
to 11.14 to determine Fva .

Intermediate Stiffening Rings

If required, circumferential stiffening rings within cone transition shall be sized using Equa-
tion 11.19 where Ls is the average distance to adjacent rings along the cone axis.
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11.3.4 Local Stiffener Buckling

To preclude local buckling of a stiffener, the requirements of Equations 11.20 and 11.21 must be met.

11.4 Allowable Stress Equations For Unstiffened
and Ring-Stiffened Cylinders and Cones
Under Combined Loads

11.4.1 For Combination of Uniform Axial
Compression and Hoop Compression

For λc ≤ 0.15
The allowable stress in the longitudinal direction is given by Fxha and the allowable stress in the

circumferential direction is given by Fhxa .

Fxha =
(

1

F 2
xa

− C1

C2FxaFha

+ 1

C2
2F 2

ha

)−0.5

(11.28)

where

C1 = Fxa · FS + Fha · FS

Fy

− 1.0 and C2 = fx

fh

fx = fa + fq = Q

A
+ Qp

A
and fh = PDo

2t

Fxa · FS is given by the smaller of Equation 11.3 or 11.4, and Fha · FS is given by Equation 11.10.

Fhxa = Fxha

C2
(11.29)

For 0.15 < λc < 1.2
Fxha is the smaller of Fah1 and Fah2 where Fah1 = Fxha given by Equation 11.28 with fx = fa

and Fah2 is given by the following equation.

Fah2 = Fca

(
1 − fq

Fy

)
(11.30)

Fca is given by Equation 11.7.

11.4.2 For Combination of Axial Compression Due to Bending
Moment, M, and Hoop Compression

The allowable stress in the longitudinal direction is given by Fbha and the allowable stress in the
circumferential direction is given by Fhba .

Fbha = C3C4Fba (11.31)

where C3 and C4 are given by the following equations and Fba is given by Equation 11.8.

C4 = fb

fh

Fha

Fba

C2
3

(
C2

4 + 0.6C4

)
+ C2n

3 − 1 = 0 (11.32)

fb = M

S
fh = PDo

2t
n = 5 − 4

Fha · FS

Fy
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Solve for C3 from Equation 11.31 by iteration. Fha · FS is given by Equation 11.10.

Fhba = Fbha

fh

fb

(11.33)

11.4.3 For Combination of Hoop Compression and Shear

The allowable shear stress is given by Fvha and the allowable circumferential stress is given by Fhva .

Fvha =
[(

F 2
va

2C5Fha

)2

+ F 2
va

]1/2

− F 2
va

2C5Fha

(11.34)

where C5 = fv

fh
and Fva is given by Equation 11.12 and Fha is given by Equation 11.10.

Fhva = Fvha

C5
(11.35)

11.4.4 For Combination of Uniform Axial Compression,
Axial Compression Due to Bending Moment, M,
and Shear, in the Presence of Hoop Compression, (fh 6= 0)

Let Ks = 1 −
(

fv

Fva

)2

(11.36)

For λc ≤ 0.15

(
fa

KsFxha

)1.7

+ fb

KsFbha

≤ 1.0 (11.37)

Fxha is given by Equation 11.28, Fbha is given by Equation 11.30 and Fva is given by Equation 11.12.
For 0.15 < λc < 1.2

fa

Fxha

+ 8

9

1fb

Fbha

≤ 1.0 for
fa

Fxha

≥ 0.2 (11.38)

where

1 = Cm

1 − fa · FS/Fe

Fe = π2E

(KLc/r)2

See Equation 11.2 for KLc and Equation 11.30 for Fxha . Fbha is given by Equation 11.31. FS

is determined from Equation 11.1 where Fic = Fxa · FS (see Equations 11.3 and 11.4). Cm is a
coefficient whose value shall be taken as follows [1]:

1. For compression members in frames subject to joint translation (sidesway),

Cm = 0.85.

2. For rotationally restrained compression members in frames braced against joint transla-
tion and not subject to transverse loading between their supports in the plane of bending,

Cm = 0.6 − 0.4(M1/M2)

where M1/M2 is the ratio of the smaller to larger moments at the ends of that portion
of the member that is unbraced in the plane of bending under consideration. M1/M2 is
positive when the member is bent in reverse curvature and negative when bent in single
curvature.
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3. For compression members in frames braced against joint translation and subjected to
transverse loading between their supports the following apply:

a. for members whose ends are restrained against rotation in the plane of bending,

Cm = 0.85

b. formemberswhose endsareunrestrainedagainst rotation in theplaneofbending,

Cm = 1.0

11.4.5 For Combination of Uniform Axial Compression, Axial
Compression Due to Bending Moment, M, and Shear,
in the Absence of Hoop Compression, (fh = 0)

For λc ≤ 0.15

(
fa

KsFxa

)1.7

+ fb

KsFba

≤ 1.0 (11.39)

Fxa is given by the smaller of Equations 11.3 or 11.4, Fba is given by Equation 11.8 and Ks is given
by Equation 11.36.

For 0.15 < λc < 1.2

fa

KsFca

+ 8

9

1fb

KsFba

≤ 1.0 for
fa

KsFca

≥ 0.2 (11.40)

fa

2KsFca

+ 1fb

KsFba

≤ 1.0 for
fa

KsFca

< 0.2 (11.41)

Fca is given by Equation 11.7, Fba is given by Equation 11.31, and Ks is given by Equation 11.36.
See Equation 11.38 for definition of 1.

11.5 Tolerances for Cylindrical and Conical Shells

11.5.1 Shells Subjected to Uniform Axial Compression
and Axial Compression Due to Bending Moment

The difference between the maximum and minimum diameters at any cross-section shall not exceed
1%of thenominaldiameter at the cross-sectionunder consideration. Additionally, the localdeviation
from a straight line, e, measured along a meridian over a gauge length Lx shall not exceed the
maximum permissible deviation ex given below.
ex = 0.002R
Lx = 4

√
Rt but not greater than L for cylinders

Lx = 4
√

Rt/ cosα but not greater than Lc/ cosα for cones
Lx = 25t across circumferential welds

Also Lx is not greater than 95% of the meridianal distance between circumferential welds.

11.5.2 Shells Subjected to External Pressure

The difference between the maximum and minimum diameters at any cross-section shall not exceed
1% of the nominal diameter at the cross-section under consideration. Additionally, the maximum
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deviation from a true circular form, e, shall not exceed the value given by Figure 11.5 or by the
following equations.

e = 0.0165t (Mx + 3.25)1.069 0.1t ≤ e ≤ 0.0242R (11.42)

FIGURE11.5: Valuesof e/t whichgive abucklingpressureof 80%of the theoretical bucklingpressure.

Also, e shall not exceed 2t . Measurements to determine e are made with a gauge or template with
the chord length Lc given by the following equation.

Lc = 2R sin(π/2n) (11.43)

n = c

(√
R/t

L/R

)d

2 ≤ n ≤ 1.41(R/t)0.5 (11.44)

where

c = 2.28(R/t)0.54 ≤ 2.80

d = 0.38(R/t)0.044 ≤ 0.485
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11.5.3 Shells Subjected to Shear

The difference between the maximum and minimum diameters at any cross-section shall not exceed
1% of the nominal diameter at the cross-section under consideration.

11.6 Allowable Compressive Stresses for Spherical
Shells and Formed Heads, With Pressure on
Convex Side

11.6.1 Spherical Shells

With Equal Biaxial Stresses

The allowable compressive stress for a spherical shell under uniform external pressure is given
by Fha and the allowable external pressure is given by Pa .

Fha = Fy

FS
for

Fhe

Fy

≥ 6.25 (11.45a)

Fha = 1.31Fy

FS
(
1.15+ Fy

Fhe

) for 1.6 <
Fhe

Fy

< 6.25 (11.45b)

Fha = 0.18Fhe + 0.45Fy

FS
for 0.55 <

Fhe

Fy

≤ 1.6 (11.45c)

Fha = Fhe

FS
for

Fhe

Fy

≤ 0.55 (11.45d)

Fhe = 0.075E
t

Ro

(11.46)

Pa = 2Fha

t

Ro

(11.47)

where Ro is the radius to the outside of the spherical shell and Fha is given by Equation 11.45.

With Unequal Biaxial Stresses—Both Stresses Are Compressive

The allowable compressive stresses for a spherical shell subjected to unequal biaxial stresses, σ1
and σ2, where both σ1 and σ2 are compression stresses resulting from applied loads, are given by the
following equations.

F1a = 0.6

1 − 0.4k
Fha (11.48)

F2a = kF1a (11.49)

where k = σ2/σ1 and Fha is given by Equation 11.45. F1a is the allowable stress in the direction of
σ1 and F2a is the allowable stress in the direction of σ2. The larger of the compression stresses is σ1.

With Unequal Biaxial Stresses—One Stress Is Compressive and the Other Is Tensile

The allowable compressive stress for a spherical shell subjected to unequal biaxial stresses σ1
and σ2, where σ1 is a compression stress and σ2 is a tensile stress, is given by F1a where F1a is the
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value of Fha determined from Equation 11.45 with Fhe given by Equation 11.50.

Fhe = (
Co + Cp

)
E

t

Ro

(11.50)

Co = 102.2

195+ Ro/t
for

Ro

t
< 622

Co = 0.125 for
Ro

t
≥ 622

Cp = 1.06

3.24+ 1
p̄

p̄ = σ2

E

Ro

t

Shear

When shear is present, the principal stresses shall be calculated and used for σ1 and σ2.

11.6.2 Toroidal and Ellipsoidal Heads

Theallowable compressive stresses for formedheads is determinedby the equations given for spherical
shells where Ro is defined below.

Ro = the outside radius of the crown portion of the head for torispherical heads, in.

Ro = the equivalent outside spherical radius taken as KoDo for ellipsoidal heads, in.

Ko = factor depending on the ellipsoidal head proportions Do/2ho (see Table 11.2)

ho = outside height of the ellipsoidal head measured from the tangent line (head-bend line), in.

TABLE 11.2 Factor Ko

Do/2ho . . . 3.0 2.8 2.6 2.4 2.2
Ko . . . 1.36 1.27 1.18 1.08 0.99

Do/2ho 2.0 1.8 1.6 1.4 1.2 1.0
Ko 0.90 0.81 0.73 0.65 0.57 0.50

Note: Use interpolation for intermediate values.

11.7 Tolerances for Formed Heads

The inner surface of a spherical shell or formed head shall not deviate from the specified shape more
than 1.25% of the nominal diameter of the vessel. Such deviations shall be measured perpendicular
to the specified shape. Additionally, the maximum local deviation from a true circular form, e, for
spherical shells and any spherical portion of a formed head designed for external pressure shall not
exceed the shell thickness. Measurements to determine e are made with a gauge or template with the
chord length Lc given by the following equation:

Lc = 3.72
√

Rt
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of these sets of rules with the test data obtained from over 600 tests on steel models representative of
fabricated shells. The best fit equations were determined for each shell type and load. These equations
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are the results of these studies.
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[7] API STD 650. 1993. Welded Steel Tanks for Oil Storage, 9th ed., American Petroleum Institute,
Washington, D.C.
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