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1.1 Introduction

This chapter is concerned with basic assumptions and equations of plates and basic concepts of elastic
stability. Herein, we shall illustrate the concepts and the applications of these equations by means of
relatively simple examples; more complex applications will be taken up in the following chapters.

1.2 Plates

1.2.1 Basic Assumptions

We consider a continuum shown in Figure 1.1. A feature of the body is that one dimension is much
smaller than the other two dimensions:

t << Lx, Ly (1.1)

where t, Lx , and Ly are representative dimensions in three directions (Figure 1.1). If the continuum
has this geometrical characteristic of Equation 1.1 and is flat before loading, it is called a plate. Note
that a shell possesses a similar geometrical characteristic but is curved even before loading.

The characteristic of Equation 1.1 lends itself to the following assumptions regarding some stress
and strain components:

σz = 0 (1.2)

εz = εxz = εyz = 0 (1.3)

We can derive the following displacement field from Equation 1.3:
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FIGURE 1.1: Plate.

u(x, y, z) = u0(x, y) − z
∂w0

∂x

ν(x, y, z) = ν0(x, y) − z
∂w0

∂y
(1.4)

w(x, y, z) = w0(x, y)

where u, ν, and w are displacement components in the directions of x-, y-, and z-axes, respectively.
As can be realized in Equation 1.4, u0 and ν0 are displacement components associated with the plane
of z = 0. Physically, Equation 1.4 implies that the linear filaments of the plate initially perpendicular
to the middle surface remain straight and perpendicular to the deformed middle surface. This is
known as the Kirchhoff hypothesis. Although we have derived Equation 1.4 from Equation 1.3 in the
above, one can arrive at Equation 1.4 starting with the Kirchhoff hypothesis: the Kirchhoff hypothesis
is equivalent to the assumptions of Equation 1.3.

1.2.2 Governing Equations

Strain-Displacement Relationships

Using the strain-displacement relationships in the continuum mechanics, we can obtain the
following strain field associated with Equation 1.4:

εx = ∂u0

∂x
− z

∂2w0

∂x2

εy = ∂ν0

∂y
− z

∂2w0

∂y2
(1.5)

εxy = 1

2

(
∂u0

∂y
+ ∂ν0

∂x

)
− z

∂2w0

∂x∂y

This constitutes the strain-displacement relationships for the plate theory.

Equilibrium Equations

In the plate theory, equilibrium conditions are considered in terms of resultant forces and
moments. This is derived by integrating the equilibrium equations over the thickness of a plate.
Because of Equation 1.2, we obtain the equilibrium equations as follows:
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∂Nx

∂x
+ ∂Nxy

∂y
+ qx = 0 (1.6a)

∂Nxy

∂x
+ ∂Ny

∂y
+ qy = 0 (1.6b)

∂Vx

∂x
+ ∂Vy

∂y
+ qz = 0 (1.6c)

where Nx, Ny , and Nxy are in-plane stress resultants; Vx and Vy are shearing forces; and qx, qy ,
and qz are distributed loads per unit area. The terms associated with τxz and τyz vanish, since in the
plate problems the top and the bottom surfaces of a plate are subjected to only vertical loads.

We must also consider the moment equilibrium of an infinitely small region of the plate, which
leads to

∂Mx

∂x
+ ∂Mxy

∂y
− Vx = 0

∂Mxy

∂x
+ ∂My

∂y
− Vy = 0 (1.7)

where Mx and My are bending moments and Mxy is a twisting moment.
The resultant forces and the moments are defined mathematically as

Nx =
∫

z

σxdz (1.8a)

Ny =
∫

z

σydz (1.8b)

Nxy = Nyx =
∫

z

τxydz (1.8c)

Vx =
∫

z

τxzdz (1.8d)

Vy =
∫

z

τyzdz (1.8e)

Mx =
∫

z

σxzdz (1.8f)

My =
∫

z

σyzdz (1.8g)

Mxy = Myx =
∫

z

τxyzdz (1.8h)

The resultant forces and the moments are illustrated in Figure 1.2.

Constitutive Equations

Since the thickness of a plate is small in comparison with the other dimensions, it is usually
accepted that the constitutive relations for a state of plane stress are applicable. Hence, the stress-strain
relationships for an isotropic plate are given by


σx

σy

τxy


 = E

1 − ν2


 1 ν 0

ν 1 0
0 0 (1 − ν)/2







εx

εy

γxy


 (1.9)
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FIGURE 1.2: Resultant forces and moments.

whereE andν areYoung’smodulus andPoisson’s ratio, respectively. UsingEquations 1.5, 1.8, and1.9,
the constitutive relationships for an isotropic plate in terms of stress resultants and displacements are
described by

Nx = Et

1 − ν2

(
∂u0

∂x
+ ν

∂ν0

∂y

)
(1.10a)

Ny = Et

1 − ν2

(
∂ν0

∂y
+ ν

∂u0

∂x

)
(1.10b)

Nxy = Nyx

Et

2(1 + ν)

(
∂ν0

∂x
+ ∂u0

∂y

)
(1.10c)

Mx = −D

(
∂2w0

∂x2
+ ν

∂2w0

∂y2

)
(1.10d)

My = −D

(
∂2w0

∂y2
+ ν

∂2w0

∂x2

)
(1.10e)

Mxy = Myx = −(1 − ν)D
∂2w0

∂x∂y
(1.10f)

where t is the thickness of a plate and D is the flexural rigidity defined by

D = Et3

12(1 − ν2)
(1.11)

In the derivation of Equation 1.10, we have assumed that the plate thickness t is constant and that the
initial middle surface lies in the plane of Z = 0. Through Equation 1.7, we can relate the shearing
forces to the displacement.

Equations 1.6, 1.7, and 1.10 constitute the framework of a plate problem: 11 equations for 11
unknowns, i.e., Nx, Ny, Nxy, Mx, My, Mxy, Vx, Vy, u0, ν0, and w0. In the subsequent sections,
we shall drop the subscript 0 that has been associated with the displacements for the sake of brevity.

In-Plane and Out-Of-Plane Problems

As may be realized in the equations derived in the previous section, the problem can be de-
composed into two sets of problems which are uncoupled with each other.

1. In-plane problems
The problem may be also called a stretching problem of a plate and is governed by
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∂Nx

∂x
+ ∂Nxy

∂y
+ qx = 0

∂Nxy

∂x
+ ∂Ny

∂y
+ qy = 0 (1.6a,b)

Nx = Et

1 − ν2

(
∂u

∂x
+ ν

∂ν

∂y

)

Ny = Et

1 − ν2

(
∂ν

∂y
+ ν

∂u

∂x

)

Nxy = Nyx = Et

2(1 + ν)

(
∂ν

∂x
+ ∂u

∂y

)
(1.10a∼c)

Here we have five equations for five unknowns. This problem can be viewed and treated
in the same way as for a plane-stress problem in the theory of two-dimensional elasticity.

2. Out-of-plane problems
This problem is regarded as a bending problem and is governed by

∂Vx

∂x
+ ∂Vy

∂y
+ qz = 0 (1.6c)

∂Mx

∂x
+ ∂Mxy

∂y
− Vx = 0

∂Mxy

∂x
+ ∂My

∂y
− Vy = 0 (1.7)

Mx = −D

(
∂2w

∂x2
+ ∂2w

∂y2

)

My = −D

(
∂2w

∂y2
+ ∂2w

∂x2

)

Mxy = Myx = −(1 − ν)D
∂2w

∂x∂y
(1.10d∼f)

Here are six equations for six unknowns.
Eliminating Vx and Vy from Equations 1.6c and 1.7, we obtain

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2My

∂y2
+ qz = 0 (1.12)

Substituting Equations 1.10d∼f into the above, we obtain the governing equation in terms of dis-
placement as

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

)
= qz (1.13)
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or
∇4w = qz

D
(1.14)

where the operator is defined as

∇4 = ∇2∇2

∇2 = ∂2

∂x2
+ ∂2

∂y2
(1.15)

1.2.3 Boundary Conditions

Since the in-plane problem of a plate can be treated as a plane-stress problem in the theory of
two-dimensional elasticity, the present section is focused solely on a bending problem.

Introducing the n-s-z coordinate system alongside boundaries as shown in Figure 1.3, we define
the moments and the shearing force as

Mn =
∫

z

σnzdz

Mns = Msn =
∫

z

τnszdz (1.16)

Vn =
∫

z

τnzdz

In the plate theory, instead of considering these three quantities, we combine the twisting moment
and the shearing force by replacing the action of the twisting moment Mns with that of the shearing
force, as can be seen in Figure 1.4. We then define the joint vertical as

Sn = Vn + ∂Mns

∂s
(1.17)

The boundary conditions are therefore given in general by

w = w or Sn = Sn (1.18)

−∂w

∂n
= λn or Mn = Mn (1.19)

where the quantities with a bar are prescribed values and are illustrated in Figure 1.5. These two sets
of boundary conditions ensure the unique solution of a bending problem of a plate.

FIGURE 1.3: n-s-z coordinate system.

The boundary conditions for some practical cases are as follows:
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FIGURE 1.4: Shearing force due to twisting moment.

FIGURE 1.5: Prescribed quantities on the boundary.

1. Simply supported edge

w = 0, Mn = Mn (1.20)

2. Built-in edge

w = 0,
∂w

∂n
= 0 (1.21)
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3. Free edge

Mn = Mn, Sn = Sn (1.22)

4. Free corner (intersection of free edges)
At the free corner, the twisting moments cause vertical action, as can be realized is Fig-
ure 1.6. Therefore, the following condition must be satisfied:

− 2Mxy = P (1.23)

where P is the external concentrated load acting in the Z direction at the corner.

FIGURE 1.6: Vertical action at the corner due to twisting moment.
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1.2.4 Circular Plate

Governing equations in the cylindrical coordinates are more convenient when circular plates are
dealt with. Through the coordinate transformation, we can easily derive the Laplacian operator in
the cylindrical coordinates and the equation that governs the behavior of the bending of a circular
plate: (

∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

) (
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

)
w = qz

D
(1.24)

The expressions of the resultants are given by

Mr = −D

[
(1 − ν)

∂2w

∂r2
+ ν∇2w

]

Mθ = −D

[
∇2w + (1 − ν)

∂2w

∂r2

]

Mrθ = Mθr = −D(1 − ν)
∂

∂r

(
1

r

∂w

∂θ

)
(1.25)

Sr = Vr + 1

r

∂Mrθ

∂θ

Sθ = Vθ + ∂Mrθ

∂r

When the problem is axisymmetric, the problem can be simplified because all the variables are
independent of θ . The governing equation for the bending behavior and the moment-deflection
relationships then become

1

r

d

dr

[
r

d

dr

{
1

r

d

dr

(
r
dw

dr

)}]
= qz

D
(1.26)

Mr = D

(
d2w

dr2
+ ν

r

dw

dr

)

Mθ = D

(
1

r

dw

dr
+ ν

d2w

dr2

)
(1.27)

Mrθ = Mθr = 0

Since the twisting moment does not exist, no particular care is needed about vertical actions.

1.2.5 Examples of Bending Problems

Simply Supported Rectangular Plate Subjected to Uniform Load

A plate shown in Figure 1.7 is considered here. The governing equation is given by

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
= q0

D
(1.28)

in which q0 represents the intensity of the load. The boundary conditions for the plate are

w = 0, Mx = 0 along x = 0, a

w = 0, My = 0 along y = 0, b (1.29)
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Using Equation 1.10, we can rewrite the boundary conditions in terms of displacement. Furthermore,

since w = 0 along the edges, we observe ∂2w

∂x2 = 0 and ∂2w

∂y2 = 0 for the edges parallel to the x and y

axes, respectively, so that we may describe the boundary conditions as

w = 0,
∂2w

∂x2
= 0 along x = 0, a

w = 0,
∂2w

∂y2
= 0 along y = 0, b (1.30)

FIGURE 1.7: Simply supported rectangular plate subjected to uniform load.

We represent the deflection in the double trigonometric series as

w =
∞∑

m=1

∞∑
n=1

Amn sin
mπx

a
sin

nπy

b
(1.31)

It is noted that this function satisfies all the boundary conditions of Equation 1.30. Similarly, we
express the load intensity as

q0 =
∞∑

m=1

∞∑
n=1

Bmn sin
mπx

a
sin

nπy

b
(1.32)

where

Bmn = 16q0

π2mn
(1.33)

Substituting Equations 1.31 and 1.32 into 1.28, we can obtain the expression of Amn to yield

w = 16q0

π6D

∞∑
m=1

∞∑
n=1

1

mn
(

m2

a2 + n2

b2

)2
sin

mπx

a
sin

nπy

b
(1.34)
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We can readily obtain the expressions for bending and twisting moments by differentiation.

Axisymmetric Circular Plate with Built-In Edge Subjected to Uniform Load

The governing equation of the plate shown in Figure 1.8 is

1

r

d

dr

[
r

d

dr

{
1

r

d

dr

(
r
dw

dr

)}]
= q0

D
(1.35)

where q0 is the intensity of the load. The boundary conditions for the plate are given by

w = dw

dr
= 0 at r = a (1.36)

FIGURE 1.8: Circular plate with built-in edge subjected to uniform load.

We can solve Equation 1.35 without much difficulty to yield the following general solution:

w = q0r
4

64D
+ A1r

2 ln r + A2 ln r + A3r
2 + A4 (1.37)

We have four constants of integration in the above, while there are only two boundary conditions of
Equation 1.36. Claiming that no singularities should occur in deflection and moments, however, we
can eliminate A1 and A2, so that we determine the solution uniquely as

w = q0a
4

64D

(
r2

a2
− 1

)2

(1.38)

Using Equation 1.27, we can readily compute the bending moments.
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1.3 Stability

1.3.1 Basic Concepts

States of Equilibrium

To illustrate various forms of equilibrium, we consider three cases of equilibrium of the ball
shown in Figure 1.9. We can easily see that if it is displaced slightly, the ball on the concave spherical
surface will return to its original position upon the removal of the disturbance. On the other hand,
the ball on the convex spherical surface will continue to move farther away from the original position
if displaced slightly. A body that behaves in the former way is said to be in a state of stable equilibrium,
while the latter is called unstable equilibrium. The ball on the horizontal plane shows yet another
behavior: it remains at the position to which the small disturbance has taken it. This is called a state
of neutral equilibrium.

FIGURE 1.9: Three states of equilibrium.

For further illustration, we consider a system of a rigid bar and a linear spring. The vertical load
P is applied at the top of the bar as depicted in Figure 1.10. When small disturbance θ is given, we
can compute the moment about Point B MB , yielding

MB = PL sinθ − (kL sinθ)(L cosθ)

= L sinθ(P − kL cosθ) (1.39)

Using the fact that θ is infinitesimal, we can simplify Equation 1.39 as

MB

θ
= L(P − kL) (1.40)

We can claim that the system is stable when MB acts in the opposite direction of the disturbance θ ;
that it is unstable when MB and θ possess the same sign; and that it is in a state of neutral equilibrium
when MB vanishes. This classification obviously shares the same physical definition as that used in
the first example (Figure 1.9). Mathematically, the classification is expressed as

(P − kL)




< 0 : stable
= 0 : neutral
> 0 : unstable

(1.41)

Equation 1.41 implies that as P increases, the state of the system changes from stable equilibrium to
unstable equilibrium. The critical load is kL, at which multiple equilibrium positions, i.e., θ = 0
and θ 6= 0, are possible. Thus, the critical load serves also as a bifurcation point of the equilibrium
path. The load at such a bifurcation is called the buckling load.
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FIGURE 1.10: Rigid bar AB with a spring.

For the present system, the buckling load of kL is stability limit as well as neutral equilibrium.
In general, the buckling load corresponds to a state of neutral equilibrium, but not necessarily to
stability limit. Nevertheless, the buckling load is often associated with the characteristic change of
structural behavior, and therefore can be regarded as the limit state of serviceability.

Linear Buckling Analysis

Wecancomputeabuckling loadbyconsideringanequilibriumcondition fora slightlydeformed
state. For the system of Figure 1.10, the moment equilibrium yields

PL sinθ − (kL sinθ)(L cosθ) = 0 (1.42)

Since θ is infinitesimal, we obtain
Lθ(P − kL) = 0 (1.43)

It is obvious that this equation is satisfied for any value of P if θ is zero: θ = 0 is called the
trivial solution. We are seeking the buckling load, at which the equilibrium condition is satisfied for
θ 6= 0. The trivial solution is apparently of no importance and from Equation 1.43 we can obtain
the following buckling load PC :

PC = kL (1.44)

A rigorous buckling analysis is quite involved, where we need to solve nonlinear equations even
when elastic problems are dealt with. Consequently, the linear buckling analysis is frequently em-
ployed. The analysis can be justified, if deformation is negligible and structural behavior is linear
before the buckling load is reached. The way we have obtained Equation 1.44 in the above is a typical
application of the linear buckling analysis.

In mathematical terms, Equation 1.43 is called a characteristic equation and Equation 1.44 an
eigenvalue. The linear buckling analysis is in fact regarded as an eigenvalue problem.

1.3.2 Structural Instability

Three classes of instability phenomenon are observed in structures: bifurcation, snap-through, and
softening.

We have discussed a simple example of bifurcation in the previous section. Figure 1.11a depicts
a schematic load-displacement relationship associated with the bifurcation: Point A is where the
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bifurcation takes place. In reality, due to imperfection such as the initial crookedness of a member
and the eccentricity of loading, we can rarely observe the bifurcation. Instead, an actual structural
behavior would be more like the one indicated in Figure 1.11a. However, the bifurcation load is still
an important measure regarding structural stability and most instabilities of a column and a plate
are indeed of this class. In many cases we can evaluate the bifurcation point by the linear buckling
analysis.

In some structures, we observe that displacement increases abruptly at a certain load level. This
can take place at Point A in Figure 1.11b; displacement increases from UA to UB at PA, as illustrated
by a broken arrow. The phenomenon is called snap-through. The equilibrium path of Figure 1.11b is
typical of shell-like structures, includinga shallowarch, and is traceableonlyby thefinitedisplacement
analysis.

The other instability phenomenon is the softening: as Figure 1.11c illustrates, there exists a peak
load-carrying capacity, beyond which the structural strength deteriorates. We often observe this
phenomenon when yielding takes place. To compute the associated equilibrium path, we need to
resort to nonlinear structural analysis.

Since nonlinear analysis is complicated and costly, the information on stability limit and ultimate
strength is deduced in practice from the bifurcation load, utilizing the linear buckling analysis. We
shall therefore discuss the buckling loads (bifurcation points) of some structures in what follows.

1.3.3 Columns

Simply Supported Column

As a first example, we evaluate the buckling load of a simply supported column shown in
Figure 1.12a. To this end, the moment equilibrium in a slightly deformed configuration is considered.
Following the notation in Figure 1.12b, we can readily obtain

w′′ + k2w = 0 (1.45)

where

k2 = P

EI
(1.46)

EI is the bending rigidity of the column. The general solution of Equation 1.45 is

w = A1 sinkx + A2 coskx (1.47)

The arbitrary constants A1 and A2 are to be determined by the following boundary conditions:

w = 0 at x = 0 (1.48a)

w = 0 at x = L (1.48b)

Equation 1.48a gives A2 = 0 and from Equation 1.48b we reach

A1 sinkL = 0 (1.49)

A1 = 0 is a solution of the characteristic equation above, but this is the trivial solution corresponding
to a perfectly straight column and is of no interest. Then we obtain the following buckling loads:

PC = n2π2EI

L2
(1.50)
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FIGURE 1.11: Unstable structural behaviors.
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FIGURE 1.12: Simply-supported column.

Although n is any integer, our interest is in the lowest buckling load with n = 1 since it is the critical
load from the practical point of view. The buckling load, thus, obtained is

PC = π2EI

L2
(1.51)

which is often referred to as the Euler load. From A2 = 0 and Equation 1.51, Equation 1.47 indicates
the following shape of the deformation:

w = A1 sin
πx

L
(1.52)

This equation shows the buckled shape only, since A1 represents the undetermined amplitude of the
deflection and can have any value. The deflection curve is illustrated in Figure 1.12c.

The behavior of the simply supported column is summarized as follows: up to the Euler load the
column remains straight; at the Euler load the state of the column becomes the neutral equilibrium
and it can remain straight or it starts to bend in the mode expressed by Equation 1.52.
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Cantilever Column

For the cantilever column of Figure 1.13a, by considering the equilibrium condition of the free
body shown in Figure 1.13b, we can derive the following governing equation:

w′′ + k2w = k2δ (1.53)

where δ is the deflection at the free tip. The boundary conditions are

w = 0 at x = 0

w′ = 0 at x = 0 (1.54)

w = δ at x = L

FIGURE 1.13: Cantilever column.

From these equations we can obtain the characteristic equation as

δ coskL = 0 (1.55)
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which yields the following buckling load and deflection shape:

PC = π2EI

4L2
(1.56)

w = δ
(
1 − cos

πx

2L

)
(1.57)

The buckling mode is illustrated in Figure 1.13c. It is noted that the boundary conditions make
much difference in the buckling load: the present buckling load is just a quarter of that for the simply
supported column.

Higher-Order Differential Equation

We have thus far analyzed the two columns. In each problem, a second-order differential
equation was derived and solved. This governing equation is problem-dependent and valid only for a
particular problem. A more consistent approach is possible by making use of the governing equation
for a beam-column with no laterally distributed load:

EIwIV + Pw′′ = q (1.58)

Note that in this equation P is positive when compressive. This equation is applicable to any set of
boundary conditions. The general solution of Equation 1.58 is given by

w = A1 sinkx + A2 coskx + A3x + A4 (1.59)

where A1 ∼ A4 are arbitrary constants and determined from boundary conditions.
We shall again solve the two column problems, using Equation 1.58.

1. Simply supported column (Figure 1.12a)
Because of no deflection and no external moment at each end of the column, the boundary
conditions are described as

w = 0, w′′ = 0 at x = 0

w = 0, w′′ = 0 at x = L (1.60)

From the conditions at x = 0, we can determine

A2 = A4 = 0 (1.61)

Using this result and the conditions at x = L, we obtain

[
sinkL L

−k2 sinkL 0

] {
A1
A3

}
=

{
0
0

}
(1.62)

For the nontrivial solution to exist, the determinant of the coefficient matrix in Equa-
tion 1.62 must vanish, leading to the following characteristic equation:

k2L sinkL = 0 (1.63)

from which we arrive at the same critical load as in Equation 1.51. By obtaining the cor-
responding eigenvector of Equation 1.62, we can get the buckled shape of Equation 1.52.
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2. Cantilever column (Figure 1.13a)
In this column, we observe no deflection and no slope at the fixed end; no external
moment and no external shear force at the free end. Therefore, the boundary conditions
are

w = 0, w′ = 0 at x = 0
w′′ = 0, w′′′ + k2w′ = 0 at x = L

(1.64)

Note that since we are dealing with a slightly deformed column in the linear buckling
analysis, theaxial forcehas a transverse component, which iswhyP comes in theboundary
condition at x = L.

The latter condition at x = L eliminates A3. With this and the second condition at x = 0, we can
claim A1 = 0. The remaining two conditions then lead to[

1 1
k2 coskL 0

] {
A2
A4

}
=

{
0
0

}
(1.65)

The smallest eigenvalue and the corresponding eigenvector of Equation 1.65 coincide with the buck-
ling load and the buckling mode that we have obtained previously in Section 1.3.3.

Effective Length

We have obtained the buckling loads for the simply supported and the cantilever columns.
By either the second- or the fourth-order differential equation approach, we can compute buckling
loads for a fixed-hinged column (Figure 1.14a) and a fixed-fixed column (Figure 1.14b) without
much difficulty:

PC = π2EI

(0.7L)2
for a fixed - hinged column

PC = π2EI

(0.5L)2
for a fixed - hinged column (1.66)

For all the four columns considered thus far, and in fact for the columns with any other sets of
boundary conditions, we can express the buckling load in the form of

PC = π2EI

(KL)2
(1.67)

where KL is called the effective length and represents presumably the length of the equivalent Euler
column (the equivalent simply supported column).

For design purposes, Equation 1.67 is often transformed into

σC = π2E

(KL/r)2
(1.68)

where r is the radius of gyration defined in terms of cross-sectional area A and the moment of inertia
I by

r =
√

I

A
(1.69)

For an ideal elastic column, we can draw the curve of the critical stress σC vs. the slenderness ratio
KL/r , as shown in Figure 1.15a.
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FIGURE 1.14: (a) Fixed-hinged column; (b) fixed-fixed column.

For a column of perfectly plastic material, stress never exceeds the yield stress σY . For this class of
column, we often employ a normalized form of Equation 1.68 as

σC

σY

= 1

λ2
(1.70)

where

λ = 1

π

KL

r

√
σY

E
(1.71)

This equation is plotted in Figure 1.15b. For this column, with λ < 1.0, it collapses plastically; elastic
buckling takes place for λ > 1.0.

Imperfect Columns

In the derivation of the buckling loads, we have dealt with the idealized columns; the member
is perfectly straight and the loading is concentric at every cross-section. These idealizations help
simplify the problem, but perfect members do not exist in the real world: minor crookedness of
shape and small eccentricities of loading are always present. To this end, we shall investigate the
behavior of an initially bent column in this section.

We consider a simply supported column shown in Figure 1.16. The column is initially bent and
the initial crookedness wi is assumed to be in the form of

wi = a sin
πx

L
(1.72)

where a is a small value, representing the magnitude of the initial deflection at the midpoint. If we
describe the additional deformation due to bending as w and consider the moment equilibrium in
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FIGURE 1.15: (a) Relationship between critical stress and slenderness ratio; (b) normalized relation-
ship.

FIGURE 1.16: Initially bent column.

this configuration, we obtain

w′′ + k2w = −k2a sin
πx

L
(1.73)

where k2 is defined in Equation 1.46. The general solution of this differential equation is given by

w = A sin
πx

L
+ B cos

πx

L
+ P/PE

1 − P/PE

a sin
πx

L
(1.74)
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where PE is the Euler load, i.e., π2EI/L2. From the boundary conditions of Equation 1.48, we can
determine the arbitrary constants A and B, yielding the following load-displacement relationship:

w = P/PE

1 − P/PE

a sin
πx

L
(1.75)

By adding this expression to the initial deflection, we can obtain the total displacement wt as

wt = wi + w = a

1 − P/PE

sin
πx

L
(1.76)

Figure 1.17 illustrates the variation of the deflection at the midpoint of this column wm.

FIGURE 1.17: Load-displacement curve of the bent column.

Unlike the ideally perfect column, which remains straight up to the Euler load, we observe in this
figure that the crooked column begins to bend at the onset of the loading. The deflection increases
slowly at first, and as the applied load approaches the Euler load, the increase of the deflection is
getting more and more rapid. Thus, although the behavior of the initially bent column is different
from that of bifurcation, the buckling load still serves as an important measure of stability.

Wehavediscussed thebehaviorofacolumnwithgeometrical imperfection in this section. However,
the trend observed herein would be the same for general imperfect columns such as an eccentrically
loaded column.

1.3.4 Thin-Walled Members

In the previous section, we assumed that a compressed column would buckle by bending. This type
of buckling may be referred to as flexural buckling. However, a column may buckle by twisting or by
a combination of twisting and bending. Such a mode of failure occurs when the torsional rigidity of
the cross-section is low. Thin-walled open cross-sections have a low torsional rigidity in general and
hence are susceptible of this type of buckling. In fact, a column of thin-walled open cross-section
usually buckles by a combination of twisting and bending: this mode of buckling is often called the
torsional-flexural buckling.
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A bar subjected to bending in the plane of a major axis may buckle in yet another mode: at the
critical load a compression side of the cross-section tends to bend sideways while the remainder
is stable, resulting in the rotation and lateral movement of the entire cross-section. This type of
buckling is referred to as lateral buckling. We need to use caution in particular, if a beam has no
lateral supports and the flexural rigidity in the plane of bending is larger than the lateral flexural
rigidity.

In the present section, we shall briefly discuss the two buckling modes mentioned above, both
of which are of practical importance in the design of thin-walled members, particularly of open
cross-section.

Torsional-Flexural Buckling

We consider a simply supported column subjected to compressive loadP applied at the centroid
of each end, as shown in Figure 1.18. Note that the x axis passes through the centroid of every cross-
section. Taking into account that the cross-section undergoes translation and rotation as illustrated
in Figure 1.19, we can derive the equilibrium conditions for the column deformed slightly by the
torsional-flexural buckling

EIyν
IV + Pν′′ + Pzsφ

′′ = 0

EIzw
IV + Pw′′ − Pysφ

′′ = 0 (1.77)

EIwφIV +
(
Pr2

s φ′′ − GJ
)

φ′′ + Pzsν
′′ − Pysw

′′ = 0

where
ν, w = displacements in the y, z-directions, respectively
φ = rotation
EIw = warping rigidity
GJ = torsional rigidity
ys, zs = coordinates of the shear center
and

EIy =
∫

A

y2dA

EIz =
∫

A

z2dA (1.78)

r2
s = Is

A

where
Is = polar moment of inertia about the shear center
A = cross-sectional area
We can obtain the buckling load by solving the eigenvalue problem governed by Equation 1.77 and
the boundary conditions of

ν = ν′′ = w = w′′ = φ = φ′′ = 0 at x = 0, L (1.79)

For doubly symmetric cross-section, the shear center coincides with the centroid. Therefore,
ys, zs , and rs vanish and the three equations in Equation 1.77 become independent of each other,
if the cross-section of the column is doubly symmetric. In this case, we can compute three critical
loads as follows:
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FIGURE 1.18: Simply-supported thin-walled column.

FIGURE 1.19: Translation and rotation of the cross-section.

PyC = π2EIy

L2
(1.80a)

PzC = π2EIz

L2
(1.80b)

PφC = 1

r2
s

(
GJ + π2EIw

L2

)
(1.80c)

The first two are associated with flexural buckling and the last one with torsional buckling. For all
cases, the buckling mode is in the shape of sin πx

L
. The smallest of the three would be the critical load

of practical importance: for a relatively short column with low GJ and EIw , the torsional buckling
may take place.

When the cross-section of a column is symmetric with respect only to the y axis, we rewrite
Equation 1.77 as

EIyν
IV + Pν′′ = 0 (1.81a)

EIzw
IV + Pw′′ − Pysφ

′′ = 0 (1.81b)

EIwφIV +
(
Pr2

s − GJ
)

φ′′ − Pysw
′′ = 0 (1.81c)

The first equation indicates that the flexural buckling in the x − y plane occurs independently and
the corresponding critical load is given by PyC of Equation 1.80a. The flexural buckling in the x − z

plane and the torsional buckling are coupled. By assuming that the buckling modes are described by
w = A1 sin πx

L
and φ = A2 sin πx

L
, Equations 1.81b,c yields

[
P − PzC −Pys

−Pys r2
s

(
P − PφC

) ] {
A1
A2

}
=

{
0
0

}
(1.82)
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This eigenvalue problem leads to

f (P ) = r2
s

(
P − PφC

)
(P − PzC) − (Pys)

2 = 0 (1.83)

The solution of this quadratic equation is the critical load associated with torsional-flexural buckling.
Since f (0) = r2

s PφCPzC > 0, f (PφC = −(Pys)
2 < 0, and f (PzC) = −(Pys)

2 < 0, it is obvious
that the critical load is lower than PzC and PφC . If this load is smaller than PyC , then the torsional-
flexural buckling will take place.

If there is no axis of symmetry in the cross-section, all the three equations in Equation 1.77 are
coupled. The torsional-flexural buckling occurs in this case, since the critical load for this buckling
mode is lower than any of the three loads in Equation 1.80.

Lateral Buckling

The behavior of a simply supported beam in pure bending (Figure 1.20) is investigated. The
equilibrium condition for a slightly translated and rotated configuration gives governing equations
for the bifurcation. For a cross-section symmetric with respect to the y axis, we arrive at the following
equations:

EIyν
IV + Mφ′′ = 0 (1.84a)

EIzw
IV = 0 (1.84b)

EIwφIV − (GJ + Mβ) φ′′ + Mν′′ = 0 (1.84c)

where

β = 1

Iz

∫
A

{
y2 + (z − zs)

2
}

zdA (1.85)

FIGURE 1.20: Simply supported beam in pure bending.

Equation 1.84b is a beam equation and has nothing to do with buckling. From the remaining two
equations and the associated boundary conditions of Equation 1.79, we can evaluate the critical load
for the lateral buckling. By assuming the bucking mode is in the shape of sin πx

L
for both ν and φ,

we obtain the characteristic equation

M2 − βPyCM − r2
s PyCPφC = 0 (1.86)

The smallest root of this quadratic equation is the critical load (moment) for the lateral buckling.
For doubly symmetric sections where β is zero, the critical moment MC is given by

MC =
√

r2
s PyCPφC =

√
π2EIy

L2

(
GJ + π2EIw

L2

)
(1.87)
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1.3.5 Plates

Governing Equation

The buckling load of a plate is also obtained by the linear buckling analysis, i.e., by considering
the equilibrium of a slightly deformed configuration. The plate counterpart of Equation 1.58, thus,
derived is

D∇4w +
(

Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+ Ny

∂2w

∂y2

)
= 0 (1.88)

The definitions of Nx, Ny , and Nxy are the same as those of Nx, Ny , and Nxy given in Equations 1.8a
through 1.8c, respectively, except the sign; Nx, Ny , and Nxy are positive when compressive. The
boundary conditions are basically the same as discussed in Section 1.2.3 except the mechanical condi-
tion in the vertical direction: to include the effect of in-plane forces, we need to modify Equation 1.18
as

Sn + Nn

∂w

∂n
+ Nns

∂w

∂s
= Sn (1.89)

where

Nn =
∫

z

σndz

Nns =
∫

z

τnsdz (1.90)

Simply Supported Plate

As an example, we shall discuss the buckling load of a simply supported plate under uniform
compression shown in Figure 1.21. The governing equation for this plate is

D∇4w + Nx

∂2w

∂x2
= 0 (1.91)

and the boundary conditions are

w = 0,
∂2w

∂x2
= 0 along x = 0, a

w = 0,
∂2w

∂y2
= 0 along y = 0, b (1.92)

FIGURE 1.21: Simply supported plate subjected to uniform compression.
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We assume that the solution is of the form

w =
∞∑

m=1

∞∑
n=1

Amn sin
mπx

a
sin

nπx

b
(1.93)

where m and n are integers. Since this solution satisfies all the boundary conditions, we have only to
ensure that it satisfies the governing equation. Substituting Equation 1.93 into 1.91, we obtain

Amn

[
π4

(
m2

a2
+ n2

b2

)2

− Nx

D

m2π2

a2

]
= 0 (1.94)

Since the trivial solution is of no interest, at least one of the coefficients amn must not be zero, the
consideration of which leads to

Nx = π2D

b2

(
m

b

a
+ n2

m

a

b

)2

(1.95)

As the lowest Nx is crucial and Nx increases with n, we conclude n = 1: the buckling of this plate
occurs in a single half-wave in the y direction and

NxC = kπ2D

b2
(1.96)

or

σxC = NxC

t
= k

π2E

12(1 − ν2)

1

(b/t)2
(1.97)

where

k =
(

m
b

a
+ 1

m

a

b

)2

(1.98)

Note that Equation 1.97 is comparable to Equation 1.68, and k is called the buckling stress coefficient.
The optimum value of m that gives the lowest NxC depends on the aspect ratio a/b, as can be

realized in Figure 1.22. For example, the optimum m is 1 for a square plate while it is 2 for a plate
of a/b = 2. For a plate with a large aspect ratio, k = 4.0 serves as a good approximation. Since the
aspect ratio of a component of a steel structural member such as a web plate is large in general, we
can often assume k is simply equal to 4.0.

1.4 Defining Terms

The following is a list of terms as defined in the Guide to Stability Design Criteria for Metal Structures,
4th ed., Galambos, T.V., Structural Stability Research Council, John Wiley & Sons, New York, 1988.

Bifurcation: A term relating to the load-deflection behavior of a perfectly straight and perfectly
centered compression element at critical load. Bifurcation can occur in the inelastic
range only if the pattern of post-yield properties and/or residual stresses is symmetrically
disposed so that no bending moment is developed at subcritical loads. At the critical load
a member can be in equilibrium in either a straight or slightly deflected configuration,
and a bifurcation results at a branch point in the plot of axial load vs. lateral deflection
from which two alternative load-deflection plots are mathematically valid.

Braced frame: A frame in which the resistance to both lateral load and frame instability is
provided by the combined action of floor diaphragms and structural core, shear walls,
and/or a diagonal K brace, or other auxiliary system of bracing.
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FIGURE 1.22: Variation of the buckling stress coefficient k with the aspect ratio a/b.

Effective length: The equivalent or effective length (KL) which, in the Euler formula for a
hinged-end column, results in the same elastic critical load as for the framed member or
other compression element under consideration at its theoretical critical load. The use
of the effective length concept in the inelastic range implies that the ratio between elastic
and inelastic critical loads for an equivalent hinged-end column is the same as the ratio
between elastic and inelastic critical loads in the beam, frame, plate, or other structural
element for which buckling equivalence has been assumed.

Instability: A condition reached during buckling under increasing load in a compression mem-
ber, element, or frame at which the capacity for resistance to additional load is exhausted
and continued deformation results in a decrease in load-resisting capacity.

Stability: The capacity of a compression member or element to remain in position and support
load, even if forced slightly out of line or position by an added lateral force. In the elastic
range, removal of the added lateral force would result in a return to the prior loaded
position, unless the disturbance causes yielding to commence.

Unbraced frame: A frame in which the resistance to lateral loads is provided primarily by the
bending of the frame members and their connections.

References

[1] Chajes, A. 1974. Principles of Structural Stability Theory, Prentice-Hall, Englewood Cliffs, NJ.
[2] Chen, W.F. and Atsuta, T. 1976. Theory of Beam-Columns, vol. 1: In-Plane Behavior and

Design, and vol. 2: Space Behavior and Design, McGraw-Hill, NY.
[3] Thompson, J.M.T. and Hunt, G.W. 1973. A General Theory of Elastic Stability, John Wiley &

Sons, London, U.K.
[4] Timoshenko, S.P. and Woinowsky-Krieger, S. 1959. Theory of Plates and Shells, 2nd ed.,

McGraw-Hill, NY.
[5] Timoshenko, S.P. and Gere, J.M. 1961. Theory of Elastic Stability, 2nd ed., McGraw-Hill, NY.

c©1999 by CRC Press LLC



Further Reading

[1] Chen, W.F. and Lui, E.M. 1987. Structural Stability Theory and Implementation, Elsevier, New
York.

[2] Chen, W.F. and Lui, E.M. 1991. Stability Design of Steel Frames, CRC Press, Boca Raton, FL.
[3] Galambos, T.V. 1988. Guide to Stability Design Criteria for Metal Structures, 4th ed., Structural

Stability Research Council, John Wiley & Sons, New York.

c©1999 by CRC Press LLC


	Structural Engineering Handbook
	Contents
	Basic Theory of Plates and Elastic Stability
	Introduction
	Plates
	Basic Assumptions
	Governing Equations
	Boundary Conditions
	Circular Plate
	Examples of Bending Problems

	Stability
	Basic Concepts
	Columns
	Thin-Walled Members
	Plates

	Defining Terms



