
CHAPTER 7

ELASTIC STABILITY

7.1. Principle of Stationary Potential Energy

Denote by δF the variation of the deformation gradient F. Since for Green

elasticity P = ∂Ψ/∂F, where Ψ = Ψ(F) is the strain energy per unit initial

volume, we can write

P · · δF =
∂Ψ
∂F

· · δF = δΨ, (7.1.1)

and the principle of virtual work of Eq. (3.12.1) becomes∫
V 0

δΨ dV 0 =
∫
V 0

ρ0 b · δudV 0 +
∫
S0
t

pn · δudS0
t . (7.1.2)

In general, for arbitrary loading there is no true variational principle associ-

ated with Eq. (7.1.2), because the variation δ affects the applied body force

b and the surface traction p(n). However, if the loading is conservative, as

in the case of dead loading, then

b · δu = δ(b · u), pn · δu = δ(pn · u), (7.1.3)

and Eq. (7.1.2) can be recast in the variational form

δP = 0, (7.1.4)

where

P =
∫
V 0

Ψ dV 0 −
∫
V 0

ρ0 b · udV 0 −
∫
S0
t

pn · udS0
t . (7.1.5)

Among all geometrically admissible displacement fields, the actual displace-

ment field (whether unique or not) of the considered boundary-value problem

makes stationary the potential energy functional P(u) given by Eq. (7.1.5).

See also Nemat-Nasser (1974) and Washizu (1982).



7.2. Uniqueness of Solution

Consider a finite elasticity problem described by the equilibrium equations

∇0 · P + ρ0 b = 0, (7.2.1)

and the mixed boundary conditions

u = u(X) on S0
u, n0 · P = pn(X) on S0

t . (7.2.2)

For simplicity, restrict attention to dead loading on S0
t , and dead body forces

b = b(X) in V 0. Suppose that there are two different solutions of Eqs.

(7.2.1) and (7.2.2), u and u∗ (i.e., x and x∗). The corresponding deformation

gradients are F and F∗, and the nominal stresses P and P∗. The equilibrium

fields (P,F) and (P∗,F∗) necessarily satisfy the condition∫
V 0

(P∗ − P) · · (F∗ − F) dV 0 = 0, (7.2.3)

which follows from Eq. (3.12.5). Consequently, the solution x = x(X) is

unique if ∫
V 0

(P∗ − P) · · (F∗ − F) dV 0 �= 0, (7.2.4)

for all geometrically admissible x∗ giving rise to

F∗ =
∂x∗

∂X
, P∗ =

∂Ψ
∂F∗ . (7.2.5)

The stress field P∗ in (7.2.4) need not be statically admissible, so even if

equality sign applies in (7.2.4) for some x∗, the uniqueness is not lost un-

less that x∗ gives rise to statically admissible stress field P∗. Therefore, a

sufficient condition for x to be unique solution is that for all geometrically

admissible deformation fields x∗,∫
V 0

(P∗ − P) · · (F∗ − F) dV 0 > 0. (7.2.6)

The reversed inequality could also serve as a sufficient condition for unique-

ness. The solution x which obeys such inequality for all geometrically ad-

missible x∗ would define unique, but unstable equilibrium configuration, as

will be discussed in Section 7.3.

A stronger (more restrictive) condition for uniqueness is

(P∗ − P) · · (F∗ − F) > 0, (7.2.7)

which clearly implies (7.2.6). However, unique solution in finite elasticity is

not expected in general (particularly under dead loading), so that inequalities



such as (7.2.6) and (7.2.7) are too strong restrictions on elastic constitutive

relation. In fact, a nonuniqueness in finite elasticity is certainly anticipated

whenever the stress-deformation relation P = ∂Ψ/∂F is not uniquely in-

vertible. For example, Ogden (1984) provides examples in which two, four

or more possible states of deformation correspond to a given state of nomi-

nal stress. See also Antman (1995). A study of the existence of solutions to

boundary-value problems in finite strain elasticity is more difficult, with only

few results presently available (e.g., Ball, 1977; Hanyga, 1985; Ciarlet, 1988).

A comprehensive account of the uniqueness theorems in linear elasticity is

given by Knops and Payne (1971).

7.3. Stability of Equilibrium

Consider the inequality

Ψ (F∗) − Ψ (F) − P · · (F∗ − F) > 0, (7.3.1)

where (P,F) correspond to equilibrium configuration x, and (P∗,F∗) to any

geometrically admissible configuration x∗ (Coleman and Noll, 1959). This

inequality implies (7.2.7), so that (7.3.1) also represents a sufficient condition

for uniqueness. (To see that (7.3.1) implies (7.2.7), write another inequality

by reversing the role of F and F∗ in (7.3.1), and add the results; Ogden, op.

cit.). Inequality (7.3.1) is particularly appealing because it directly leads to

stability criterion. To that goal, integrate (7.3.1) to obtain∫
V 0

[Ψ (F∗) − Ψ(F)] dV 0 >

∫
V 0

P · · (F∗ − F) dV 0. (7.3.2)

Using Eq. (3.12.4) to express the integral on the right-hand side gives∫
V 0

[Ψ (F∗) − Ψ(F)] dV 0 >

∫
V 0

ρ0 b · (x∗ − x) dV 0

+
∫
S0
t

pn · (x∗ − x) dS0
t .

(7.3.3)

This means that the increase of the strain energy in moving from the con-

figuration x to x∗ exceeds the work done by the prescribed dead loading

on that transition. According to the classical energy criterion of stability

this means that x is a stable equilibrium configuration (Hill, 1957; Pearson,

1959).



Recalling the expression for the potential energy from Eq. (7.1.5), and

the identity

x∗ − x = u∗ − u, (7.3.4)

the inequality (7.3.3) can be rewritten as

P(u∗) > P(u). (7.3.5)

Consequently, among all geometrically admissible configurations the poten-

tial energy is minimized in the configuration of stable equilibrium.

In a broader sense, stability of equilibrium at x is stable if for some geo-

metrically admissible x∗, P(u∗) = P(u), while for all others P(u∗) > P(u).

In this situation, however, equilibrium configuration x is not necessarily

unique, because x∗ for which P(u∗) = P(u) may give rise to statically ad-

missible stress field (in which case x∗ is also an equilibrium configuration).

Therefore, stability in the sense P(u∗) ≥ P(u) does not in general imply

uniqueness. Conversely, unique configuration need not be stable. It is un-

stable if P(u∗) < P(u) for at least one u∗, and P(u∗) > P(u) for all other

geometrically admissible x∗.

In summary, the inequality

P(u∗) ≥ P(u) (7.3.6)

is a global sufficient condition for stability of equilibrium configuration x. It

is, however, too restrictive criterion, because it is formulated relative to all

geometrically admissible configurations around x.

7.4. Incremental Uniqueness and Stability

Physically more appealing stability criterion is obtained if x∗ is confined

to adjacent configurations, in the neighborhood of x. In that case we talk

about local or incremental (infinitesimal) stability (Truesdell and Noll, 1965).

We start from the inequality (7.3.1). If F∗ is near F (corresponding to an

equilibrium configuration), so that

F∗ = F + δF, (7.4.1)

the Taylor expansion gives

Ψ(F + δF) = Ψ(F) + P · · δF +
1
2

Λ · · · · (δF ⊗ δF) + · · · . (7.4.2)



Consequently, to second-order terms, the inequality (7.3.1) becomes

1
2

Λ · · · · (δF ⊗ δF) > 0. (7.4.3)

This is a sufficient condition for incremental (infinitesimal) uniqueness, or

uniqueness in the small neighborhood of F. An integration over the volume

V 0 yields

1
2

∫
V 0

Λ · · · · (δF ⊗ δF) dV 0 > 0. (7.4.4)

Using (7.4.2), Eq. (7.1.5) gives in the case of dead loading

P(u + δu) − P(u) =
1
2

∫
V 0

Λ · · · · (δF ⊗ δF) dV 0

+
∫
V 0

P · · δFdV 0 −
∫
V 0
ρ0 b · δudV 0 −

∫
S0
t

pn · δudS0,
(7.4.5)

where δu = δx. The last three integrals on the right-hand side of Eq.

(7.4.5) cancel each other by Gauss theorem, equilibrium equations, and the

condition δu = 0 on S0
u; see Eq. (3.12.1). Thus,

P(u + δu) − P(u) =
1
2

∫
V 0

Λ · · · · (δF ⊗ δF) dV 0. (7.4.6)

If equilibrium configuration x is incrementally unique, so that (7.4.3) applies,

then from (7.4.6) it follows that

P(u + δu) > P(u), (7.4.7)

which means that equilibrium configuration x is locally or incrementally sta-

ble. If for some δu, P(u+δu) = P(u), while for other δu, P(u+δu) > P(u),

the configuration x is a state of neutral incremental stability, although the

configuration may not be incrementally unique. The strict inequality (7.4.7)

is sometimes referred to as the criterion of local (incremental) superstability.

See also Knops and Wilkes (1973), and Gurtin (1982).

7.5. Rate-Potentials and Variational Principle

In this section we examine the existence of the variational principle, and

the uniqueness and stability of the boundary-value problem of the rate-type

elasticity considered in Chapter 6. First, we recall that from Eq. (6.4.2) the

rate of nominal stress is

Ṗ = Λ · · Ḟ, Λ =
∂2Ψ

∂F ⊗ ∂F
. (7.5.1)



Since the tensor of elastic pseudomoduli Λ obeys the reciprocal symmetry,

Eq. (7.5.1) can be rephrased by introducing the rate-potential function χ as

Ṗ =
∂χ

∂Ḟ
, χ =

1
2

Λ · · · · (Ḟ ⊗ Ḟ). (7.5.2)

Its Cartesian component representation is

ṖJi =
∂χ

∂ḞiJ
, χ =

1
2

ΛJiLkḞiJ ḞkL. (7.5.3)

Consequently, we have

Ṗ · · δḞ =
∂χ

∂Ḟ
· · δḞ = δχ, (7.5.4)

and the principle of virtual velocity from Eq. (3.11.8) becomes, for static

problems,∫
V 0

δχdV 0 =
∫
V 0

ρ0 ḃ · δv dV 0 +
∫
S0
t

ṗn · δv dS0
t , (7.5.5)

for any analytically admissible virtual velocity field δv vanishing on S0
v .

For general, nonconservative loading there is no true variational principle

associated with Eq. (7.5.5), because the variation δ affects ḃ and ṗ(n).

However, if the rates of loading are deformation insensitive (remain unaltered

during the variation δv), there is a variational principle

δΞ = 0, (7.5.6)

with

Ξ =
∫
V 0

χdV 0 −
∫
V 0

ρ0 ḃ · v dV 0 −
∫
S0
t

ṗn · v dS0
t . (7.5.7)

Among all kinematically admissible velocity fields, the actual velocity field

(whether unique or not) of the considered rate boundary-value problem ren-

ders stationary the functional Ξ(v).

There is also a variational principle associated with Eq. (7.5.5) if the

rates of prescribed tractions and body forces are self-adjoint in the sense

that (Hill, 1978) ∫
S0
t

(ṗn · δv − v · δṗn) dS0
t = 0, (7.5.8)



and similarly for the body forces, since then

δ

∫
S0
t

(ṗn · v) dS0
t = 2

∫
S0
t

(ṗn · δv) dS0
t ,

δ

∫
V 0

(
ḃ · v

)
dV 0 = 2

∫
V 0

(
ḃ · δv

)
dV 0.

(7.5.9)

In this case the variational integral is

Ξ =
∫
V 0

χdV 0 − 1
2

∫
V 0

ρ0 ḃ · v dV 0 − 1
2

∫
S0
t

ṗn · v dS0
t . (7.5.10)

A loading that is partly controllable (independent of v), and partly deforma-

tion sensitive but self-adjoint in the above sense also allows the variational

principle. Detailed analysis is available in Hill (op. cit.).

7.5.1. Betti’s Theorem and Clapeyron’s Formula

Let

v = ẋ, Ḟ =
∂v
∂X

, Ṗ = Λ : Ḟ (7.5.11)

be a solution of the boundary-value problem associated with the prescribed

rates of body forces ḃ in V 0, surface tractions ṗn on S0
t , and velocities v on

S0
v . Similarly, let

v∗ = ẋ∗, Ḟ∗ =
∂v∗

∂X
, Ṗ∗ = Λ : Ḟ∗ (7.5.12)

be a solution of the boundary-value problem associated with the prescribed

rates of body forces ḃ∗ in V 0, surface tractions ṗ∗
n on S0

t , and velocities v∗

on S0
v . By reciprocal symmetry of pseudomoduli Λ we have the reciprocal

relation

Ṗ · · Ḟ∗ = Ṗ∗ · · Ḟ. (7.5.13)

Upon integration over the volume V 0, and by using Eq. (3.11.12), it follows

that ∫
V 0

ρ0 ḃ · v∗ dV 0 +
∫
S0

n0 · Ṗ · v∗ dS0

=
∫
V 0

ρ0 ḃ∗ · v dV 0 +
∫
S0

n0 · Ṗ∗ · v dS0.

(7.5.14)

This is analogous to Betti’s reciprocal theorem of classical elasticity. Also,

by incorporating Ṗ = Λ : Ḟ in the integral on the left-hand side of Eq.

(3.11.12), there follows∫
V 0

χdV 0 =
1
2

∫
V 0

ρ0ḃ · v dV 0 +
1
2

∫
S0

n0 · Ṗ · v dS0, (7.5.15)



which is analogous to Clapeyron’s formula from linear elasticity (Hill, 1978).

7.5.2. Other Rate-Potentials

The rate potential χ was introduced in Eq. (7.5.2) for the rate of nominal

stress Ṗ. We can also introduce the rate-potentials for the rates of material

and spatial stress tensors, such that

Ṫ(n) =
∂χ(n)

∂Ė(n)

, χ(n) =
1
2

Λ(n) ::
(
Ė(n) ⊗ Ė(n)

)
, (7.5.16)

•
TTT (n) =

∂χ̄(n)

∂
•
EEE(n)

, χ̄(n) =
1
2

Λ̄(n) ::
(•
EEE(n) ⊗

•
EEE(n)

)
. (7.5.17)

7.5.3. Current Configuration as Reference

If the current configuration is taken as the reference configuration, we have

Ṗ =
∂χ

∂L
, χ =

1
2

Λ · · · · (L ⊗ L), (7.5.18)

since Ḟ = L (see Section 6.4). Substituting Eq. (6.4.16) for Λ, there follows

χ =
1
2
LLL(1) :: (D ⊗ D) +

1
2
σ :

(
LT · L

)
. (7.5.19)

Alternatively, in view of Eq. (6.3.14),

χ =
1
2
LLL(0) :: (D ⊗ D) +

1
2
σ :

(
LT · L − 2D2

)
. (7.5.20)

The symmetry of the instantaneous elastic moduli LLL(1) was used in arriv-

ing at Eq. (7.5.19). With the current configuration as the reference, the

variational integral of Eq. (7.5.7) becomes

Ξ =
∫
V

χdV −
∫
V

ρ ḃ · v dV −
∫
St

ṗ
n
· δv dSt, (7.5.21)

where n ·Ṗ = ṗ
n

on St. The traction rate ṗ
n

is related to the rate of Cauchy

traction ṫn by Eq. (3.9.18).

The rate potentials χ
(n)

are introduced such that

Ṫ(n) =
∂χ

(n)

∂D
, χ

(n)
=

1
2
LLL(n) :: (D ⊗ D). (7.5.22)

In view of Eqs. (6.3.10) and (6.3.13), the various rate potentials are related

by

χ
(n)

= χ
(0)

− nσ : D2 = χ
(1)

+ (1 − n)σ : D2, (7.5.23)



and

χ = χ
(n)

+
1
2
σ :

[
LT · L − 2(1 − n)D2

]
. (7.5.24)

Using the results from Section 3.9 for the rates Ṫ(n), Eq. (7.5.22) gives, for

n = 0 and n = ±1,

◦
τ =

∂χ
(0)

∂D
,

�
τ =

∂χ
(1)

∂D
,

∇
τ =

∂χ
(−1)

∂D
. (7.5.25)

7.6. Uniqueness of Solution to Rate Problem

We examine now the uniqueness of solution to the boundary-value problem

described by the rate equilibrium equations

∇0 · Ṗ + ρ0 ḃ = 0, (7.6.1)

and the boundary conditions

v = v0 on S0
v , n0 · Ṗ = ṗn on S0

t . (7.6.2)

It is assumed that incremental loading is deformation insensitive, so that ḃ

in V 0 and ṗn on S0
t do not depend on the velocity.

Suppose that there are two different solutions of Eqs. (7.6.1) and (7.6.2),

v and v∗. The corresponding rates of deformation gradients are Ḟ and Ḟ∗,

with the rates of nominal stresses Ṗ and Ṗ∗. The equilibrium fields
(
Ṗ, Ḟ

)
and

(
Ṗ∗, Ḟ∗

)
necessarily satisfy the condition∫

V 0
(Ṗ∗ − Ṗ) · · (Ḟ∗ − Ḟ) dV 0 = 0, (7.6.3)

which follows from Eq. (3.11.13). Consequently, from Eq. (7.6.3), the

velocity field v is unique if∫
V 0

(
Ṗ∗ − Ṗ

)
· ·

(
Ḟ∗ − Ḟ

)
dV 0

=
∫
V 0

Λ · · · ·
(
Ḟ∗ − Ḟ

)
⊗

(
Ḟ∗ − Ḟ

)
dV 0 �= 0,

(7.6.4)

for all kinematically admissible v∗ giving rise to

Ḟ∗ =
∂v∗

∂X
, Ṗ∗ = Λ : Ḟ∗. (7.6.5)

The stress rate Ṗ∗ in (7.6.4) need not be statically admissible, so even if the

equality sign applies in (7.6.4) for some v∗, the uniqueness is lost only if v∗

gives rise to statically admissible stress-rate field Ṗ∗. Therefore, a sufficient



condition for v to be unique solution is that for all kinematically admissible

velocity fields v∗,∫
V 0

Λ · · · ·
(
Ḟ∗ − Ḟ

)
⊗

(
Ḟ∗ − Ḟ

)
dV 0 > 0. (7.6.6)

The reversed inequality could also serve as a sufficient condition for unique-

ness. The solution v which obeys such inequality for all kinematically ad-

missible v∗ would define unique, but unstable equilibrium configuration,

analogous to the consideration in Section 7.3.

A more restrictive condition for uniqueness is evidently

Λ · · · ·
(
Ḟ − Ḟ∗

)
⊗

(
Ḟ − Ḟ∗

)
> 0, (7.6.7)

which implies (7.6.6), and which states that Λ is positive definite. However,

since unique solution to a finite elasticity rate problem cannot be expected

in general, the inequality (7.6.7) may fail at certain states of deformation.

A nonuniqueness of the rate problem is certainly a possibility if the state of

deformation is reached when Λ becomes singular, so that Λ · · Ḟ = 0 has

nontrivial solutions for Ḟ. Details of the calculations for isotropic materials

can be found in Ogden (1984).

If a sufficient condition for uniqueness (7.6.6) applies, then

Ξ(v∗) > Ξ(v), (7.6.8)

and the variational principle is strengthened to a minimum principle: among

all kinematically admissible velocity fields, the actual field renders Ξ the

minimum. Indeed, from Eq. (7.5.7) it follows that

Ξ(v∗) − Ξ(v) =
1
2

∫
V 0

(
Ṗ∗ − Ṗ

)
· ·

(
Ḟ∗ − Ḟ

)
dV 0. (7.6.9)

In the derivation, Eq. (3.11.12) was used, and the reciprocity relation

Ṗ · · Ḟ∗ = Ṗ∗ · · Ḟ. (7.6.10)

A useful identity, resulting from the reciprocity of Λ, is

Ṗ∗ · · Ḟ∗ − Ṗ · · Ḟ =
(
Ṗ∗ − Ṗ

)
· ·

(
Ḟ∗ − Ḟ

)
+ 2 Ṗ · ·

(
Ḟ∗ − Ḟ

)
. (7.6.11)

7.7. Bifurcation Analysis

It was shown in the previous section, if displacement fields v and v∗ are both

solutions of incrementally linear inhomogeneous rate problem described by



Eqs. (7.6.1) and (7.6.2), then
1
2

∫
V 0

(
∆Ṗ · ·∆Ḟ

)
dV 0 =

1
2

∫
V 0

Λ · · · ·
(
∆Ḟ ⊗ ∆Ḟ

)
dV 0 = 0, (7.7.1)

with

∆Ḟ = Ḟ − Ḟ∗, ∆Ṗ = Ṗ − Ṗ∗. (7.7.2)

Consider the associated homogeneous rate problem, described by

∇0 · ṖPP = 0, (7.7.3)

and the boundary conditions

w = 0 on S0
v , n0 · ṖPP = 0 on S0

t , (7.7.4)

where

ḞFF =
∂w
∂X

, ṖPP = Λ · · ḞFF . (7.7.5)

The bold face italic notation is used for the fields associated with the dis-

placement field w. The rate problem described by (7.7.3) and (7.7.4) has

always a nul solution w = 0. If the homogeneous problem also has a non-

trivial solution

w �= 0, (7.7.6)

then by Eq. (7.7.1)
1
2

∫
V 0

(
ṖPP · · ḞFF

)
dV 0 =

1
2

∫
V 0

Λ · · · ·
(
ḞFF ⊗ ḞFF

)
dV 0 = 0. (7.7.7)

This condition places the same restrictions on the moduli Λ as does (7.7.1),

as expected, since (7.7.7) follows directly from (7.7.1) by taking

w = v − v∗. (7.7.8)

The examination of the uniqueness of solution to incrementally linear in-

homogeneous rate problem (7.6.1) and (7.6.2) is thus equivalent to the ex-

amination of the uniqueness of solution to the associated homogeneous rate

problem (7.7.3) and (7.7.4).

7.7.1. Exclusion Functional

If for all kinematically admissible w giving rise to ḞFF = ∂w/∂X,∫
V 0

χ(w) dV 0 =
1
2

∫
V 0

Λ · · · ·
(
ḞFF ⊗ ḞFF

)
dV 0 > 0, (7.7.9)

from Eq. (7.6.6) it follows that w = 0 is the only solution of the homogeneous

rate problem. Furthermore, by Eq. (7.4.4) it follows that the underlying



equilibrium configuration x is incrementally stable (and thus incrementally

unique), under a considered dead loading. At some states of deformation,

however, there may exist a nontrivial solution w �= 0 to the homogeneous

rate problem. This w then satisfies Eq. (7.7.7), implying nonuniqueness

of the homogeneous rate problem, and from Section 7.4 nonuniqueness and

neutral incremental stability of the underlying equilibrium configuration x.

The deformation state at which this happens is called an eigenstate. A

nontrivial solution to the homogeneous rate problem is called an eigenmode

(Hill, 1978). Therefore, since inhomogeneous rate problem with an incre-

mentally linear stress-deformation response is linear, its solution is unique if

and only if the current configuration is not an eigenstate for the associated

homogeneous rate problem. If the current configuration is an eigenstate,

than any multiple of an eigenmode (kw) could be added to one solution

of inhomogeneous rate problem (v) to generate others (v + kw). Thus, to

guarantee uniqueness it is enough to exclude the possibility of eigenmodes.

Consequently, following Hill (1978), introduce the exclusion functional

F =
∫
V 0

χ(w) dV 0, χ(w) =
1
2

Λ · · · ·
(
ḞFF ⊗ ḞFF

)
, (7.7.10)

for any kinematically admissible w giving rise to ḞFF = ∂w/∂X. Starting the

deformation from a stable reference configuration, a state is reached where

the exclusion functional becomes positive semidefinite (F ≥ 0), vanishing

for some kinematically admissible w. The state at which

F = 0 (7.7.11)

is first reached for some w is called a primary eigenstate. In this state the

uniqueness fails, and the deformation path branches (usually by infinitely

many eigenmodes). The phenomenon is referred to as bifurcation. (Beyond

the region F ≥ 0, the exclusion functional is indefinite. If a kinematically

admissible w makes F = 0 for some configuration in this region, the config-

uration is an eigenstate, but w is not an eigenmode unless it gives rise to

statically admissible stress rate field ḞFF . Since this region is unstable, it will

not be considered further).

In any eigenstate at the boundary F ≥ 0, an eigenmode w makes the

exclusion functional stationary within the class of kinematically admissible



variations δw. Indeed, for homogeneous data

1
2

∫
V 0

Λ · · · ·
(
ḞFF ⊗ δḞFF

)
dV 0 =

1
2

∫
V 0

ṖPP · · δḞFF dV 0 = 0, (7.7.12)

by Eq. (3.11.12), since the stress rate ṖPP , associated with an eigenmode w,

is statically admissible field for the homogeneous rate problem. Since Λ

possesses reciprocal symmetry, Eq. (7.7.12) implies

δF = 0. (7.7.13)

Conversely, any kinematically admissible velocity field w that makes F
stationary is an eigenmode. This is so because for homogeneous problem

the variational integral of Eq. (7.5.7) is equal to the exclusion functional

(Ξ = F).

As previously indicated, from Eq (7.4.6) it follows that

P(u + δu) = P(u) (7.7.14)

for any eigenmode w giving rise to displacement increment δu = w δt. Thus,

the potential energies are equal in any two adjacent equilibrium states differ-

ing under dead load by an eigenmode deformation. These states are neutrally

stable, within the second-order approximations used in deriving Eq. (7.4.6).

To assess stability of an eigenmode more accurately, higher order terms in

the expansion (7.4.2), leading to (7.4.6), would have to be retained.

The criticality of the exclusion functional is independent of the incepient

loading rates (inhomogeneous data) in the current configuration. However,

inhomogeneous data cannot be prescribed freely in an eigenstate, if the inho-

mogeneous rate problem is to admit a solution. Indeed, when the reciprocal

theorem (7.5.14) is applied to the fields
(
v, Ṗ

)
and (w,0), it follows that

∫
V 0

ρ0 ḃ · w dV 0 +
∫
S0
t

ṗn · w dS0
t = 0, (7.7.15)

for every distinct eigenmode. This may be regarded as a generalized orthog-

onality between the rates of loading (inhomogeneous data) and the eigen-

modes (Hill, 1978; Ogden, 1984).

In the case of homogeneous material and homogeneous deformation,

Eq. (7.7.9) implies that Λ is positive definite. A primary eigenstate is



characterized by positive semidefinite Λ, i.e.,

χ(w) =
1
2

Λ · · · · (ḞFF ⊗ ḞFF ) ≥ 0, (7.7.16)

with equality sign for some ḞFF (uniform throughout the body). The corre-

sponding eigenmode is subject to stationary condition δF = 0, which gives

ṖPP · · δḞFF = 0 for all δḞFF from kinematically admissible δw. Thus,

ṖPP = Λ · · ḞFF = 0 (7.7.17)

in a primary (uniformly deformed) eigenstate, as anticipated since Λ be-

comes singular in this state.

In the case of deformation sensitive loading rates, the exclusion condition

is

F > 0 (7.7.18)

for all kinematically admissible fields w, where

F =
∫
V 0

χ(w) dV 0 − 1
2

∫
V 0

ρ0 ḃ · w dV 0 − 1
2

∫
S0
t

ṗn · w dS0
t . (7.7.19)

If the loading rates are self-adjoint in the sense of Eq. (7.5.8), both the

exclusion functional and its first variation vanish for an eigenmode. Detailed

analysis is given by Hill (1978).

7.8. Localization Bifurcation

Consider a homogeneous elastic body in the state of uniform deformation.

For prescribed velocities on the boundary which give rise to uniform Ḟ

throughout the body, conditions are sought under which bifurcation by lo-

calization of deformation within a planar band can occur. This is associated

with a primary eigenmode

w = f(N · X)η, ḞFF = f ′ η ⊗ N. (7.8.1)

For ḞFF to be discontinuous across the band, the gradient f ′ is piecewise con-

stant across the band, whose unit normal in the undeformed configuration

is N. The localization vector is η. For example, in the case of shear band,

n·η = 0, where n = N·FFF−1 is the band normal in the deformed configuration

(Fig. 7.1). (Although shear and necking instabilities are usually associated



Figure 7.1. A shear band with normal n and localiza-
tion vector η in a homogeneously deformed specimen under
plane strain tension.

with plastic response, they can also occur in certain nonlinearly elastic ma-

terials; Silling, 1988; Antman, 1974,1995). The stress rate associated with

Eq. (7.8.1) is

ṖPP = f ′ Λ · · (η ⊗ N) = f ′ Λ : (N ⊗ η). (7.8.2)

Substituting this into equilibrium equation (7.7.3) gives

f ′′ N · Λ : (N ⊗ η) = 0. (7.8.3)

Thus,

N · Λ : (N ⊗ η) = A(N) · η = 0. (7.8.4)

The second-order tensor

A(N) = Λ : (N ⊗ N), Aij(N) = ΛKiLjNKNL (7.8.5)

is a symmetric tensor, obeying the symmetry ΛKiLj = ΛLjKi. For a non-

trivial η to be determined from the condition

A(N) · η = 0, (7.8.6)

the matrix A(N) has to be singular, i.e.,

detA(N) = 0. (7.8.7)

Note that Eq. (7.8.4) implies

ṗppn = N · ṖPP = 0, (7.8.8)

which is obtained by multiplying Eq. (7.8.2) with N. This means that the

rate of nominal traction across the localization band vanishes.

Constitutive law and equilibrium equations are said to be elliptic in any

state where

detA(N) �= 0, for all N. (7.8.9)

�

�



Thus, if uniform deformation bifurcates by a band localization eigenmode,

the constitutive law and governing equilibrium equations loose their elliptic-

ity. Since there is a correspondence between the conditions for a localization

bifurcation and the occurrence of stationary body waves (waves with van-

ishing wave speeds), the latter is briefly discussed in the next section.

7.9. Acoustic Tensor

Consider a homogeneous elastic body in a state of homogeneous deformation.

Its response to small amplitude wave disturbances is examined. Solutions to

the rate equations

∇0 · Ṗ = ρ0 d2v
dt2

(7.9.1)

are sought in the form of a plane wave propagating with a speed c in the

direction N,

v = ηf(N · X − ct). (7.9.2)

The unit vector η defines the polarization of the wave. On substituting

(7.9.2) into (7.9.1), the propagation condition is found to be

A(N) · η = ρ0 c2 η. (7.9.3)

The second-order tensor A(N) is referred to as the acoustic tensor. It is

explicitly defined by Eq. (7.8.5). From Eq. (7.9.3) we conclude that ρ0c2

is an eigenvalue and η is an eigenvector of the acoustic tensor A(N). Since

A(N) is real and symmetric, c2 must be real. If c2 > 0, there is a stability

with respect to propagation of small disturbances. For stationary waves

(stationary discontinuity) c = 0, which signifies the transition from stability

to instability. The instability is associated with c2 < 0, and a divergent

growth of an initial disturbance.

Taking a scalar product of Eq. (7.9.3) with η gives

η · A(N) · η = ρ0 c2. (7.9.4)

Therefore, if A(N) is positive definite,

η · A(N) · η > 0 (7.9.5)

for all η, we have c2 > 0, and Eq. (7.9.1) admits three linearly independent

plane progressive waves for each direction of propagation N. In this case,

small amplitude elastic plane waves can propagate along a given direction



in three distinct, mutually orthogonal modes. These modes are generally

neither longitudinal nor transverse. We say that the wave is longitudinal

if η and n = N · F−1 are parallel, and transverse if η and n are perpen-

dicular. Brugger (1965) calculated directions of propagation of pure mode,

longitudinal and transverse waves for most anisotropic crystal classes in their

undeformed state. See also Hill (1975) and Milstein (1982).

7.9.1. Strong Ellipticity Condition

If the condition holds

η · A(N) · η = Λ :: [(N ⊗ η) ⊗ (N ⊗ η)] > 0 (7.9.6)

for each N⊗η, the system of equations (7.9.1) with zero acceleration is said

to be strongly elliptic. Clearly, strong ellipticity implies ellipticity, since for

positive definite acoustic tensor

detA(N) > 0. (7.9.7)

Not every strain energy function will yield an acoustic tensor satisfying the

conditions of strong ellipticity in every configuration. For example, in the

case of undeformed isotropic elastic material, the strong ellipticity requires

that the Lamé constants satisfy

λ+ 2µ > 0, µ > 0. (7.9.8)

This does not imply that the corresponding Ψ is positive definite. The

conditions for the latter are

λ+
2
3
µ > 0, µ > 0. (7.9.9)

Thus, while the strong ellipticity condition is strong enough to preclude

occurrence of shear band localization, it is not strong enough to ensure the

physically observed behavior with necessarily positive value of the elastic

bulk modulus (κ = λ+ 2µ/3).

A weaker inequality

η · A(N) · η = Λ :: [(N ⊗ η) ⊗ (N ⊗ η)] ≥ 0 (7.9.10)

for all N ⊗ η, is known as the Hadamard condition of stability. This condi-

tion does not exclude nonpropagating or stationary waves (discontinuities,



singular surfaces). The condition is further discussed by Truesdell and Noll

(1965), and Marsden and Hughes (1983).

If the current configuration is taken as the reference, Eq. (7.9.1) becomes

∇ · Ṗ = ρ
d2v
dt2

, (7.9.11)

where

Ṗ = Λ · ·L, Λjilk = L(1)
jilk + σjlδik. (7.9.12)

The propagation condition is

A(n) · η = ρ c2 η, Aij(n) = Λkiljnknl, (7.9.13)

while the strong ellipticity requires that

η · A(n) · η = Λ :: [(n ⊗ η) ⊗ (n ⊗ η)] > 0. (7.9.14)

Since the moduli Λ and Λ are related by Eq. (6.4.14), and since n = N·F−1,

there is a connection

A(N) = (detF)A(n). (7.9.15)

7.10. Constitutive Inequalities

A significant amount of research was devoted to find a constitutive inequality

for elastic materials under finite deformation that would hold irrespective of

the geometry of the boundary value problem, or prescribed displacement

and traction boundary conditions. For example, in the range of infinitesimal

deformation such an inequality is σ : ε > 0, where ε is an infinitesimal strain.

This is a consequence of positive definiteness of the strain energy function

Ψ = (1/2)σ : ε. For finite elastic deformation, Caprioli (1955) proposed

that the elastic work is non-negative on any path, open or closed, from the

ground state. This implies the existence of Ψ, which must have an absolute

minimum in the ground (unstressed) state.

Constitutive inequalities must be objective, i.e., independent of a super-

imposed rotation to the deformed configuration. For example, the inequality

Ṗ · · Ḟ = Λ · · · ·
(
Ḟ ⊗ Ḟ

)
> 0, (7.10.1)

derived from the considerations of uniqueness and stability of the rate bound-

ary value problem, is not objective, since under the rotation Q,

Ṗ∗ · · Ḟ∗ =
(
Ṗ − P · Ω̂

)
· ·

(
Ḟ + Ω̂ · F

)
�= Ṗ · · Ḟ. (7.10.2)



There is no universal constitutive inequality applicable to all types of finite

elastic deformation. Instead, various inequalities have been proposed to

hold in certain domains of deformation around the reference state, and for

particular types of elastic materials (e.g., Truesdell and Noll, 1965; Hill,

1968,1970; Ogden, 1970). Such an inequality is

(
T∗

(n) − T(n)

)
:
(
E∗

(n) − E(n)

)
=

(
∂Ψ
∂E∗

(n)

− ∂Ψ
∂E(n)

)
:
(
E∗

(n) − E(n)

)
> 0,

(7.10.3)

for all E(n) �= E∗
(n). If the strain domain in which (7.10.3) holds is convex,

the inequality implies that Ψ(E(n)) is globally strictly convex in that domain.

It also implies that ∂Ψ/∂E(n) is one-to-one in that domain. For different n,

(7.10.3) represents different physical requirements, so that inequality may

hold for some n, and fail for others.

Another inequality is obtained by requiring that

Ṫ(n) : Ė(n) = Λ(n) :: (Ė(n) ⊗ Ė(n)) > 0, Λ(n) =
∂2Ψ

∂E(n) ⊗ ∂E(n)
. (7.10.4)

This means that Λ(n), the Hessian of Ψ with respect to E(n), is positive

definite, i.e., that the strain energy Ψ is locally strictly convex in a consid-

ered strain domain. It can be shown that in a convex strain domain local

convexity implies global convexity, and vice versa. To demonstrate former,

for instance, we can choose the strain rate in (7.10.4) to be directed along

the line from E(n) to E∗
(n); integration from E(n) to E∗

(n) leads (7.10.3). As

in the case of (7.10.3), the inequality (7.10.4) represents different physical

requirements for different choices of n. Convexity of Ψ is not an invariant

property, so that convexity in the space of one strain measure may be lost

in the space of another strain measure.

If the current configuration is taken as the reference, (7.10.4) becomes

Ṫ(n) : D = LLL(n) :: (D ⊗ D) = 2χ
(n)

> 0. (7.10.5)

This in general imposes different restrictions on the constitutive law than

(7.10.4) does. In view of Eqs. (6.3.12) and (6.3.13), we can rewrite (7.10.5)

as

◦
τ : D > 2n

(
σ : D2

)
,

◦
τ =

◦
σ + σ trD. (7.10.6)



Hill (1968) proposed that the most appealing inequality is obtained from

(7.10.6) for n = 0, so that

◦
τ : D > 0. (7.10.7)

This inequality is found to be in best agreement with the anticipated features

of elastic response. See also Leblond (1992).

Alternative representation of the inequalities (7.10.3) and (7.10.4) is ob-

tained by using spatial tensor measures. They are

(
TTT ∗

(n) −TTT (n)

)
:
(
EEE∗

(n) −EEE(n)

)
=

(
∂Ψ
∂EEE∗

(n)

− ∂Ψ
∂EEE(n)

)
:
(
EEE∗

(n) −EEE(n)

)
> 0,

(7.10.8)

•
TTT (n) :

•
EEE(n) = Λ̄(n) ::

(•
EEE(n) ⊗

•
EEE(n)

)
> 0, Λ̄(n) =

∂2Ψ
∂EEE(n) ⊗ ∂EEE(n)

. (7.10.9)

Inequality (7.10.5) remains the same, because
•
TTT (n) = Ṫ(n) and Λ̄(n) = LLL(n).

If E∗
(n) is nearby E(n), so that

E∗
(n) = E(n) + δE(n), (7.10.10)

by Taylor expansion of ∂Ψ/∂E∗
(n) we obtain

δT(n) = Λ(n) : δE(n) +
1
2
∂Λ(n)

∂E(n)
::

(
δE(n) ⊗ δE(n)

)
+ · · · . (7.10.11)

Thus,

δT(n) : δE(n) = Λ(n) ::
(
δE(n) ⊗ δE(n)

)
+

1
2
∂Λ(n)

∂E(n)
:::

(
δE(n) ⊗ δE(n) ⊗ δE(n)

)
+ · · · .

(7.10.12)

The sixth-order tensor

∂Λ(n)

∂E(n)
=

∂2T(n)

∂E(n) ⊗ ∂E(n)
=

∂3Ψ
∂E(n) ⊗ ∂E(n) ⊗ ∂E(n)

(7.10.13)

is a tensor of the third-order elastic moduli, previously encountered in Sec-

tion 5.11 within the context of higher-order elastic constants of cubic crys-

tals. The third-order pseudomoduli are similarly defined as ∂Λ/∂F. These

tensors play an important role in assessing the true nature of stability of

equilibrium in the cases when the second-order expansions, such as those

used in Section 7.4, lead to an assessment of neutral stability. Details are

available in Hill (1982) and Ogden (1984).
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