
CHAPTER 11 

Torsion of Beams 

Torsion in beams arises generally from the action of shear loads whose points of 
application do not coincide with the shear centre of the beam section. Examples of 
practical situations where this occurs are shown in Fig. 11.1 where, in Fig. 11.1 (a), a 
concrete encased I-section steel beam supports an offset masonry wall and in 
Fig. 1 1.1 (b) a floor slab, cast integrally with its supporting reinforced concrete 
beams, causes torsion of the beams as it deflects under load. Relevant Codes of 
Practice either imply or demand that torsional stresses and deflections be checked 
and provided for in design. 

The solution of torsion problems is complex particularly in the case of beams of 
solid section and arbitrary shape for which exact solutions do not exist. Use is then 
made of empirical formulae which are conveniently expressed in terms of correction 
factors based on the geometry of a particular shape of cross-section. The simplest 
case involving the torsion of solid section beams (as opposed to hollow cellular 
sections) is that of a circular section shaft or bar. This case therefore forms an 
instructive introduction to the more complex cases of the torsion of solid section, 
thin-walled open section and thin-walled closed section beams. 

11.1 Torsion of solid and hollow circular-section bars 
Figure 11.2(a) shows a circular-section bar of length L subjected to equal and 
opposite torques, T ,  at each end. The torque at any section of the bar is therefore 
equal to T and is constant along its length. We shall assume that cross-sections 

Fig. 11.1 Causes of torsion in beams 
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Fig. 11.2 Torsion of a solid circular-section bar 

remain plane during twisting, that radii remain straight during twisting and that all 
normal cross-sections equal distances apart suffer the same relative rotation. 

Consider the generator AB on the surface of the bar and parallel to its longitudinal 
axis. Due to twisting, the end A is displaced to A' so that the radius OA rotates 
through a small angle, 0, to OA'. The shear strain, ys, on the surface of the bar is 
then equal to the angle ABA' in radians so that 

AA' R e  
ys=-- - -  

L L  

Similarly the shear strain, y, at any radius r is given by the angle DCD' so that 

DD' re  
y =  - - _ -  

L L  
The shear stress, r, at the radius r is related to the shear strain y by Eq. (7.9). Thus 

r re  y =  - = - 
G L  

or, rearranging 

(11.1) r e - = G -  
r L 

Consider now any cross-section of the bar as shown in Fig. 11.2(b). The shear 
stress, r ,  on an annulus of radius rand  width 6r is tangential to the annulus, is in the 
plane of the cross-section and is constant round the annulus since the cross-section 
of the bar is perfectly symmetrical. The shear force on the element 6s of the annulus 
is then r 6s 6r and its moment about the centre, 0, of the section is r 6s 6r r. 
Summing the moments on all such elements of the annulus we obtain the torque, 6T,  
on the annulus, i.e. 

6T = 1'"' r 6r r ds  
n 

which gives 

6T = 2nr2z 6 r  
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The total torque on the bar is now obtained by summing the torques from each 
annulus in the cross-section. Thus 

T = I R  0 2nr2rdr (11.2) 

Substituting for T in Eq. (1 1.2) from Eq. (1 1.1) we have 

0 

L 

nR4 8 which gives T=-G-  
2 L  

T = IoR 2nr3G - dr  

0 

L 
or T = J G  - (11.3) 

where J =  xR4/2(=nD4/32) is defined as the polar second moment of area of the 
cross-section (see Eq. (9.42)). Combining Eqs (1 1.1) and (1 1.3) we have 

T r  0 
- = - =  c -  (11.4) 
J r  L 

Note that for a given torque acting on a given bar the shear stress is a maximum at 
the outer surface of the bar. Note also that these shear stresses induce 
complementary shear stresses on planes parallel to the axis of the bar but not on the 
actual surface (Fig. 1 1.3). 

Torsion of a circular section hollow bar 
The preceding analysis may be applied directly to a hollow bar of circular section 
having outer and inner radii R, and R,, respectively. Equation (1 1.2) then becomes 

T = / R‘’ 2 n r ’ ~  dr  
R ,  

Substituting for T from Eq. (1 1.1) we have 

e 
T = 1 “’ 2nr’G - dr  

R ,  L 

n 4 4 e  whence T = - ( R ,  - R , ) C -  
2 L 

Fig. 11.3 Shear and complementary shear stresses on the surface of a circular- 
section bar subjected to torsion 
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Thus the polar second moment of area, J, is given by 

(11.5) I C 4  

2 
J =  - (R, -R,4)  

Statically indeterminate circular-section bars under torsion 

In many instances bars subjected to torsion are supported in such a way that the 
support reactions are statically indeterminate. These reactions must be determined, 
however, before values of maximum stress and angle of twist can be obtained. 

Figure 11.4(a) shows a bar of uniform circular cross-section firmly supported at 
each end and subjected to a concentrated torque at a point B along its length. From 
equilibrium we have 

T = T A +  Tc (1 1.6) 

A second equation is obtained by considering the compatibility of displacement at B 
of the two lengths AB and BC. Thus the angle of twist at B in AB must equal the 
angle of twist at B in BC, i.e. 

~ B ( A B )  = ~ B ( B C ,  

or using Eq. (1 1.3) 

-- &LAB TCLBC 
GJ GJ 

-- 

whence 

L BC 

LAB 
TA = T, - 

Fig. 11.4 Torsion of a circular-section bar with built-in ends 



292 Torsion of Beams 

Substituting in Eq. (1 1.6) for TA we obtain 

TA=Tc  -+ 1 (LL: 1 
which gives Tc = T (11.7) LAB 

LAB + LBC 

LBC 
LAB + LBC 

Hence T ,  = T (11.8) 

The distribution of torque along the length of the bar is shown in Fig. 11.4(b). Note 
that if LAB > LBC, Tc is the maximum torque in the bar. 

Example 11.1 A bar of circular cross-section is 2.5 m long (Fig. 11.5). For 2 m 
of its length its diameter is 200 mm while for the remaining 0.5 m its diameter is 
100 mm. If the bar is firmly supported at its ends and subjected to a torque of 
50 kNm applied at its change of section, calculate the maximum stress in the bar 
and the angle of twist at the point of application of the torque. Take 
C = 80 OOO N/mm2. 

In this problem Eqs (1 1.7) and (1 1.8) cannot be used directly since the bar 
changes section at B. Thus from equilibrium 

T = T A + T c  (i 1 
and from the compatibility of displacement at B in the lengths AB and BC 

~ B ( A B )  = ~ B ~ B C )  

or using Eq. (1 1.3) 

TALA, TcLBc 
~ J A B  GJBC 
-- -- 

(ii) LBC J A B  

LAB JBC 

whence T A  = - - Tc 

Fig. 11.5 Bar of Ex. 11.1 
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Substituting in Eq. (i) we obtain 

LBC JAB + 1 T = T c  -- 
( L A B  JBC ) 

or 50= T c [ g  x ( 200 x 10-~ ) 4 + 11 
100 x 10-~ 

from which Tc=lOkNm 

Hence, from Eq. (i) T A = 4 0  kNm 

Although the maximum torque occurs in the length AB, the length BC has the 
smaller diameter. It can be seen from Eqs (11.4) that shear stress is directly 
proportional to torque and inversely proportional to diameter (or radius) cubed. We 
therefore conclude that in this case the maximum shear stress occurs in the length 
BC of the bar and is given by 

l o x  1o6x 100x32 

2xxx1004  
L a x  = = 50.9 N/ITII~' 

Also the rotation at B is given by either 

TC LBC or OB= - T A L A B  
GJAB GJBC 

e B  = - 

Using the first of these expressions we have 

40 x lo6 x 2 x lo3 x 32 

80000 x x x 2o04 
8 s  = = 0.0064 radians 

or O B  = 0.37" 

11.2 Strain energy due to torsion 
It can be seen from Eq. (1 1.3) that for a bar of a given material, a given length, L ,  
and radius, R ,  the angle of twist is directly proportional to the applied torque. 

Fig. 11.6 Torque-angle of twist relationship for a gradually applied torque 
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Therefore a torque-angle of twist graph is linear and for a gradually applied torque 
takes the form shown in Fig. 11.6. The work done by a gradually applied torque, T ,  
is equal to the area under the torque-angle of twist curve and is given by 

Work done = i TO 

The corresponding strain energy stored, U, is therefore also given by 

U = i T 8  

Substituting for T and 8 from Eqs (1 1.4) in terms of the maximum shear stress, rmaX, 
on the surface of the bar we have 

u=- -x -  1 % a X J  LaxL 
2 R  G R  

1 ‘5mx nR 4 
or u=-  - n ~ 2 ~  since J = -  

4 G  2 
2 

Hence u= - x volume of bar (11.9) 

Alternatively, in terms of the applied torque T we have 

L a x  

4G 

T’L 
U = L T e = -  (11.10) ‘ 2GJ 

11.3 Plastic torsion of circular-section bars 
Equations (1 1.4) apply only if the shear stress-shear strain curve for the material of 
the bar in torsion is linear. Stresses greater than the yield shear stress, q, induce 
plasticity in the outer region of the bar and this extends radially inwards as the 
torque is increased. It is assumed, in the plastic analysis of a circular-section bar 
subjected to torsion, that cross-sections of the bar remain plane and that radii remain 
straight. 

For a material such as mild steel which has a definite yield point the shear 
stress-shear strain curve may be idealized in a similar manner to that for direct stress 
(see Fig. 9.31) as shown in Fig. 11.7. Thus, after yield, the shear strain increases at a 

Fig. 11.7 Idealized shear stress - shear strain curve for a mild steel bar 
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more or less constant value of shear stress. It follows that the shear stress in the 
plastic region of a mild steel bar is constant and equal to zY. Figure 11.8 illustrates 
the various stages in the development of full plasticity in a mild steel bar of circular 
section. In Fig. 11.8(a) the maximum stress at the outer surface of the bar has 
reached the yield stress, zY. Equations (11.4) still apply, therefore, so that at the 
outer surface of the bar 

T Y  =Y 

J R  

AR 3 
2 

- = -  

(11.11) 

where T ,  is the torque producing yield. In Fig. 11.8(b) the torque has increased 
above the value T, so that the plastic region extends inwards to a radius re. Within re 
the material remains elastic and forms an elastic core. At this stage the total torque is 
the sum of the contributions from the elastic core and the plastic zone, i.e. 

or T y =  - =Y 

7, Je 

re 
T = - + I R  27tr2oY d r  

where Je is the polar second moment of area of the elastic core and the contribution 
from the plastic zone is derived in an identical manner to Eq. (1 1.2) but in which 
T = zY = constant. Hence 

‘e 

3 
= Y X r e  2 3 T =  - + - A T ~ ( R  - re3) 

2 3 

which simplifies to 

(11.12) 
2 n ~ 3  

T =  - Ty ( 1-- ii3) 
Note that for a given value of torque, Eq. (1 1.12) fixes the radius of the elastic core 
of the section. In stage three (Fig. 11.8(c)) the cross-section of the bar is completely 

3 

Fig. 11.8 Plastic torsion of a circular-section bar 
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plastic so that re in Eq. (1 1.12) is zero and the ultimate torque or fully plastic torque, 
T p ,  is given by 

2 n ~ 3  
Tp = - TY (11.13) 

3 

ComparingEqs (1l.ll)and (11.13) weseethat 

(11.14) TP 4 
Tv 3 

so that only a one-third increase in torque is required after yielding to bring the bar to 
its ultimate load-carrying capacity. 

Since we have assumed that radii remain straight during plastic torsion, the angle 
of twist of the bar must be equal to the angle of twist of the elastic core which may 
be obtained directly from Eq. (1 1.3). Thus for a bar of length L and shear modulus 
G ,  

- = -  

TL 2TL 

GJ, nGre4 
e=-=- (11.15) 

or, in terms of the shear stress, T ~ ,  at the outer surface of the elastic core 

(11.16) e = -  

Either of Eqs (1 1.15) or (1 1.16) shows that 0 is inversely proportional to the radius, 
re ,  of the elastic core. Clearly, when the bar becomes fully plastic, re+O and 0 
becomes, theoretically, infinite. In practical terms this means that twisting continues 
with no increase in torque in the fully plastic state. 

T v L  

Gre 

11.4 Torsion of a thin-walled closed section beam 
Although the analysis of torsion problems is generally complex and in some 
instances relies on empirical methods for a solution, the torsion of a thin-walled 
beam of arbitrary closed section is relatively straightforward. 

Figure 11.9(a) shows a thin-walled closed section beam subjected to a torque, T .  
The thickness, t ,  is constant along the length of the beam but may vary round the 

Fig. 11.9 Torsion of a thin-walled closed section beam 
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cross-section. The torque T induces a stress system in the walls of the beam which 
consists solely of shear stresses if the applied loading comprises only a pure torque. 
In some cases structural or loading discontinuities or the method of support produce 
a system of direct stresses in the walls of the beam even though the loading consists 
of torsion only. These effects, known as axial constraint effects, are considered in 
more advanced texts. 

The shear stress system on an element of the beam wall may be represented in 
terms of the shear flow, 9, (see Section 10.4) as shown in Fig. 11.9(b). Again we 
are assuming that the variation of t over the side 6s of the element may be 
neglected. For equilibrium of the element in the z direction we have 

(9 + 2 6s) 6 Z  - 4 6 Z = o  

which gives _ -  - 0  (11.17) 

Considering equilibrium in the s direction, 

a9  
as 

(. + 2 az) 6s - 9 6s = 0 

from which _ -  - 0  (11.18) 

Equations (11.17) and (11.18) may only be satisfied simultaneously by a constant 
value of 9. We deduce, therefore, that the application of a pure torque to a thin- 
walled closed section beam results in the development of a constant shear flow in the 
beam wall. However, the shear stress, ‘5, may vary round the cross-section since we 
allow the wall thickness, t, to be a function of s. 

39 
aZ 

Fig. 11-10 Torque-shear flow relationship in a thin-wailed closed section beam 
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The relationship between the applied torque and this constant shear flow may be 
derived by considering the torsional equilibrium of the section shown in Fig. 11.10. 
The torque produced by the shear flow acting on the element, 6s, of the beam wall is 
q 6s p .  Hence 

T = Jpq ds 

or, since q = constant 

T = q J p d s  (11.19) 

We have seen in Section 10.5 that 4 p ds = 2A where A is the area enclosed by the 
mid-line of the beam wall. Hence 

T = 2Aq (11.20) 

The theory of the torsion of thin-walled closed section beams is known as the 
Bredr-Batho theory and Eq. (1 1.20) is often referred to as the Bredt-Batho formula. 

It follows from EQ. ( 1  1.20) that 

(11.21) 

and that the maximum shear stress in a beam subjected to torsion will occur at the 
section where the torque is a maximum and at the point in that section where the 
thickness is a minimum. Thus 

(11.22) 

In Section 10.5 we derived an expression (Eq. (10.28)) for the rate of twist, 
dO/dz, in a shear-loaded thin-walled closed section beam. Equation (10.28) also 
applies to the case of a closed section beam under torsion in which the shear flow 
is constant if it is assumed that, as in the case of the shear-loaded beam, cross- 
sections remain undistorted after loading. Thus, rewriting Eq. (10.28) for the 
case qs = q = constant, we have 

T,X om, = - 
2At,, 

-=-I-  de  q ds 

dz 2A Gt 

Substituting for q from Eq. (1 1.20) we obtain 

de  T ds 
dz 4A2 
-=- 

or, if G, the shear modulus, is constant round the section 

de T ds 
dz 4A2G t 
-=- - 

(11.23) 

(11.24) 

(1 1.25) 

Example 11.2 A thin-walled circular-section beam has a diameter of 200 mm and 
is 2 m long; it is firmly restrained against rotation at each end. A concentrated torque 
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of 30 kN m is applied to the beam at its mid-span point. If the maximum shear stress 
in the beam is limited to 200N/mm2 and the maximum angle of twist to 2O, 
calculate the minimum thickness of the beam walls. Take G = 25 OOO N/mm2. 

The minimum thickness of the beam corresponding to the maximum allowable 
shear stress of 200 N/mm2 is obtained directly using Eq. (1 1.22) in which 
T,, = 15 kNm. Thus 

1 5 x  106x4  
tmin = = 1-2mm 

2 x x x 2002 x 200 

The rate of twist along the beam is given by Eq. (1 1.25) in which 

ds x x 2 0 0  

Hence 
de  T 7 ~ x 2 0 0  

dz 4A2G t*,, 
X- _ -  -- 

Taking the origin for z at one of the fixed ends and integrating Eq. (i) for half the 
length of the beam we obtain 

T 200x e=- X- z + c, 
4A2G t,,, 

where C, is a constant of integration. At the fixed end where z = O ,  8 = 0  so that 
C, = 0. Hence 

T 200x e=--- x- Z 
4A2G t,,, 

The maximum angle of twist occurs at the mid-span of the beam where z =  1 m. 
Hence 

15 x lo6 x 200 x x x 1 x lo3 x 180 
tmin = =2-7  mm 

The minimum allowable thickness that satisfies both conditions is therefore 2.7 mm. 

4 x ( x x 2 0 0 2 / 4 ) 2 x 2 5 0 0 0 x 2 x x  

11.5 Torsion of solid section beams 
Generally, by solid section beams, we mean beam sections in which the walls do not 
form a closed loop system. Examples of such sections are shown in Fig. 1 1.1 1. An 
obvious exception is the hollow circular section bar which is, however, a special case 
of the solid circular section bar. The prediction of stress distributions and angles of 
twist produced by the torsion of such sections is complex and relies on the St. 
Venant warping function or Prandtl stress function methods of solution. Both of 
these methods are based on the theory of elasticity which may be found in advanced 
texts devoted solely to this topic. Even so, exact solutions exist for only a few 
practical cases, one of which is the circular-section bar. 
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Fig:l 1 .l 1 Examples of solid beam sections 

In all torsion problems, however, it is found that the torque, T ,  and the rate of 
twist, de/dz, are related by the equation 

(11.26) 

where G is the shear modulus and J is the torsion constant. For a circular-section 
bar J is the polar second moment of area of the section (see Eq. (1 1.3)) while 
for a thin-walled closed section beam J ,  from Eq. (1 1.25). is seen to be equal to 
4A2/J(ds/t). It is J in fact that distinguishes one torsion problem from another. 

For ‘thick’ sections of the type shown in Fig. 1 1.1 1 J is obtained empirically in 
terms of the dimensions of the particular section. For example, the torsion constant 
of the ‘thick’ I-section shown in Fig. 1 1.12 is given by 

J=  25, + J, + 2aD4 

where J l = ~ [ l - O ~ 6 3 ~ ( l - ~ ) ]  3 

de  
dz 

T = G J -  

J -1 3 
2 - 3dtw 

a = fi (015 + 0.1 i) 
12 

in which t ,  = t ,  and t, = t, if t f  c t,, or t ,  = t, and t r  = t f  if tf > t,. 

Fig. 11.12 Torsion constant for a ‘thick‘ I-section beam 
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It can be seen from the above that J ,  and J 2 ,  which are the torsion constants of the 
flanges and web, respectively, are each equal to one-third of the product of their 
length and their thickness cubed multiplied, in the case of the flanges, by an 
empirical constant. The torsion constant for the complete section is then the sum of 
the torsion constants of the components plus a contribution from the material at the 
web/flange junction. If the section were thin-walled, t f e b  and D4 would be 
negligibly small, in which case 

3 
bt? dt, 
3 3 

J =  2-+- 

Generally, for thin-walled sections the torsion constant J may be written as 

J = st3 (1 1.27) 

in which s is the length and t the thickness of each component in the cross-section 
or, if t varies with s, 

1 
J = - I  . t3ds (11.28) 

The shear stress distribution in a thin-walled open section beam may be shown to 

3 section 

be related to the rate of twist by the expression 

dB 
~ = 2 G n -  

dz 
(1 1.29) 

where n is the distance to any point in the section wall measured normally from its 
mid-line. The distribution is therefore linear across the thickness as shown in 
Fig. 11.13 and is zero at the mid-line of the wall. An alternative 
shear stress distribution is obtained, in terms of the applied torque, 
for de/dz in Eq. (1 1.29) from Eq. (1 1.26). Thus 

T ~ = 2 n -  
J 

It is clear from either of Eqs (1 1.29) or (1 1.30) that the maximum 
stress occurs at the outer surfaces of the wall when n = *t/2. Hence 

de  Tt 

dz J 
om, = *Gt - = * - 

expression for 
by substituting 

(1 1.30) 

value of shear 

(1 1.31) 

The positive and negative signs in Eqs (11.31) indicate the direction of the shear 
stress in relation to the assumed direction for s. 

The behaviour of closed and open section beams under torsional loads is similar in 
that they twist and develop internal shear stress systems. However, the manner in 
which each resists torsion is different. It is clear from the preceding discussion that a 
pure torque applied to a beam section produces a closed, continuous shear stress 
system since the resultant of any other shear stress system would generally be a 
shear force unless, of course, the system were self-equilibrating. In a closed section 
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Fig. 11.13 Shear stress distribution due to torsion in a thin-walled open section 
beam 

beam this closed loop system of shear stresses is allowed to develop in a continuous 
path round the cross-section, whereas in an open section beam it can only develop 
within the thickness of the walls; examples of both systems are shown in Fig. 1 1.14. 
Here, then, lies the basic difference in the manner in which torsion is resisted by 
closed and open section beams and the reason for the comparatively low torsional 
stiffness of thin-walled open sections. Clearly the development of a closed loop 
system of shear stresses in an open section is restricted by the thinness of the walls. 

Example 11.3 The thin-walled section shown in Fig. 11.15 is symmetrical about a 
horizontal axis through 0. The thickness to of the centre web CD is constant, while 
the thickness of the other walls varies linearly from t o  at points C and D to zero at 
the open ends A, F, G and H. Determine the torsion constant J for the section and 
also the maximum shear stress produced by a torque T. 

Since the thickness of the section varies round its profile except for the central 
web, we use both Eqs (1 1.27) and (1 1.28) to determine the torsion constant. Thus, 

3 3 

J =  - 2at,3 +2x-l,(:) 1 dsA+2x-[,,  1 k (c) S B t O  ds, 
3 3 3 

which gives 

4atO3 
J =  - 

3 

Fig. 11.14 Shear stress development in closed and open section beams subjected 
to torsion 
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Fig. 11.15 Beam section of Ex. 11.3 

The maximum shear stress is now obtained using Eq. (1 1.3 l) ,  i.e. 

Tto 3Tto 3T 
T m a x = f  -- -*-=*- 

J 4ato3 4ato2 

1 1.6 Warping of cross-sections under torsion 
Although we have assumed that the shapes of closed and open beam sections remain 
undistorted during torsion, they do not remain plane. Thus, for example, the cross- 
section of a rectangular section box beam, although remaining rectangular when 
twisted, warps out of its plane as shown in Fig. 1 l.l6(a), as does the channel section 
of Fig. I l.l6(b). The calculation of warping displacements is covered in more 
advanced texts and is clearly of importance if a beam is, say, built into a rigid 
foundation at one end. In such a situation the warping is supressed and direct tensile 
and compressive stresses are induced which must be investigated in design 
particularly if a beam is of concrete where even low tensile stresses can cause severe 
cracking. 

Fig. 11.16 Warping of beam sections due to torsion 
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Some beam sections do not warp under torsion; these include solid (and hollow) 
circular-section bars and square box sections of constant thickness. 

Problems 
P.11.1 The solid bar of circular cross-section shown in Fig. P.11.1 is subjected 

to a torque of 1 kN m at its free end and a torque of 3 kN m at its change of section. 
Calculate the maximum shear stress in the bar and the angle of twist at its free end. 
G = 70 OOO N/mm2. 

Ans. 40.6 N/mm2, 0.6". 

Fig. P . l l . l  

P.11.2 A hollow circular-section shaft 2 m long is firmly supported at each end 
and has an outside diameter of 80 mm. The shaft is subjected to a torque of 
12 kNm applied at a point 1-5 m from one end. If the shear stress in the shaft is 
limited to 150 N/mm2 and the angle of twist to 1.5". calculate the maximum 
allowable internal diameter. The shear modulus G = 80 OOO N/mm*. 

Ans. 63.8 mm. 

P.11.3 A bar ABCD of circular cross-section having a diameter of 50 mm is 
firmly supported at each end and cames two concentrated torques at B and C as 
shown in Fig. P.11.3. Calculate the maximum shear stress in the bar and the 
maximum angle of twist. Take G = 70 OOO N/mm'. 

Ans. 66-2 N/mm* in CD, 2.3" at B. 

Fig. P.1 I .3 

P.11.4 A bar ABCD has a circular cross-section of 75 mm diameter over half 
its length and 50 mm diameter over the remaining half of its length. A torque of 
1 kNm is applied at C mid-way between B and D as shown in Fig. P.11.4. Sketch 
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the distribution of torque along the length of the bar and calculate the maximum 
shear stress and the maximum angle of twist in the bar. 

T , , , ~ ~  = 23.7 N/mm2 in CD, 0.4' at C. Ans. 

Fig. P.11.4 

P.11.5 A thin-walled rectangular section box girder carries a uniformly 
distributed torque loading of 1 kN m/mm over the outer half of its length as shown 
in Fig. P. 1 1.5. Calculate the maximum shear stress in the walls of the box girder and 
also the distribution of angle of twist along its length; illustrate your answer with a 
sketch. Take G = 70 OOO N/mm2. 

Am. 133 N/mm'. In AB, 8 = 218 x 10-6z degrees. 
In BC, 8 = 0.109 x 10-6(4000z - z2/2) - 0.218 degrees. 

Fig. P.11.5 

P.11.6 The thin-walled box section beam ABCD shown in Fig. P.11.6 is 
attached at each end to supports which allow rotation of the ends of the beam in the 
longitudinal vertical plane of symmetry but prevent rotation of the ends in vertical 
planes perpendicular to the longitudinal axis of the beam. The beam is subjected to a 
uniform torque loading of 20 Nm/mm over the portion BC of its span. Calculate 
the maximum shear stress in the cross-section of the beam and the distribution of 
angle of twist along its length. 

A m .  71.4 N/mm', 8, = 8, = 0.36', 8 at mid-span = 0.73'. 
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Fig. P.11.6 

P.11.7 Figure P.11.7 shows a thin-walled cantilever box-beam having a constant 
width of 50 mm and a depth which decreases linearly from 200 mm at the built-in end 
to 150 mm at the free end. If the beam is subjected to a torque of 1 kNm at its free 
end, plot the angle of twist of the beam at 500 mm intervals along its length and 
determine the maximum shear stress in the beam section. Take G = 25 0oO N/mm2. 

Ans. om,, = 33-3 N/mm2. 

Fig. P.11.7 

P.11.8 The cold-formed section shown in Fig. P.11.8 is subjected to a torque of 
50 Nm. Calculate the maximum shear stress in the section and its rate of twist. 
G = 25 O00 N/mm’. 

A m .  om,, = 220.6 N/mm’, d9/dz = 0.0044 rad/mm. 

Fig. P.11.8 
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P.11.9 The thin-walled angle section shown in Fig. P.11.9 supports shear loads 
that produce both shear and torsional effects. Determine the maximum shear stress in 
the cross-section of the angle, stating clearly the point at which it acts. 

17.7 N/mm2 on the inside of flange BC at 16.2 mm from point B. Ans. 

Fig. P.11.9 

P.ll.10 Figure P.11.10 shows the cross-section of a thin-walled inwardly lipped 
channel. The lips are of constant thickness while the flanges increase linearly in 
thickness from 1.27 mm, where they meet the lips, to 2.54 mm at their junctions 
with the web. The web has a constant thickness of 2.54 mm and the shear modulus 
C is 26 700 N/mm2. Calculate the maximum shear stress in the section and also its 
rate of twist if it is subjected to a torque of 100 N m. 

Ans. r,,, = 297.2 N/mm2, de/dz = 0.0044 rad/mm. 

Fig. P.ll.10 


