9

Computer implementation of the CBS algorithm

P. Nithiarasu*

9.1 Introduction

In this chapter we shall consider some essential steps in the computer implementation of the CBS algorithm on structured or unstructured finite element grids. Only linear triangular elements will be used and the notes given here are intended for a two-dimensional version of the program. The sample program listing and user manual along with several solved problems are available to download from the publisher’s web site http://www.bh.com/companions/fem free of charge.

The program discussed can be used to solve the following different categories of fluid mechanics problems:

1. Compressible viscous and inviscid flow problems
2. Incompressible viscous and inviscid flows
3. Incompressible flows with heat transfer
4. Porous media flows
5. Shallow-water problems.

With further simple modifications, many other problems such as turbulent flows, solidification, mass transfer, free surfaces, etc. can be solved. The procedures presented here are largely based on the computer implementation discussed in Chapter 20, Volume 1 of this book. Many programming aspects will not be discussed here in detail and the reader is referred back to Chapter 20, Volume 1. Here it is assumed that the reader is familiar with FORTRAN\(^{1,2}\) and finite element procedures discussed in this volume as well as in Volume 1.\(^3\)

We call the present program CBSflow since it is based on the CBS algorithm discussed in Chapter 3 of this volume. We prefer to keep the compressible and incompressible flow codes separate to avoid any confusion. However an experienced programmer can incorporate both parts into a single code without much memory loss. Each program listing is accompanied by some model problems which helps the reader to validate the codes. In addition to the model inputs to programs, a complete user manual is available to users explaining every part of the program in detail. Any error reported by readers will be corrected and the program will be continuously updated by the authors.

* Research Fellow, Department of Civil Engineering, University of Wales, Swansea, UK.
The modules are constructed essentially as in Chapter 20, Volume 1 starting with (1) the data input module with preprocessing and continuing with (2) the solution module and (3) the output module. However, unlike the generalized program of Chapter 20, Volume 1, the program CBSflow only contains the listing for solving transient Navier–Stokes (or Euler–Stokes) equations iteratively. Here there are many possibilities such as fully explicit forms, semi-implicit forms, quasi-implicit forms and fully implicit forms as discussed in Chapter 3 of this volume. We concentrate mainly on the first two forms which require small memory and simple solution procedures compared to other forms.

In both the compressible and incompressible flow codes, only non-dimensional equations are used. The reader is referred to the appropriate chapters of this volume (Chapters 3, 4 and 5) for different non-dimensional parameters.

In Sec. 9.2 we shall describe the essential features of data input to the program. Here either structured or unstructured meshes can be used to divide the problem domain into finite elements. Section 9.3 explains how the steps of the CBS algorithm are implemented. In that section, we briefly remark on the options available for shock capturing, various methods of time stepping and different procedures for equation solving. In Sec. 9.4, the output generated by the program and postprocessing procedures are considered. In the last section (Sec. 9.5) we shall consider the possibility of further extension of CBSflow to other problems such as mass transfer, turbulent flow, etc.

9.2 The data input module

This part of the program is the starting point of the calculation where the input data for the solution module are prepared. Here an appropriate input file is opened and the data are read from it. Unlike in Chapter 20, Volume 1, we have no mesh generator coupled with CBSflow. However an advancing front unstructured mesh generator and some structured mesh generators are provided separately. By suitable coupling, the reader can implement various adaptive procedures as discussed in Chapters 4 and 5. Either structured or unstructured mesh data can be given as input to the program. The general program structure and many more details can be found in Chapter 20, Volume 1.

9.2.1 Mesh data – nodal coordinates and connectivity

Once the nodal coordinates and connectivity of a finite element mesh are available from a mesh generator, they are allotted to appropriate arrays (for a detailed description on the mesh, numbering etc., see Chapter 20, Volume 1). Essentially the same arrays as described in Chapter 20, Volume 1 are used here. The coordinates are allotted to $X(i,j)$ with $i$ defining the appropriate cartesian coordinates $x_1(i = 1)$ and $x_2(i = 2)$ and $j$ defining the global node number. Similarly the connectivity is allotted to an array $IX(k,l)$. Here $k$ is the local node number and $l$ is the global element number. It should be noted that the material code normally used in heat conduction and stress analysis is not necessary.
If the structured meshes and banded solution are preferred by the user, a flag activated by the user calculates the half-bandwidth of the mesh and supplies it to the solution module. Alternatively, a diagonally preconditioned conjugate gradient solver can be used with an appropriate flag. These solvers are necessary only when the semi-implicit form of solution is used.

9.2.2 Boundary data

In general, the procedure discussed in Chapter 20, Volume 1 uses the boundary nodes to prescribe boundary conditions. However, in CBSflow we mostly use the edges to store the information on boundary conditions. Some situations require boundary nodes (e.g. pressure specified in a single node) and in such cases corresponding node numbers are supplied to the solution module.

9.2.3 Other necessary data and flags

In addition to the mesh data and boundary information, the user needs to input a few more parameters used in flow calculations. For example, compressible flow computations need the values of non-dimensional parameters such as the Mach number, Reynolds number, Prandtl number, etc. However, in CBSflow we mostly use the edges to store the information on boundary conditions. Some situations require boundary nodes (e.g. pressure specified in a single node) and in such cases corresponding node numbers are supplied to the solution module.

Several flags for boundary conditions, shock capture, etc. need to be given as inputs. For a complete list of such flags, the reader is referred to the user manual and program listing at the publisher's web page.

9.2.4 Preliminary subroutines and checks

A few preliminary subroutines are called before the start of the time iteration loop. Establishing the surface normals, element area calculation (for direct integration),
SUBROUTINE GETNRW(MXPOI,MBC,NPOIN,NBS,ISIDE,IFLAG,
&
COSX,COSY,ALEN,IWPOIN,WNOR,NWALL)

IMPLICIT NONE

INTEGER I,IB,IB2,IN,IW,J,JJ,MBC,MXPOI,NBS,NN,NPOIN,NWALL

INTEGER IFLAG(MXPOI), ISIDE(4,MBC), IWPOIN(3,MBC)

REAL*8 ACH,ANOR,ANXL,ANY1
REAL*8 ALEN(MBC),COSX(MBC),COSY(MBC) WNOR(2,MBC)

DO I = 1,NPOIN
   IFLAG(I) = 0
END DO ! I

DO I = 1, NBS
   DO J = 1,3
      IWPOIN(J,I) = 0
   END DO ! J
END DO ! I

NWALL = 0

DO IN = 1,2
   DO I = 1, NBS ! boundary sides.
      flags on the wall points
      IF(ISIDE(4,I).EQ.2)THEN ! flag 2 for solid walls.
         NN = ISIDE(IN,I)
         JJ = IFLAG(NN)
         IF(JJ.EQ.0)THEN
            NWALL = NWALL + 1
            IWPOIN(I,NWALL) = NN
            IWPOIN(2,NWALL) = I
            IFLAG(NN) = NWALL
         ELSE
            IWPOIN(3,JJ) = I
         ENDIF
      ENDIF
   END DO ! I
END DO ! IN

DO IW = 1, NWALL
   IB = IWPOIN(2,IW)
   IB2 = IWPOIN(3,IW)
   ANX1 = ALEN(IB)*COSX(IB)
278  Computer implementation of the CBS algorithm

\[
\text{ANY}_1 = \text{ALEN}(\text{IB}) \times \cos(\text{IB}) \\
\text{ACH} = 0.0000 \\
\text{IF}(\text{IB}2 \neq 0) \text{THEN} \\
\quad \text{ANX}_1 = \text{ANX}_1 + \text{ALEN}(\text{IB}2) \times \cos(\text{IB}2) \\
\quad \text{ANY}_1 = \text{ANY}_1 + \text{ALEN}(\text{IB}2) \times \cos(\text{IB}2) \\
\quad \text{ACH} = \cos(\text{IB}) \times \cos(\text{IB}2) + \cos(\text{IB}) \times \cos(\text{IB}2) \\
\text{ENDIF} \\
\text{ANOR} = \text{DSQRT}(\text{ANX}_1 \times \text{ANX}_1 + \text{ANY}_1 \times \text{ANY}_1) \\
\text{ANX}_1 = \text{ANX}_1 / \text{ANOR} \\
\text{ANY}_1 = \text{ANY}_1 / \text{ANOR} \\
\text{WNOR}(1,\text{IW}) = \text{ANX}_1 \\
\text{WNOR}(2,\text{IW}) = \text{ANY}_1 \\
\text{IF}(\text{ACH} \lt -0.2) \text{THEN} \\
\quad \text{WNOR}(1,\text{IW}) = 0.0000 \\
\quad \text{WNOR}(2,\text{IW}) = 0.0000 \\
\quad \text{WRITE}(*,*,*)\text{IWPOIN}(1,\text{IW}),' is trailing edge'! e.g. aerofoil. \\
\text{ENDIF} \\
\text{END DO} ! \text{IW} \\
\text{END} \\
\]

Fig. 9.1  Subroutine calculating surface normals on the walls.

mass matrix calculation and lumping and some allocation subroutines are necessary before starting the time loop. The routine for establishing the surface normals is shown in Fig. 9.1. On sharp, narrow corners as at the trailing edge of an aerofoil, the boundary contributions are made zero by assigning a zero value for the surface normal as shown.

9.3  Solution module

Figure 9.2 shows the general flow diagram of CBSflow. As seen, the data from the input module are passed to the time loop and here several subprograms are used to solve the steps of the CBS algorithm. It should be noted that the semi-implicit form is used here only for incompressible flows and at the second step we only calculate pressure, as the density variation is here assumed negligible.

9.3.1  Time loop

The time iteration is carried out over the steps of the CBS algorithm and over many other subroutines such as the local time step and shock capture calculations. As mentioned in the flow chart, the energy can be calculated after the velocity correction. However, for a fully explicit form of solution, the energy equation can be solved in step 1 along with the intermediate momentum variable. Further details on different steps are given in Sec. 9.3.4 and the reader can refer to the theory discussed in Chapter 3 of this volume for a comprehensive review of the CBS algorithm.
Fig. 9.2 Flow diagram for CBSflow.
9.3.2 Time step

In general, three different ways of establishing the time steps are possible. In problems
where only the steady state is of importance, so-called ‘local time stepping’ is used
(see Sec. 3.3.4, Chapter 3). Here a local time step at each and every nodal points is
calculated and used in the computation.

When we seek accurate transient solution of any problem, the so-called ‘minimum
step’ value is used. Here the minimum of all local time step values is calculated and
used in the computation.

Another and less frequently used option is that of giving a ‘fixed’ user-prescribed
time step value. Selection of such a quantity needs considerable experience from
solving several flow problems.

The times loop starts with a subroutine where the above-mentioned time step
options are available. In general the local time steps are calculated at every iteration
for the initial few time steps and then they are calculated only after a certain number
of iterations as prescribed by the user. If the last option of the user-specified fixed time
step is used, the local time steps are not calculated. Figure 9.3 shows the subroutine
used for calculating the local time steps for inviscid compressible flows with linear
triangular elements.

As indicated in Sec. 4.3.3, Chapter 4, two different time steps are often useful in
getting better stabilization procedures. Such internal (DELTI) and external (DELPY)
time stepping options are available in the routine of Fig. 9.3.

9.3.3 Shock capture

The CBS algorithm introduces naturally some terms to stabilize the oscillations
generated by the convective acceleration. However, for compressible high-speed
flows, these terms are not sufficient to suppress the oscillations in the vicinity of
shocks and some additional artificial viscosity terms need to be added (see Sec. 6.5,
Chapter 6). We have given two different forms of artificial viscousities based on the
second derivative of pressure in the program. Another possibility is to use anisotropic
shock capturing based on the residual of individual equations solved. However we
have not used the second alternative in the program as the second derivative based
procedures give quite satisfactory results for all high-speed flow problems.

In the first method implemented, we need to calculate a pressure switch (see Eq.
(6.16), Chapter 6) from the nodal pressure values. Figure 9.4 gives a typical example
of triangular elements inside and on the boundaries. For inside nodes (Fig. 9.4(a)) we
calculate the nodal switch as

\[
S_1 = \frac{|4p_1 - p_2 - p_3 - p_4 - p_5|}{|p_1 - p_2| + |p_1 - p_3| + |p_1 - p_4| + |p_1 - p_5|}
\] (9.1)

and for the boundary node (Fig. 9.4(b)) we calculate

\[
S_1 = \frac{|5p_1 - 2p_2 - p_3 - 2p_4|}{2|p_1 - p_2| + |p_1 - p_3| + 2|p_1 - p_4|}
\] (9.2)
SUBROUTINE TIMSTP(MXPOI,MXELE,NELEM,NPOIN,IALOT,IX,SFACT,
   & DTFIX,UNKNO,DELT,DELTI,SONIC,PRES,GAMMA,
   & GEOME,X,NMAX,MIXCON,MODEL,NODEL)

  c calculates the critical local time steps at nodes.
  c calculates internal and external time steps.
  c

IMPLICIT NONE

IMPLICIT MPOI
PARAMETER(MPOI=9000)

INTEGER I,IALOT,IE,IP,IP1,IP2,IP3,MODEL,MXELE,MXPOI
INTEGER NELEM,NODEL,NPOIN
INTEGER IX(MODEL,MXELE),MAXCON(20,MIXPOI),NMAX(MXPOI)

REAL*8 ALEN,ANX,ANY,CMAX,DTFIX,DTP,GAMMA,SFACT,TSTI
REAL*8 TSTP,U,U1,U2,U3,V,V1,V2,V3,VN1,VN2,VN3,VELN,VSUM

REAL*8 PRS(MPOI),RHO(MPOI),VMAG(MPOI),VNORM(MPOI) ! local arrays

IF(IALOT.EQ.-1)THEN
  CALL TIMFIL(MXPOI,DELT,NPOIN,DTFIX)
  CALL TIMFIL(MXPOI,DELTI,NPOIN,DTFIX)
  RETURN
ENDIF

  c smoothing the variables
  c

DO I = 1, NPOIN
  VNORM(I) = 0.000D+00
  RHO(I) = 0.000D+00
  PRS(I) = 0.000D+00
  U = UNKNO(2,I)/UNKNO(1,I)
  V = UNKNO(3,I)/UNKNO(1,I)
  VMAG(I) = DSQRT(U**2+V**2)
END DO ! IP

Fig. 9.3 Subroutine for time step calculation.
Computer implementation of the CBS algorithm

\[
\text{VNORM}(I) = \text{VNORM}(I) / \text{FLOAT(NMAX}(I))
\]
\[
\text{PRS}(I) = \text{PRS}(I) / \text{FLOAT(NMAX}(I))
\]
\[
\text{RHO}(I) = \text{RHO}(I) / \text{FLOAT(NMAX}(I))
\]
\[
\text{SONIC}(I) = \text{DSQRT}((\text{GAMMA} \times \text{PRS}(I)) / \text{RHO}(I))
\]
END DO  ! I
DO IP = 1,NPOIN
  \text{DELTP}(IP) = 1.0d06
  \text{SONIC}(IP) = \text{DSQRT}((\text{GAMMA} \times \text{PRES}(IP)) / \text{UNKNO}(1,IP))  ! speed of sound
END DO  ! IP

\text{c}
\text{c} loop for calculation of local time steps
\text{c}

DO IE = 1, NELEM
  \text{IP1} = \text{IX}(1,IE)
  \text{IP2} = \text{IX}(2,IE)  ! connectivity
  \text{IP3} = \text{IX}(3,IE)
  \text{U1} = \text{UNKNO}(2,IP1) / \text{UNKNO}(1,IP1)  ! u1 velocity
  \text{V1} = \text{UNKNO}(3,IP1) / \text{UNKNO}(1,IP1)  ! u2 velocity
  \text{U2} = \text{UNKNO}(2,IP2) / \text{UNKNO}(1,IP2)
  \text{V2} = \text{UNKNO}(3,IP2) / \text{UNKNO}(1,IP2)
  \text{U3} = \text{UNKNO}(2,IP3) / \text{UNKNO}(1,IP3)
  \text{V3} = \text{UNKNO}(3,IP3) / \text{UNKNO}(1,IP3)
  \text{VN1} = \text{DSQRT}((\text{U1}\text{"}2 + \text{U1}\text{"}2)
  \text{VN2} = \text{DSQRT}((\text{U2}\text{"}2 + \text{U2}\text{"}2)
  \text{VN3} = \text{DSQRT}((\text{U3}\text{"}2 + \text{U3}\text{"}2)
  \text{VELN} = \text{MAX}(\text{VN1}, \text{VN2}, \text{VN3})
  \text{CMAX} = \text{MAX}(\text{SONIC}(\text{IP1}), \text{SONIC}(\text{IP2}), \text{SONIC}(\text{IP3}))
  \text{VSUM} = \text{VELN} + \text{CMAX}
\text{c}
  \text{ANX} = \text{GEOME}(1,IE)  ! shape function derivatives
  \text{ANY} = \text{GEOME}(4,IE)
  \text{ALEN} = 1.0 / \text{DSQRT}(\text{ANX}\text{"}2 + \text{ANY}\text{"}2)  ! element length at node 1
  \text{TSTP} = \text{ALEN} / \text{VSUM}
  \text{TSTI} = \text{ALEN} / \text{VELN}
  \text{DELTP}(\text{IP1}) = \text{MIN}(\text{DELTP}(\text{IP1}), \text{TSTP})  ! external time step
  \text{DELTI}(\text{IP1}) = \text{MIN}(\text{DELTI}(\text{IP1}), \text{TSTI})  ! internal time step
\text{c}
  \text{ANX} = \text{GEOME}(2,IE)
  \text{ANY} = \text{GEOME}(5,IE)
  \text{ALEN} = 1.0 / \text{DSQRT}(\text{ANX}\text{"}2 + \text{ANY}\text{"}2)
  \text{TSTP} = \text{ALEN} / \text{VSUM}
  \text{TSTI} = \text{ALEN} / \text{VELN}
  \text{DELTP}(\text{IP2}) = \text{MIN}(\text{DELTP}(\text{IP2}), \text{TSTP})
  \text{DELTI}(\text{IP1}) = \text{MIN}(\text{DELTI}(\text{IP1}), \text{TSTI})
\text{Fig. 9.3}  \text{Continued.}
The nodal quantities calculated in a manner explained above are averaged over elements and used in the relations of Eq. (6.17), Chapter 6. Figure 9.5 shows the calculation of the nodal pressure switches for linear triangular elements.

In the next option available in the code, the second derivative of pressure is calculated from the smoothed nodal pressure gradients (see Sec. 4.5.1, Chapter 4) by averaging. Other approximations to the second derivative of pressure are described.

![Typical element patches](image)

**Fig. 9.4** Typical element patches (a) interior node (b) boundary node.
in Sec. 4.5.1, Chapter 4. The user can employ those methods to approximate the second derivative of pressure if desired.

9.3.4 CBS algorithm. Steps

Various steps involved in the CBS algorithm are described in detail in Chapter 3. There are three essential steps in the CBS algorithm (Fig. 9.2). First, an intermediate momentum variable is calculated and in the second step the density/pressure field is determined. The third step involves the introduction of density/pressure fields to obtain the correct momentum variables. In problems where the energy and other variables are coupled, calculation of energy is necessary in addition to the above three steps. In fully explicit form, however, the energy equation can be solved in the first step itself along with the intermediate momentum calculations.

In the subroutine step1 we calculate the temperature-dependent viscosity at the beginning according to Sutherland's relation (see Chapter 6). The averaged viscosity values over each element are used in the diffusion terms of the momentum equation and dissipation terms of the energy equation. The diffusion, convective and stabilization terms are integrated over elements and assembled appropriately to the RHS vector. The integration is carried out either directly or numerically. Finally the RHS vector is divided by the lumped mass matrices and the values of intermediate momentum variables are established.

In step two, in explicit form, the density/pressure values are calculated by the Eq. (3.53) (or Eq. (3.54)). The subroutine step2 is used for this purpose. Here the option of using different values of $\theta_1$ and $\theta_2$ is available. In explicit form $\theta_2$ is identically equal to zero and $\theta_1$ varies between 0.5 and 1.0. For compressible flow computations, the semi-implicit form with $\theta_2$ greater than zero has little advantage over the fully explicit form. For this reason we have not given the semi-implicit form for compressible flow problems in the program.

For incompressible flow problems, in general the semi-implicit form is used. In this $\theta_1$, as before, varies between 0.5 and 1 and $\theta_2$ is also in the same range. Now it is essential to solve the pressure equation in step2 of the algorithm. Here in general we use a conjugate gradient solver as the coefficient matrix is not necessarily banded.

The third step is the one where the intermediate momentum variables are corrected to get the real values of the intermediate momentum. In all three steps, mass matrices are lumped if the fully explicit form of the algorithm is used. As mentioned in earlier chapters, this is the best way to accelerate the steady-state solution along with local time stepping. However, in problems where transient solutions are of importance, either a mass matrix correction as given in Sec. 2.6.3, Chapter 2 or simultaneous solution using a consistent mass matrix is necessary.

9.3.5 Boundary conditions

As explained before, the boundary edges are stored along with the elements to which they belong. Also in the same array inside(i, j) the flags necessary to inform the
SUBROUTINE SWITCH(MXPO1, MXELE, MBC, NPOIN, NELEM, NBS, PRES,
      &
      CSHOCK, PSWTH, IX, DELUN, ISIDE, MODEL, ITYPE)

C this subroutine calculates the pressure switch at each node
C maximum value 1 and minimum value 0
C
IMPLICIT NONE

INTEGER IB, IELEM, IP, IP1, IP2, IP3, ITYPE, MBC, MODEL
INTEGER MXELE, MXPOI, NBS, NELEM, NPOIN
INTEGER ISIDE(4, MBC), IX(MODEL, MXELE)
REAL*8 CSHOCK, PADD, P11, P22, P33, PS1, PS2, PS3
REAL*8 XPS, XPD
REAL*8 DELUN(MXPOI), PRES(MXPOI), PSWTH(MXPOI)

DO IELEM = 1, NELEM
   IP1 = IX(1, IELEM)
   IP2 = IX(2, IELEM)
   IP3 = IX(3, IELEM)
   PS1 = PRES(IP1)
   PS2 = PRES(IP2)
   PS3 = PRES(IP3)
   PADD = PS1 + PS2 + PS3
   P11 = (3.0d00 * PS1 - PADD)
   P22 = (3.0d00 * PS2 - PADD)
   P33 = (3.0d00 * PS3 - PADD)
   PSWTH(IP1) = PSWTH(IP1) + P11
   PSWTH(IP2) = PSWTH(IP2) + P22
   PSWTH(IP3) = PSWTH(IP3) + P33
   DELUN(IP1) = DELUN(IP1) + DABS(PS1 - PS2) + DABS(PS1 - PS3)
   DELUN(IP2) = DELUN(IP2) + DABS(PS1 - PS2) + DABS(PS2 - PS3)
   DELUN(IP3) = DELUN(IP3) + DABS(PS3 - PS2) + DABS(PS1 - PS3)
END DO ! IELEM

DO IB = 1, NBS
   IP1 = ISIDE(1, IB)
   IP2 = ISIDE(2, IB)
   PS1 = PRES(IP1)
   PS2 = PRES(IP2)
   XPS = PS1 + PS2
   XPD = PS1 - PS2
   PSWTH(IP1) = PSWTH(IP1) + XPD
   PSWTH(IP2) = PSWTH(IP2) - XPD
   DELUN(IP1) = DELUN(IP1) + DABS(XPD)
   DELUN(IP2) = DELUN(IP2) + DABS(XPD)
END DO ! IB
Computer implementation of the CBS algorithm

END DO ! IB
DO IP = 1,NPOIN
   IF(DELUN(IP).LT.0.1*PRES(IP))DELUN(IP) = PRES(IP)
END DO ! IP
DO IP = 1,NPOIN
   PSWTH(IP) = CSHOCK*DABS(PSWTH(IP))/DELUN(IP)
END DO ! IP
END

Fig. 9.5 Calculation of nodal pressure switches for shock capturing.

solution module which type of boundary conditions are stored. In this array $i = 1, 2$ correspond to the node numbers of any boundary side of an element, $i = 3$ indicates the element to which the particular edge belongs and $i = 4$ is the flag which indicates the type of boundary condition (a complete list is given in the user manual available at the publisher's web page). Here $j$ is the boundary edge number. A typical routine for prescribing the symmetry conditions is shown in Fig. 9.6.

9.3.6 Solution of simultaneous equations – semi-implicit form

The simultaneous equations need to be solved for the semi-implicit form of the CBS algorithm. Two types of solvers are provided. The first one is a banded solver which is effective when structured meshes are used. For this the half-bandwidth is necessary in order to proceed further. The second solver is a diagonal preconditioned conjugate gradient solver. The latter can be used to solve both structured and unstructured meshes. The details of procedures for solving simultaneous equations can be found in Chapter 20 of Volume 1.

9.3.7 Different forms of energy equation

In compressible flow computations only the fully conservative form of all equations ensures correct position of shocks. Thus in the compressible flow code, the energy equation is solved in its conservative form with the variable being the energy. However for incompressible flow computations, the energy equation can be written in terms of the temperature variable and the dissipation terms can be neglected. In general for compressible flows, Eq. (3.61) is used, and Eq. (4.6) is used for incompressible flow problems.

9.3.8 Thermal and porous media flows

As mentioned earlier the heat transfer and porous medium flows are also included in the incompressible flow code. Using the heat transfer part of the code, the user can solve forced, natural and mixed convection problems. Appropriate flags and
SUBROUTINE SYMMET(MXPO1, MBC, NPOIN, NBS, UNKNO, ISIDE, RHOINF, & 
                    UINF, VINF, COSX, COSY)

c symmetric boundary conditions forced. one component of velocity 
c forced to zero 
c
IMPLICIT NONE

INTEGER I, IP, J, MBC, MXPOI, NBS, NPOIN
INTEGER ISIDE(4, MBC)
REAL*8 ANX, ANY, RHOINF, UINF, US, VINF
REAL*8 COSX(MBC), COSY(MBC), UNKNO(4, MXPOI)

DO I = 1, NBS
  IF(ISIDE(4, I).EQ.4) THEN ! symmetry flag 4
    ANX = COSX(I)
    ANY = COSY(I)
  DO J = 1, 2
    IP = ISIDE(J, I)
    US = -UNKNO(2, IP) * ANY + UNKNO(3, IP) * ANX
    UNKNO(2, IP) = - US * ANY
    UNKNO(3, IP) = US * ANX
  END DO ! J
  ENDIF
END DO ! I
END

Fig. 9.6 Subroutine to impose symmetry conditions.

non-dimensional parameters need to be given as input. For the detailed discussion on 
these flows, the reader is referred to Chapter 5 of this volume.

9.3.9 Convergence

The residuals (difference between the current and previous time step values of 
parameters) of all equations are checked at every few user-prescribed number of itera-
tions. If the required convergence (steady state) is achieved, the program stops 
automatically. The aimed residual value is prescribed by the user. The program 
calculates the maximum residual of each variable over the domain. The user can 
use them to fix the required accuracy. We give the routine used for this purpose in 
Fig. 9.7.
SUBROUTINE RESID(MXPOI,NPOIN,ITIME,UNKNO,UNPRE,PRES,PRESN,IFLOW)

IMPLICIT NONE

INTEGER I,ICON1,ICON2,ICON3,ICON4,IFLOW,ITIME,MXPOI,NPOIN
REAL*8 EMAX1,EMAX2,EMAX3,EMAX4,ERR1,ERR2,ERR3,ERR4,ER1
REAL*8 ER2,ER3,ER4
REAL*8 PRES(MXPOI),PRESN(MXPOI),UNKNO(4,MXPOI)
REAL*8 UNPRE(4,MXPOI)

EMAX1 = 0.000d00
EMAX2 = 0.000d00
EMAX3 = 0.000d00
EMAX4 = 0.000d00

DO I = 1,NPOIN
  ERR1 = UNKNO(1,I) - UNPRE(1,I) ! density or pressure
  ERR2 = UNKNO(2,I) - UNPRE(2,I) ! u1 velocity or mass flux
  ERR3 = UNKNO(3,I) - UNPRE(3,I) ! u2 velocity or mass flux
  ERR4 = UNKNO(4,I) - UNPRE(4,I) ! energy or temperature
  ER1 = DABS(ERR1)
  ER2 = DABS(ERR2)
  ER3 = DABS(ERR3)
  ER4 = DABS(ERR4)

  IF (ER1.GT.EMAX1) THEN
    EMAX1 = ER1
    ICON1 = I
  ENDIF
  IF (ER2.GT.EMAX2) THEN
    EMAX2 = ER2
    ICON2 = I
  ENDIF
  IF (ER3.GT.EMAX3) THEN
    EMAX3 = ER3
    ICON3 = I
  ENDIF
  IF (ER4.GT.EMAX4) THEN
    EMAX4 = ER4
    ICON4 = I
  ENDIF
END DO ! I
END

Fig. 9.7 Subroutine to check convergence rate.
9.4 Output module

If the imposed convergence criteria are satisfied then the output is written into a separate file. The user can modify the output according to the requirements of post-processor employed. Here we recommend the education software developed by CIMNE (GiD) for post and preprocessing of data. The facilities in GiD include two- and three-dimensional mesh generation and visualization.

9.4.1 Stream function calculation

The stream function value is calculated from the following equation:

\[
\frac{\partial^2 \psi}{\partial x_1^2} + \frac{\partial^2 \psi}{\partial x_2^2} = \frac{\partial u}{\partial x_2} - \frac{\partial v}{\partial x_1}
\] (9.3)

This equation is derived from the definition of stream function in terms of the velocity components. We again use the finite element method to solve the above equation.

9.5 Possible extensions to CBSflow

As mentioned earlier, there are several possibilities for extending this code. A simple subroutine similar to the temperature equation can be incorporated to solve mass transport. Here another variable ‘concentration’ needs to be solved.

Another subject which can be incorporated and studied is that of a ‘free surface’ given in Chapter 5 of this volume. Here another equation needs to be solved for the surface waves.

The phase change problems need appropriate changes in the energy equation. The liquid, solid and mushy regions can be accounted for in the equations by simple modifications. The latent heat also needs to be included in phase change problems.

The turbulent flow requires solution of another set or sets of equations similar to the momentum or energy equations as explained in Chapter 5. For the \( \kappa-\varepsilon \) model the reader is referred to reference 13.

The program CBSflow is an educational code which can be modified to suit the needs of the user. For instance, the modification of this program to incorporate a ‘command language’ could make the code very efficient and compact.

References