Studies in Advanced Mathematics

Titles Included in the Series

John P. D’Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces
Steven R. Bell, The Cauchy Transform, Potential Theory, and Conformal Mapping
John J. Benedetto, Harmonic Analysis and Applications
John J. Benedetto and Michael W. Frazier, Wavelets: Mathematics and Applications
Albert Boggess, CR Manifolds and the Tangential Cauchy–Riemann Complex
Goong Chen and Jianxin Zhou, Vibration and Damping in Distributed Systems
 Vol. 1: Analysis, Estimation, Attenuation, and Design
 Vol. 2: WKB and Wave Methods, Visualization, and Experimentation
Carl C. Cowen and Barbara D. MacCluer, Composition Operators on Spaces of Analytic Functions
Jewgeni H. Dshalalow, Real Analysis: An Introduction to the Theory of Real Functions and Integration
Dean G. Duffy, Advanced Engineering Mathematics
Dean G. Duffy, Green’s Functions with Applications
Lawrence C. Evans and Ronald F. Gariepy, Measure Theory and Fine Properties of Functions
Gerald B. Folland, A Course in Abstract Harmonic Analysis
José García-Cuerva, Eugenio Hernández, Fernando Soria, and José-Luis Torrea, Fourier Analysis and Partial Differential Equations
Marian Gidea and Keith Burns, Differential Geometry, Differential Topology, and Dynamical Systems
Peter B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, 2nd Edition
Peter B. Gilkey, John V. Leahy, and Jeonghwa Park, Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture
Alfred Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd Edition
Eugenio Hernández and Guido Weiss, A First Course on Wavelets
Kenneth B. Howell, Principles of Fourier Analysis
Steven G. Krantz, The Elements of Advanced Mathematics, Second Edition
Steven G. Krantz, Partial Differential Equations and Complex Analysis
Steven G. Krantz, Real Analysis and Foundations
Steven G. Krantz, Handbook of Typography for the Mathematical Sciences
Kenneth L. Kuttler, Modern Analysis
Michael Pedersen, Functional Analysis in Applied Mathematics and Engineering
John Ryan, Clifford Algebras in Analysis and Related Topics
Xavier Saint Raymond, Elementary Introduction to the Theory of Pseudodifferential Operators
John Scherf, Algebra: A Computational Introduction
Pavel Šolín, Karel Segeth, and Ivo Doležel, High-Order Finite Element Method
Robert Strichartz, A Guide to Distribution Theory and Fourier Transforms
André Unterberger and Harald Upmeier, Pseudodifferential Analysis on Symmetric Cones
James S. Walker, Fast Fourier Transforms, 2nd Edition
James S. Walker, A Primer on Wavelets and Their Scientific Applications
Gilbert G. Walter and Xiaoping Shen, Wavelets and Other Orthogonal Systems, Second Edition
Nik Weaver, Mathematical Quantization
Kehe Zhu, An Introduction to Operator Algebras

© 2004 by Chapman & Hall/CRC
We dedicate this book to the memory of Prof. Jindřich Nečas (December 14, 1929 – December 5, 2002), an outstanding Czech mathematician and a world-renowned authority in the field of partial differential equations and modern functional analysis.

Prof. Jindřich Nečas contributed substantially to the development of modern functional analytic methods of solution to elliptic partial differential equations in his famous monograph *Les méthodes directes en théorie des équations elliptiques* (1967). He followed the modern Italian and French school and enhanced it with important results, for example, by a new “algebraic” proof of general inequalities of Korn’s type and generalized regularity results. A few years later, in 1973, he published with collaborators the monograph *Spectral Analysis of Nonlinear Operators*, which aroused great interest. Prof. Nečas was always intrigued by the problem of regularity of solutions. Outstanding results in this field appeared in his book *Introduction to the Theory of Nonlinear Elliptic Equations* (1983, 1986).

From the very beginning Prof. Nečas devoted great effort to applications in mathematical physics and engineering. In 1967 he established a seminar on problems of continuum mechanics that continues to the present day. From this seminar came the monographs *Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction* (1981, 1983) and *Solution of Variational Inequalities in Mechanics* (1982). The latter book was translated into Russian (1986) and English (1988). Both these monographs also were directed toward numerical methods of solution based on the finite element method. This prompted F. G. Charlet and J. L. Lions to invite Prof. Nečas to write an article, “Numerical Methods for Unilateral Problems in Solid Mechanics,” for their *Handbook of Numerical Analysis* (1996).

During the last two decades of his life Prof. Nečas’ field of interest changed from solid to fluid mechanics, in particular to problems of transonic flow. Using the method of entropic compaction and the method of viscosity, he achieved remarkable results that he published in his monograph *Équations de fluides: Compacité par entropie* (1989). Recent results of Prof. Nečas and his collaborators have been collected in the book *Weak and Measure Valued Solutions to Evolutionary PDE’s* (1996).

Besides the above-mentioned monographs, Prof. Nečas initiated and published more than 180 papers in outstanding mathematical journals and conference proceedings.

An excellent teacher, Prof. Nečas influenced many students and colleagues with his never-ending enthusiasm. He organized lectures, seminars and two series of summer schools, and guided many students on the way to their diplomas and Ph.D. theses. They all will remember him with gratitude.

Both P. Sořín and K. Segeth were, at different times, students of J. Nečas.
Preface

The finite element method is one of the most popular tools for the numerical solution of engineering problems formulated in terms of partial differential equations. The latest developments in this field indicate that its future lies in adaptive higher-order methods, which successfully respond to the increasing complexity of engineering simulations and satisfy the overall trend of simultaneous resolution of phenomena with multiple scales.

Among various adaptive strategies for finite elements, the best results can be achieved using goal-oriented \(h p \)-adaptivity. Goal-oriented adaptivity is based on adaptation of the finite element mesh with the aim of improving the resolution of a specific quantity of interest (instead of minimizing the error of the approximation in some global norm), and \(h p \)-adaptivity is based on the combination of spatial refinements (\(h \)-adaptivity) with simultaneous variation of the polynomial order of approximation (\(p \)-adaptivity). There are nonacademic examples where the goal-oriented \(h p \)-adaptivity turned out to be the only way to resolve the problem on a required level of accuracy (see, e.g., [185]). Automatic \(h p \)-adaptivity belongs to the most advanced topics in the higher-order finite element technology and it is subject to active ongoing research. We refer the reader to works by Demkowicz et al. (see [162, 64, 62, 8, 122, 149, 172, 191] and references therein). The goal of this book is more modest – we present the basic principles of higher-order finite element methods and the technology of conforming discretizations based on hierarchic elements in spaces \(H^1 \), \(H \text{ (curl)} \) and \(H \text{ (div)} \). An example of an efficient and robust strategy for automatic goal-oriented \(h p \)-adaptivity is given in Chapter 6.

In the introductory Chapter 1 we review the aforementioned function spaces and their basic properties, define unsolvability of finite elements, formulate conformity requirements for finite elements in these spaces, introduce the basic steps in the finite element procedure, and present several families of orthogonal polynomials. Section 1.3 is devoted to the solution of a one-dimensional model problem on a mesh consisting of elements of arbitrary polynomial order. The technical simplicity of the one-dimensional case gives the reader the opportunity to encounter all the important features of higher-order finite element discretization at the same time.

A database of scalar and vector-valued hierarchic master elements of arbitrary order on the most commonly used reference domains in 2D and 3D is provided in Chapter 2. This chapter contains many formulæ of higher-order shape functions and is intended for reference rather than for systematic
reading. Chapter 3 discusses the basic principles of higher-order finite element methods in two and three spatial dimensions that the reader was first exposed to in Section 1.3. We begin with generalizing the standard nodal interpolation to higher-order hierarchical elements, and describe the design of reference maps based on the transfinite interpolation technique as well as their polynomial isoparametric approximation. We discuss an approach to the treatment of constrained approximations (approximations comprising “hanging nodes”) and mention selected software-technical aspects at the end of this chapter.

Chapter 4 is devoted to higher-order numerical quadrature in two and three spatial dimensions. Numerical quadrature lies at the heart of higher-order finite element codes and its proper implementation is crucial for their optimal performance. In particular the construction of integration points and weights for higher-order Gaussian numerical quadrature is not at all trivial, since they are not unique and the question of their optimal selection is extremely difficult. For illustration, each newly explored order of accuracy usually means a new paper in a journal of the numerical quadrature community. Tables of integration points and weights for all reference domains up to the order of accuracy $p = 20$ are available on the CD-ROM that accompanies this book.

Chapter 5 addresses the numerical solution of algebraic and ordinary differential equations resulting from the finite element discretization. We present an overview of contemporary direct and iterative methods for the solution of large systems of linear algebraic equations (such as matrix factorization, preconditioning by classical and block-iterative methods, multigrid techniques), and higher-order one-step and multistep schemes for evolutionary problems.

Chapter 6 presents several approaches to automatic mesh optimization and automatic h-, p- and hp-adaptivity based on the concept of reference solutions. Reference solutions are approximations of the exact solution that are substantially more accurate than the finite element approximation itself. We use reference solutions as robust error indicators to guide the adaptive strategies. We also find it useful to recall the basic principles of goal-oriented adaptivity and show the way goal-oriented adaptivity can be incorporated into standard adaptive schemes. The mathematical aspects are combined with intuitive explanation and illustrated with many examples and figures.

We assume that the reader has some experience with the finite element method—that he/she can solve the Poisson equation ($-\Delta u = f$) in two spatial dimensions using piecewise-linear elements on a triangular mesh. Since it is our goal to make the book readable for both engineers and applied researchers, we attempt to avoid unnecessarily specific mathematical language whenever possible. Usually we prefer giving references to more difficult proofs rather than including them in the text. A somewhat deeper knowledge of mathematics (such as Sobolev spaces, embedding theorems, basic inequalities, etc.) is necessary to understand the theoretical results that accompany some of the finite element algorithms, but some of these can be skipped if the reader is interested only in implementation issues.
The first author is indebted to Prof. Leszek Demkowicz (ICES, The University of Texas at Austin) for many motivating discussions on theoretical issues related to the De Rham diagram, theory of higher-order finite elements and automatic hp-adaptivity. He further gratefully acknowledges the numerous suggestions of Prof. Jan Hesthaven (Division of Applied Mathematics, Brown University, Providence, RI), who despite his many other duties found time to read the whole manuscript. Especially noteworthy have been the ideas of Dr. Fabio Nobile (ICES, The University of Texas at Austin), who significantly influenced the structure of the first chapter. Deep appreciation goes to graduate student Denis Ridzal (Department of Computational and Applied Mathematics, Rice University, Houston, TX), who gave freely of his time in investigating the conditioning properties of higher-order shape functions for various types of finite elements in one and two spatial dimensions.

The authors would like to thank Prof. Ronald Cools (Departement Computewetenschappen, Katholieke Universiteit Leuven, Belgium) for providing them with valuable information related to higher-order numerical quadrature and for his help with the review of Chapter 4. Many thanks are owed to Jan Haskovec (Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic), Dr. Petr Klouček (Department of Computational and Applied Mathematics, Rice University, Houston, TX), Dr. Dalibor Lukáš (Technical University of Ostrava, Czech Republic), Dr. Andreas Obereder (Institute of Industrial Mathematics, Johannes Kepler University, Linz, Austria), Dr. Tomáš Vejchodský (Mathematical Institute of the Academy of Sciences of the Czech Republic, Prague), and Martin Zitka (Faculty of Mathematics and Physics, Charles University, Prague) for their invaluable help with the review of the manuscript.

The authors would also like to thank Dr. Sunil Nair, Helena Redshaw, Jasmin Naim and Christine Andrensen (Chapman & Hall/CRC Press) for their friendly and efficient assistance during the final stage of the publishing process.

The work of the first author was sponsored partially by the Grant Agency of the Czech Republic under grants GP102/01/D114 and 102/01/0184, and partially by the TICAM Postdoctoral Fellowship Award. Several results from TICAM Reports No. 02-32 and No. 02-36 are included. The second and third authors acknowledge partial financial support of the Grant Agency of the Czech Republic under grants 201/01/1200 and 102/01/0184.

Our efforts could never have been successful without the understanding, patience and support of our families, for which we are deeply grateful.

Houston and Praha, March 2003

P. Šolín, K. Segeth, I. Doležel

© 2004 by Chapman & Hall/CRC
Contents

1 Introduction
 1.1 Finite elements
 1.1.1 Function spaces H^1, H (curl) and H (div)
 1.1.2 Unisolvency of finite elements
 1.1.3 Finite element mesh
 1.1.4 Finite element interpolants and conformity
 1.1.5 Reference domains and reference maps
 1.1.6 Finite element discretization
 1.1.7 Method of lines for evolutionary problems
 1.2 Orthogonal polynomials
 1.2.1 The family of Jacobi polynomials
 1.2.2 Legendre polynomials
 1.2.3 Lobatto shape functions
 1.2.4 Kernel functions
 1.2.5 Horner's algorithm for higher-order polynomials
 1.3 A one-dimensional example
 1.3.1 Continuous and discrete problem
 1.3.2 Transformation to reference domain
 1.3.3 Higher-order shape functions
 1.3.4 Design of basis functions
 1.3.5 Sparsity structure and connectivity
 1.3.6 Assembling algorithm
 1.3.7 Compressed representation of sparse matrices

2 Hierarchic master elements of arbitrary order
 2.1 De Rham diagram
 2.2 H^1-conforming approximations
 2.2.1 One-dimensional master element \mathcal{K}^1_u
 2.2.2 Quadrilateral master element \mathcal{K}^1_q
 2.2.3 Triangular master element \mathcal{K}^1_t
 2.2.4 Brick master element \mathcal{K}^1_B
 2.2.5 Tetrahedral master element \mathcal{K}^1_T
 2.2.6 Prismatic master element \mathcal{K}^1_P
 2.3 H (curl)-conforming approximations
 2.3.1 De Rham diagram and finite elements in H (curl)
 2.3.2 Quadrilateral master element \mathcal{K}^{curl}

© 2004 by Chapman & Hall/CRC
2.3.3 Triangular master element K^curl_i
2.3.4 Brick master element K^curl_c
2.3.5 Tetrahedral master element K^curl_t
2.3.6 Prismatic master element K^curl_p

2.4 $H(\text{div})$-conforming approximations
2.4.1 De Rham diagram and finite elements in $H(\text{div})$
2.4.2 Quadrilateral master element K^div_q
2.4.3 Triangular master element K^div_t
2.4.4 Brick master element K^div_b
2.4.5 Tetrahedral master element K^div_t
2.4.6 Prismatic master element K^div_p

2.5 L^2-conforming approximations
2.5.1 De Rham diagram and finite elements in L^2
2.5.2 Master elements for L^2-conforming approximations

3 Higher-order finite element discretization
3.1 Projection-based interpolation on reference domains
3.1.1 H^1-conforming elements
3.1.2 $H(\text{curl})$-conforming elements
3.1.3 $H(\text{div})$-conforming elements

3.2 Transfinite interpolation revisited
3.2.1 Projectors
3.2.2 Bipolynomial Lagrange interpolation
3.2.3 Transfinite bivariate Lagrange interpolation

3.3 Construction of reference maps
3.3.1 Mapping (curved) quad elements onto K_q
3.3.2 Mapping (curved) triangular elements onto K_t
3.3.3 Mapping (curved) brick elements onto K_B
3.3.4 Mapping (curved) tetrahedral elements onto K_T
3.3.5 Mapping (curved) prismatic elements onto K_P
3.3.6 Isoparametric approximation of reference maps
3.3.7 Simplest case — lowest-order reference maps
3.3.8 Inversion of reference maps

3.4 Projection-based interpolation on physical mesh elements
3.5 Technology of discretization in two and three dimensions
3.5.1 Outline of the procedure
3.5.2 Orientation of master element edge and face functions
3.5.3 Transformation of master element polynomial spaces
3.5.4 Design of global basis functions
3.5.5 Minimum rules for higher-order FE discretizations
3.5.6 Enumeration of functions and connectivity arrays
3.5.7 Variational formulation on the reference domain
3.5.8 Local and global assembling procedures
3.5.9 Static condensation of internal DOF

3.6 Constrained approximation

© 2004 by Chapman & Hall/CRC
4 Higher-order numerical quadrature

4.1 One-dimensional reference domain \(K_s \)
 4.1.1 Newton-Cotes quadrature
 4.1.2 Chebyshev quadrature
 4.1.3 Lobatto (Radau) quadrature
 4.1.4 Gauss quadrature

4.2 Reference quadrilateral \(K_s \)
 4.2.1 Composite Gauss quadrature
 4.2.2 Economical Gauss quadrature
 4.2.3 Tables of Gauss quadrature points and weights

4.3 Reference triangle \(K_t \)
 4.3.1 Translation of quadrature to the ref. quadrilateral \(K_s \)
 4.3.2 Newton-Cotes quadrature
 4.3.3 Gauss quadrature
 4.3.4 Tables of Gauss integration points and weights

4.4 Reference brick \(K_B \)
 4.4.1 Composite Gauss quadrature
 4.4.2 Economical Gauss quadrature
 4.4.3 Tables of Gauss integration points and weights

4.5 Reference tetrahedron \(K_T \)
 4.5.1 Translation of quadrature to the reference brick \(K_B \)
 4.5.2 Economical Gauss quadrature
 4.5.3 Tables of Gauss integration points and weights

4.6 Reference prism \(K_P \)
 4.6.1 Composite Gauss quadrature

5 Numerical solution of finite element equations

5.1 Direct methods for linear algebraic equations
 5.1.1 Gaussian elimination and matrix factorization
 5.1.2 Banded systems
 5.1.3 General sparse systems
 5.1.4 Fast methods for special systems

5.2 Iterative methods for linear algebraic equations
 5.2.1 ORTHOMIN and steepest descent methods
 5.2.2 Conjugate gradient and biconjugate gradient methods
 5.2.3 MINRES and GMRES methods
 5.2.4 Classical iterative methods and preconditioning

© 2004 by Chapman & Hall/CRC
5.2.5 Block iterative methods
5.2.6 Multigrid methods
5.3 Choice of the method
5.4 Solving initial value problems for ordinary differential equations
 5.4.1 Method of lines
 5.4.2 Multistep methods
 5.4.3 One-step methods

6 Mesh optimization, reference solutions and h-p-adaptivity
6.1 Automatic mesh optimization in one dimension
 6.1.1 Minimization of projection-based interpolation error
 6.1.2 Automatic mesh optimization algorithms
 6.1.3 Automatic h-adaptive mesh optimization
 6.1.4 Automatic p-adaptive mesh optimization
 6.1.5 Automatic h-p-adaptive mesh optimization
6.2 Adaptive strategies based on automatic mesh optimization
 6.2.1 Reference solutions
 6.2.2 A strategy based on automatic mesh optimization
 6.2.3 Model problem
 6.2.4 Automatic h-adaptivity
 6.2.5 Automatic p-adaptivity
 6.2.6 Automatic h-p-adaptivity
6.3 Goal-oriented adaptivity
 6.3.1 Quantities of interest
 6.3.2 Formulation of the dual problem
 6.3.3 Error control in quantity of interest
 6.3.4 Selected nonlinear and unbounded functionals
6.4 Automatic goal-oriented h-, p- and h-p-adaptivity
 6.4.1 Automatic goal-oriented adaptive strategies
 6.4.2 Example: average of solution over a subdomain
 6.4.3 Goal-oriented and energy-driven h-adaptivity
 6.4.4 Goal-oriented and energy-driven h-p-adaptivity
6.5 Automatic goal-oriented h-p-adaptivity in two dimensions
 6.5.1 Mesh optimization step in two dimensions
 6.5.2 Example: singular solution in the L-shape domain
 6.5.3 Goal-oriented and energy-driven h-adaptivity
 6.5.4 Goal-oriented and energy-driven h-p-adaptivity
 6.5.5 Comparison of convergence in the quantity of interest

References

© 2004 by Chapman & Hall/CRC
List of Tables

2.1 Scalar hierarchic shape functions of \mathcal{A}_1^0
2.2 Scalar hierarchic shape functions of \mathcal{A}_1^1
2.3 Scalar hierarchic shape functions of \mathcal{A}_1^2
2.4 Scalar hierarchic shape functions of \mathcal{A}_1^3
2.5 Scalar hierarchic shape functions of \mathcal{A}_1^4
2.6 Vector-valued hierarchic shape functions of $\mathcal{A}_1^{\text{vol}}$
2.7 Vector-valued hierarchic shape functions of $\mathcal{A}_1^{\text{vol}}$
2.8 Vector-valued hierarchic shape functions of $\mathcal{A}_1^{\text{vol}}$
2.9 Vector-valued hierarchic shape functions of $\mathcal{A}_1^{\text{vol}}$
2.10 Vector-valued hierarchic shape functions of $\mathcal{A}_1^{\text{vol}}$
2.11 Vector-valued hierarchic shape functions of $\mathcal{A}_1^{\text{vol}}$
2.12 Vector-valued hierarchic shape functions of $\mathcal{A}_1^{\text{vol}}$
2.13 Vector-valued hierarchic shape functions of $\mathcal{A}_1^{\text{vol}}$
2.14 Vector-valued hierarchic shape functions of $\mathcal{A}_1^{\text{vol}}$
2.15 Vector-valued hierarchic shape functions of $\mathcal{A}_1^{\text{vol}}$

3.1 Hierarchic basis functions in various function spaces

4.1 Closed Newton-Cotes quadrature on K_1, order $n = 1$
4.2 Closed Newton-Cotes quadrature on K_1, order $n = 2$
4.3 Closed Newton-Cotes quadrature on K_1, order $n = 3$
4.4 Closed Newton-Cotes quadrature on K_1, order $n = 4$
4.5 Closed Newton-Cotes quadrature on K_1, order $n = 5$
4.6 Closed Newton-Cotes quadrature on K_1, order $n = 6$
4.7 Closed Newton-Cotes quadrature on K_1, order $n = 7$
4.8 Chebyshev quadrature on K_1, order $n + 1 = 1$
4.9 Chebyshev quadrature on K_1, order $n + 1 = 2$
4.10 Chebyshev quadrature on K_1, order $n + 1 = 3$
4.11 Chebyshev quadrature on K_1, order $n + 1 = 4$
4.12 Chebyshev quadrature on K_1, order $n + 1 = 5$
4.13 Chebyshev quadrature on K_1, order $n + 1 = 6$
4.14 Chebyshev quadrature on K_1, order $n + 1 = 7$
4.15 Lobatto (Radau) quadrature on K_1, order $2n - 3 = 3$
4.16 Lobatto (Radau) quadrature on K_1, order $2n - 3 = 5$
4.17 Lobatto (Radau) quadrature on K_1, order $2n - 3 = 7$
4.18 Lobatto (Radau) quadrature on K_1, order $2n - 3 = 9$
4.19 Lobatto (Radau) quadrature on K_1, order $2n - 3 = 11
4.20 Lobatto (Radau) quadrature on K_v, order $2n = 3 = 13$
4.21 Gauss quadrature on K_v, order $2n - 1 = 3$
4.22 Gauss quadrature on K_v, order $2n - 1 = 5$
4.23 Gauss quadrature on K_v, order $2n - 1 = 7$
4.24 Gauss quadrature on K_v, order $2n - 1 = 9$
4.25 Gauss quadrature on K_v, order $2n - 1 = 11$
4.26 Gauss quadrature on K_v, order $2n - 1 = 13$
4.27 Gauss quadrature on K_v, order $2n - 1 = 15$
4.28 Gauss quadrature on K_v, order $2n - 1 = 17$
4.29 Gauss quadrature on K_v, order $2n - 1 = 19$
4.30 Gauss quadrature on K_v, order $2n - 1 = 21$
4.31 Gauss quadrature on K_v, order $2n - 1 = 23$
4.32 Gauss quadrature on K_v, order $2n - 1 = 31$
4.33 Gauss quadrature on K_v, order $2n - 1 = 39$
4.34 Gauss quadrature on K_v, order $2n - 1 = 47$
4.35 Gauss quadrature on K_v, order $2n - 1 = 63$
4.36 Min. numbers of Gauss quadrature points on K_v
4.37 Gauss quadrature on K_v, order $p = 0, 1$
4.38 Gauss quadrature on K_v, order $p = 2, 3$
4.39 Gauss quadrature on K_v, order $p = 4, 5$
4.40 Gauss quadrature on K_v, order $p = 6, 7$
4.41 Min. numbers of Gauss quadrature points on K_I
4.42 Gauss quadrature on K_I, order $p = 1$
4.43 Gauss quadrature on K_I, order $p = 2$
4.44 Gauss quadrature on K_I, order $p = 3$
4.45 Gauss quadrature on K_I, order $p = 4$
4.46 Gauss quadrature on K_I, order $p = 5$
4.47 Gauss quadrature on K_I, order $p = 6$
4.48 Gauss quadrature on K_I, order $p = 7$
4.49 Min. numbers of Gauss quadrature points on K_B
4.50 Gauss quadrature on K_B, order $p = 0, 1$
4.51 Gauss quadrature on K_B, order $p = 2, 3$
4.52 Gauss quadrature on K_B, order $p = 4, 5$
4.53 Gauss quadrature on K_B, order $p = 6, 7$
4.54 Min. numbers of Gauss quadrature points on K_T
4.55 Gauss quadrature on K_T, order $p = 1$
4.56 Gauss quadrature on K_T, order $p = 2$
4.57 Gauss quadrature on K_T, order $p = 3$
4.58 Gauss quadrature on K_T, order $p = 4$
4.59 Gauss quadrature on K_T, order $p = 5$
4.60 Gauss quadrature on K_T, order $p = 6$
4.61 Gauss quadrature on K_T, order $p = 7$

6.1 Projection-based interp. error err^2 for the p-adaptive scheme
List of Figures

1.1 An example of a nonunisolvent finite element
1.2 Gauss-Lobatto nodal points in equilateral triangles
1.3 Examples of hanging nodes in 2D and 3D
1.4 Linear Lagrange and Crouzeix-Raviart elements
1.5 Sample mesh consisting of two triangular elements
1.6 Continuous Lagrange interpolant on \(\mathcal{K}_1 \cup \mathcal{K}_2 \)
1.7 Discontinuous Crouzeix-Raviart interpolant on \(\mathcal{K}_1 \cup \mathcal{K}_2 \)
1.8 Reference map for a quadrilateral element
1.9 Legendre polynomials \(L_0, L_1 \)
1.10 Legendre polynomials \(L_2, L_3 \)
1.11 Legendre polynomials \(L_4, L_5 \)
1.12 Legendre polynomials \(L_6, L_7 \)
1.13 Legendre polynomials \(L_8, L_9 \)
1.14 Lobatto shape functions \(l_0, l_1 \)
1.15 Lobatto shape functions \(l_2, l_3 \)
1.16 Lobatto shape functions \(l_4, l_5 \)
1.17 Lobatto shape functions \(l_6, l_7 \)
1.18 Lobatto shape functions \(l_8, l_9 \)
1.19 Example of a Dirichlet lift function for 1D problems
1.20 Quadratic nodal shape functions
1.21 Cubic nodal shape functions
1.22 Conditioning properties of various types of shape fits, in 1D
1.23 Vertex basis functions in the hierarchic case
1.24 Vertex nodal basis functions for piecewise-quadratic approx.
1.25 An example of a hierarchic quadratic bubble basis function
1.26 An example of a hierarchic cubic bubble basis function

2.1 The reference quadrilateral \(K_q \)
2.2 Vertex functions of \(K_q^1 \)
2.3 Quadratic edge functions of \(K_q^1 \)
2.4 Cubic edge functions of \(K_q^1 \)
2.5 Fourth-order edge functions of \(K_q^1 \)
2.6 Fifth-order edge functions of \(K_q^1 \)
2.7 Sixth-order edge functions of \(K_q^1 \)
2.8 Quadratic bubble function of \(K_q \)
2.9 Cubic bubble functions of \(K_q^1 \)
2.10 Fourth-order bubble functions of \mathcal{K}_t^4
2.11 Fifth-order bubble functions of \mathcal{K}_t^5
2.12 Sixth-order bubble functions of \mathcal{K}_t^6
2.13 The reference triangle K_t
2.14 Vertex functions of \mathcal{K}_v^1
2.15 Quadratic edge functions of \mathcal{K}_e^1
2.16 Cubic edge functions of \mathcal{K}_e^1
2.17 Fourth-order edge functions of \mathcal{K}_e^4
2.18 Fifth-order edge functions of \mathcal{K}_e^5
2.19 Sixth-order edge functions of \mathcal{K}_e^6
2.20 Standard cubic and fourth-order bubble functions of \mathcal{K}_v^4
2.21 Standard fifth-order bubble functions of \mathcal{K}_v^5
2.22 New cubic and fourth-order bubble functions of \mathcal{K}_v^4
2.23 New fifth-order bubble functions of \mathcal{K}_v^5
2.24 New sixth-order bubble functions of \mathcal{K}_v^6
2.25 Conditioning properties of shape functions in 2D
2.26 The reference brick K_B
2.27 Vertex functions of $\mathcal{K}_v^1_B$
2.28 Edge functions of $\mathcal{K}_e^1_B$
2.29 Face functions of $\mathcal{K}_f^1_B$
2.30 The reference tetrahedron K_T
2.31 Vertex functions of $\mathcal{K}_v^1_T$
2.32 Edge functions of $\mathcal{K}_e^1_T$
2.33 Face functions of $\mathcal{K}_f^1_T$
2.34 The reference prism K_P
2.35 Vertex functions of $\mathcal{K}_v^1_P$
2.36 Edge functions of $\mathcal{K}_e^1_P$
2.37 Face functions of $\mathcal{K}_f^1_P$
2.38 Edge functions of $\mathcal{K}_e^1_{\text{ord}}$
2.39 Elementary functions of $\mathcal{K}_v^1_{\text{ord}}$
2.40 Edge functions of $\mathcal{K}_e^1_{\text{ord}}$
2.41 Vertex-based edge functions of $\mathcal{K}_v^1_{\text{ord}}$
2.42 Edge-based face functions of $\mathcal{K}_f^1_{\text{ord}}$
2.43 Genuine face functions of $\mathcal{K}_f^1_T$
2.44 Face-based bubble functions of $\mathcal{K}_{\text{div}}^1_T$
2.45 Edge-based face functions of $\mathcal{K}_{\text{div}}^1_T$
2.46 Genuine face functions of $\mathcal{K}_{\text{div}}^1_P$
2.47 Vertex-based face functions of $\mathcal{K}_{\text{div}}^1_T$
2.48 Edge-based bubble functions of $\mathcal{K}_{\text{div}}^1_T$

3.1 Projection-based interpolation in 1D
3.2 Projection-based interpolation in 2D, part 1
3.3 Projection-based interpolation in 2D, part 2
3.4 Projection-based interpolation in 2D, part 3
3.5 Example of a transfinite interpolation projector
3.6 Parametrization of a quadratic arc
3.7 Sample deformed quadrilateral K
3.8 Schematic picture of the Newton-Raphson technique
3.9 Face orientations of reference domains in 3D
3.10 Global orientation of edges
3.11 Global orientation of faces
3.12 Sign adjustment of edge functions in 2D
3.13 Global and local orientations for quadrilateral faces
3.14 Local transformation of face functions
3.15 Global and local orientations for triangular faces
3.16 Vertex basis functions in 2D
3.17 Vertex basis functions in 3D
3.18 Edge functions in 2D
3.19 Edge functions in 3D
3.20 Minimum rule for two-dimensional approximations
3.21 Constrained continuous approximation in 2D
3.22 Constrained continuous approximation 3D, case 1
3.23 Constraining relations, case 1
3.24 Constrained continuous approximation 3D, case 4
3.25 Redefinition of orientations, case 4
3.26 Reference configuration, case 4
3.27 Four-refinement of a triangular face
3.28 Natural order of elements
3.29 Unwanted refinements enforced by the 1-irregularity rule

4.1 Newton-Cotes integration points for the ref. triangle

5.1 Scheme of the steepest descent method
5.2 Scheme of the conjugate gradient method
5.3 LU factorization of a sparse matrix
5.4 Scheme of incomplete factorization
5.5 One iteration step of the two-grid method
5.6 V-cycle on three grids
5.7 W-cycle on three grids
5.8 Full multigrid method on four grids

6.1 h-refinement of a linear element
6.2 p-refinement of a linear element
6.3 Motivation for the criterion (6.6)
6.4 Example function u forming a local peak at $x = 0.4$
6.5 h-adaptivity with linear elements, step 1
6.6 h-adaptivity with linear elements, step 2
6.7 h-adaptivity with linear elements, step 3
6.8 h-adaptivity with linear elements, step 4
6.9 h-adaptivity with linear elements, step 5
6.10

6.11

6.12

6.13

6.14

6.15 Convergence of projection-based interpolation error

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26 Convergence of projection-based interpolation error

6.27

6.28

6.29

6.30

6.31

6.32

6.33

6.34

6.35

6.36

6.37

6.38

6.39

6.40

6.41

6.42

6.43

6.44 Convergence of the approximate discretization error

6.45 Average of the solution u over a subdomain

6.46 Goal-oriented h-adaptivity, step 1

6.47 Goal-oriented h-adaptivity, step 2

6.48 Goal-oriented h-adaptivity, step 3

6.49 Goal-oriented h-adaptivity, step 4

6.50 Goal-oriented h-adaptivity, step 5

6.51 Goal-oriented h-adaptivity, step 6

6.52 Goal-oriented h-adaptivity, step 7

6.53 Goal-oriented hp-adaptivity, step 1

6.54 Goal-oriented hp-adaptivity, step 2

© 2004 by Chapman & Hall/CRC
6.55 Goal-oriented hp-adaptivity, step 3
6.56 Goal-oriented hp-adaptivity, step 4
6.57 Goal-oriented hp-adaptivity, step 5
6.58 Goal-oriented hp-adaptivity, step 6
6.59 Goal-oriented hp-adaptivity, step 7
6.60 Convergence in quantity of interest
6.61 Goal-oriented hp-adaptivity in 2D - domain and goal
6.62 Exact solution u to the problem (6.41)
6.63 Exact solution v to the dual problem
6.64 Energy-based h-adaptivity in 2D, step 1
6.65 Energy-based h-adaptivity in 2D, step 2
6.66 Energy-based h-adaptivity in 2D, step 3
6.67 Energy-based h-adaptivity in 2D, step 4
6.68 Goal-oriented h-adaptivity in 2D, step 1
6.69 Goal-oriented h-adaptivity in 2D, step 2
6.70 Goal-oriented h-adaptivity in 2D, step 3
6.71 Goal-oriented h-adaptivity in 2D, step 4
6.72 Color code for the visualization hp-meshes in 2D
6.73 Color scale for the order of polynomial approximation
6.74 Energy-based hp-adaptivity in 2D, step 1
6.75 Energy-based hp-adaptivity in 2D, step 2
6.76 Energy-based hp-adaptivity in 2D, step 3
6.77 Energy-based hp-adaptivity in 2D, step 4
6.78 Goal-oriented hp-adaptivity in 2D, step 1
6.79 Goal-oriented hp-adaptivity in 2D, step 2
6.80 Goal-oriented hp-adaptivity in 2D, steps 3 and 4
6.81 Goal-oriented hp-adaptivity in 2D, steps 5 and 6
6.82 Goal-oriented hp-adaptivity in 2D, steps 7 and 8
6.83 Goal-oriented hp-adaptivity in 2D, steps 9 and 10
6.84 Comparison of resulting optimal meshes, h-adaptivity
6.85 Comparison of resulting optimal meshes, hp-adaptivity
6.86 Relative error in the quantity of interest
6.87 Final meshes for values $D = 6$ and $D = 10$
6.88 Final meshes for values $D = 15$ and $D = 20$
6.89 Convergence of relative error in goal