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Preface

There are many good textbooks already in existence that cover the theory of finite el-
ement methods for advanced students. However, none of these books incorporate
ANSYS as an integral part of their materials to introduce finite element modeling to
undergraduate students and the newcomers. In recent years, the use of finite element
analysis as a design tool has grown rapidly. Easy to use comprehensive packages such
as ANSYS, a general-purpose finite element computer program, have become common
tools in the hands of design engineers. Unfortunately, many engineers who lack the
proper training or understanding of the underlying concepts have been using these
tools. This introductory book is written to assist engineering students and practicing
engineers new to the field of finite element modeling to gain a clear understanding of
the basic concepts. The text offers insight into the theoretical aspects of finite ele-
ment analysis and also covers some practical aspects of modeling. Great care has been
exercised to avoid overwhelming students with theory. Yet enough theoretical back-
ground is offered to allow individuals to use ANSYS intelligently and effectively.
ANSYS is an integral part of this text. In each chapter, the relevant basic theory is dis-
cussed first and demonstrated using simple problems with hand-calculations. These
problems are followed by examples which are solved using ANSYS. Exercises in the
text are also presented in this manner. Some exercises require manual calculations
while others, more complex in nature, require the use of ANSYS. The simpler hand-
calculation problems will enhance students’ understanding of the concepts by en-
couraging them to go through the necessary steps in a finite element analysis. Design
problems are also included at the end of Chapters 2,4, 7, 8, and 10.

Various sources of error that can contribute to wrong results are discussed. A
good engineer must always find ways to check the results. While experimental test-
ing of models may be the best way, such testing may be expensive or time consum-
ing. Therefore, whenever possible, throughout this text emphasis is placed on doing
a “sanity check” to verify one’s Finite Element Analysis (FEA). A section at the end
of each appropriate chapter is devoted to possible approaches for verifying ANSYS
results.

xi
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Preface

Another unique feature of this book is that the last chapter is devoted to the in-
troduction of design optimization and parametric programming with ANSYS.

The book is organized into 11 chapters. Chapter 1 reviews basic ideas in finite el-
ement analysis. Common formulations, such as direct, potential energy, and weighted
residual methods are discussed. Chapter 2 deals with the analysis of trusses because
trusses offer economical solutions to many engineering structural problems. An overview
of ANSYS program is given in Chapter 2 so that students can begin to use ANSYS right
away. Chapter 3 lays the foundation for analysis of one-dimensional problems by in-
troducing one-dimensional linear, quadratic, and cubic elements. Global, local and nat-
ural coordinate systems are also discussed in detail in Chapter 3. An introduction to
isoparametric formulation and numerical integration by Gauss-Legendre formulae are
also presented in Chapter 3. Chapter 4 considers Galerkin formulation of one-dimen-
sional heat transfer and fluid problems. Minimum total potential energy of solid me-
chanics problems are also discussed in Chapter 4. Two-dimensional linear and higher
order elements are introduced in Chapter 5. Gauss-Legendre formulae for two-di-
mensional integrals are also presented in Chapter 5. In Chapter 6, the essential capa-
bilities and the organization of the ANSYS program are covered. The basic steps in
creating and analyzing a model with ANSYS is discussed in detail. Chapter 7 includes
the analysis of two-dimensional heat transfer problems. Chapter 8 provides analysis of
torsion of noncircular shafts, beams, frames, and plane stress problems. In Chapter 9, two
dimensional ideal fluid mechanics problems are analyzed. Direct formulation of the
piping network problems and underground seepage flow are also discussed. Chapter 10
provides a discussion of three-dimensional elements and formulations. This chapter also
presents basic ideas regarding top-down and bottom-up solid modeling methods. Design
optimization ideas and parametric programming are discussed in Chapter 11. Each
chapter begins by stating the objectives and concludes by summarizing what the read-
er should have gained from studying that chapter.

The examples which are solved using ANSYS show in great detail how to use
ANSYS to model and analyze a variety of engineering problems. Chapter 6 is also writ-
ten in such manner that it can be taught right away if the instructor sees the need to
start with ANSYS at the beginning of the course.

A brief review of appropriate fundamental principles in solid mechanics, heat
transfer, and fluid mechanics is also provided throughout the book. Additionally,
when appropriate, the students are warned about becoming too quick to generate fi-
nite element models for problems for which there exist simple analytical solutions.
Mechanical and thermophysical properties of some common materials used in engi-
neering are given in Appendices A and B.

Finally, I am planning to maintain a website at http://www.prenhall.com/Moaveni
for the following purposes: (1) to share any changes in the upcoming versions of

Preface xiii

ANSYS; (2) to share additional information on upcoming text revisions including tran-
sient analysis of mechanical and thermal problems and other useful topics that you
would like to see covered in the next addition. I am also planning to expand the opti-
mization chapter. Examples with error estimation calculations are also planned; (3) to
provide additional homework problems and design problems; and (4) to Ppost, at the
website, any corrections that are brought to my attention. The website will be acces-
sible to all students.

Saeed Moaveni
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CHAPTER 1

Introduction

The finite element method is a numerical procedure that can be used to obtain solu-
tions to a large class of engineering problems involving stress analysis, heat transfer,
electromagnetism, and fluid flow. This book was written to help you gain a clear under-
standing of the fundamental concepts of finite element modeling. Having a clear un-
derstanding of the basic concepts will enable you to use a general-purpose finite element
software, such as ANSYS, effectively. ANSYS is an integral part of this text. In each
chapter, the relevant basic theory behind each respective concept is discussed first. This
discussion is followed by examples that are solved using ANSYS. Throughout this text,
empbhasis is placed on methods by which you may verify your findings from finite ele-
ment analysis (FEA). In addition, at the end of particular chapters, a section is devoted
to the approaches you should consider to verify results generated by using ANSYS.

Some of the exercises provided in this text require manual calculations. The pur-
pose of these exercises is to enhance your understanding of the concepts by encourag-
ing you to go through the necessary steps of finite element analysis. This book is also
written in such a way that it can serve as a reference text for readers who may already
be design engineers who are beginning to get involved in finite element modeling and
need to know the underlying concepts of FEA.

The objective of this chapter is to introduce you to basic concepts in finite ele-
ment formulation, including direct formulation, the minimum potential energy theo-
rem, and the weighted residual methods. The main topics of Chapter 1 include the
following:

1.1 Engineering Problems

1.2 Numerical Methods

1.3 A Brief History of the Finite Element Method and ANSYS
1.4 Basic Steps in the Finite Element Method

1.5 Direct Formulation

1.6 Minimum Total Potential Energy Formulation

1.7 Weighted Residual Formulations

1.8 Verification of Results

1.9 Understanding the Problem



Chapter 1 Introduction

ENGINEERING PROBLEMS

In general, engineering problems are mathematical models of physical situations. Math-
ematical models are differential equations with a set of corresponding boundary and
initial conditions. The differential equations are derived by applying the fundamental
laws and principles of nature to a system or a control volume. These governing equations
represent balance of mass, force, or energy. When possible, the exact solution of these
equations renders detailed behavior of a system under a given set of conditions The an-
alytical solutions are composed of two parts: (1) a homogenous part and (2) a particu-
lar part. In any given engineering problem, there are two sets of parameters that influence
the way in which a system behaves. First, there are those parameters that provide in-
formation regarding the natural behavior of a given system. These parameters include
properties such as modulus of elasticity, thermal conductivity, and viscosity. Table 1.1
summarizes the physical properties that define the natural characteristics of various
problems. i

On the other hand, there are.parameters that produce disturbances in a system.
These types of parameters are summarized in Table 1.2. Examples of these parameters
include external forces, moments, temperature difference across a medium, and pressure
difference in fluid flow.

The system characteristics as shown in Table 1.1 dictate the natural behavior of a
system, and they always appear in the homogenous part of the solution of a governing
differential equation. In contrast, the parameters that cause the disturbances appear in
the particular solution. It is important to understand the role of these parameters in fi-
nite element modeling in terms of their respective appearances in stiffness or conduc-
tance matrices and load or forcing matrices. The system characteristics will always show
up in the stiffness matrix, conductance matrix, or resistance matrix, whereas the distur-
bance parameters will always appear in the load matrix.

1.2 NUMERICAL METHODS

There are many practical engineering problems for which we cannot obtain exact solu-
tions. This inability to obtain an exact solution may be attributed to either the complex
nature of governing differential equations or the difficulties that arise from dealing with
the boundary and initial conditions. To deal with such problems, we resort to numerical
approximations. In contrast to analytical solutions, which show the exact behavior of a
system at any point within the system, numerical solutions approximate exact solutions
only at discrete points, called nodes. The first step of any numerical procedure is dis-
cretization. This process divides the medium of interest into a number of small subre-
gions and nodes. There are two common classes of numerical methods: (1) finite

difference methods and (2) finite element methods. With finite difference methods, the dif- -

ferential equation is written for each node, and the derivatives are replaced by difference
equations. This approach results in a set of simultaneous linear equations. Although fi-
nite difference methods are easy to understand and employ in simple problems, they
become difficult to apply to problems with complex geometries or complex boundary
conditions. This situation is also true for problems with nonisotropic material properties.

Section 1.2 Numerical Methods 3

TABLE 1.1 Physical properties characterizing various engineering systems

Problem Type

Examples of Parameters That
Characterize a System

Solid Mechanics Examples

Load

atruss

GJ
a shaft

modulus of elasticity, E

modulus of elasticity, E

modulus of elasticity, E; second moment of
area, ]

modulus of rigidity, G; polar moment of inertia
of the area,J

Heat Transfer Examples

heat flow

thermal conductivity, K
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TABLE 1.1 (cont.) Physical properties characterizing various engineering systems

thermal conductivity, K

high
PI'CSSUI'C pressure

viscosity, u; relative roughness, e

s

a concrete dam soil permeability, k

Electrical and Magnetism Problems

electrical network

resistance, R

Stator

Rotor

& permeability, p
magnetic field of an electric motor

Section 1.3 A Brief History of the Finite Element Method and ANSYS S

TABLE 1.2 Parameters causing disturbances in various engineering systems

Examples of Parameters That

Problem Type Produce Disturbances in a System
Solid Mechanics external forces and moments; support excitation
Heat Transfer temperature difference; heat input
Fluid Flow and Pipe Networks pressure difference; rate of flow
Electrical Network voltage difference

In contrast, the finite element method uses integral formulations rather than dif-
ference equations to create a system of algebraic equations. Moreover, an approximate
continuous function is assumed to represent the solution for each element. The com-
plete solution is then generated by connecting or assembling the individual solutions, al-
lowing for continuity at the interelemental boundaries.

1.3 A BRIEF HISTORY * OF THE FINITE ELEMENT METHOD
AND ANSYS

The finite element method is a numerical procedure that can be applied to obtain solu-
tions to a variety of problems in engineering. Steady, transient, linear, or nonlinear prob-
lems in stress analysis, heat transfer, fluid flow, and electromagnetism problems may be
analyzed with finite element methods. The origin of the modern finite element method
may be traced back to the early 1900s, when some investigators approximated and mod-
eled elastic continua using discrete equivalent elastic bars. However, Courant (1943)
has been credited with being the first person to develop the finite element method. In
a paper published in the early 1940s, Courant used piecewise polynomial interpolation
over triangular subregions to investigate torsion problems. i

The next significant step in the utilization of finite element methods was taken by
Boeing in the 1950s when Boeing, followed by others, used triangular stress elements to
model airplane wings. Yet, it was not until 1960 that Clough made the term “finite ele-
ment” popular. During the 1960s, investigators began to apply the finite element method
to other areas of engineering, such as heat transfer and seepage flow problems.
Zienkiewicz and Cheung (1967) wrote the first book entirely devoted to the finite ele-
ment method in 1967. In 1971, ANSYS was released for the first time.

ANSYS is a comprehensive general-purpose finite element computer program
that contains over 100,000 lines of code. ANSYS is capable of performing static, dy-
namic, heat transfer, fluid flow, and electromagnetism analyses. ANSYS has been a lead-
ing FEA program for well over 20 years. The current version of ANSYS has a completely
new look, with multiple windows incorporating Graphical User Interface (GUTI), pull-
down menus, dialog boxes, and a tool bar. Today, you will find ANSYS in use in many
engineering fields, including aerospace, automotive, electronics, and nuclear. In order
to use ANSYS or any other “canned” FEA computer program intelligently, it is imper-

*See Cook et al. (1989} for more detail.
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ative that one first fully understands the underlying basic concepts and limitations of the

finite

solve

element methods.
ANSYS is a very powerful and impressive engineering tool that may be used to
a variety of problems. However, a user without a basic understanding of the finite

element methods will find himself or herself in the same predicament as a computer

techn
comp

ician with access to many impressive instruments and tools, but who cannot fix a
uter because he or she does not understand the inner workings of a computer!

1.4 BASICSTEPS IN THE FINITE ELEMENT METHOD

The basic steps involved in any finite clement analysis consist of the following:

(1D

Preprocessing Phase
Create and discretize the solution domain into finite elements; that is, subdivide the
problem into nodes and elements.

Assume a shape function to represent the physical behavior of an element; that
is, an approximate continuous function is assumed to represent the solution of
an element.

Develop equations for an element.

Assemble the elements to present the entire problem. Construct the global stiff-
ness matrix.

Apply boundary conditions, initial conditions, and loading.
Solution Phase

Solve a set of linear or nonhnear algebraic equations simultaneously to obtain
nodal results. such as displacement values at different nodes or temperature val-
ues at different nodes in a heat transfer problem.

Postprocessing Phase

Obtain other important information. At this point, you may be interested in val-
ues of principal stresses. heat fluxes, etc.

In general, there are several approaches to formulating finite element problems:
irect Formulation, (2) The Minimum Total Potential Energy Formulation, and (3)

Weighted Residual Formulations. Again, it is important to note that the basic steps in-
volved in any finite element analysis, regardless of how we generate the finite element

mode

1.5 DIRECT

1, will be the same as those listed above.

FORMULATION

The following problem illustrates the steps and the procedure involved in direct
formulation.

Section 1.5 Direct Formulation 7

TABLE 1.3 Examples of the capabilitics of ANSYS*

A V6 engine used in front-wheel-drive automobiles
was analyzed using ANSYS heat transfer capabilities.
The analyses were conducted by Analysis & Design
Appl. Co. Ltd. (ADAPCO) on behalf of a major U.S.
automobile manufacturer to improve product
performance. Contours of thermal stress in the engine
block are shown in the figure above.

Large deflection capabilities of ANSYS were utilized
by engineers at Today’s Kids, a toy manufacturer, to
confirm failure locations on the company’s play slide,
shown in the figure above, when the slide is subjected
to overload. This nonlinear analysis capability is
required to detect these stresses because of the
product’s structural behavior.

Electromagnetic capabilities of ANSYS, which include
the use of both vector and scalar potentials interfaced
through a specialized element, as well as a three-
dimensional graphics representation of far-ficld decay
through infinite boundary elements, are depicted in this
analysis of a bath plate, shown in the figure above.

Isocontours are used to depict the intensity of the H-field.
Structural Analysis Engineering Corporation used
ANSYS to determine the natural frequency of a rotor in
a disk-brake assembly. In this analysis, 50 modes of
vibration, which are considered to contribute to brake
sequel, were found to exist in the light-truck brake rotor.

" Photographs courtesy of ANSYS, Inc., Canonsburg, PA
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EXAMPLE 1.1

Consider a bar with a variable cross section supporting a load P, as shown in Figure 1.1.
The bar is fixed at one end and carries the load P at the other end. Let us designate the
width of the bar at the top by wy, at the bottom by w,, its thickness by ¢, and its length
by L. The bar’s modulus of elasticity will be denoted by E. We are interested in deter-
mining how much the bar will deflect at various points along its length when it is sub-
jected to the load P. We will neglect the weight of the bar in the following analysis,
assuming that the applied load is considerably larger than the weight of the bar:

fe——— w; —>]

14 FIGURE 1.1 A bar under axial loading.

Preprocessing Phase

1. Discretize the solution domain into finite elements.
We begin by subdividing the problem into nodes and elements. In order to high-
light the basic steps in a finite element analysis, we will keep this problem simple
and, thus, represent it by a model that has five nodes and four elements, as shown
in Figure 1.2. However, note that we can increase the accuracy of our results by gen-

element 1
2

element 2
3

element 3
4
element 4

P P
FIGURE 1.2 Subdividing the bar into elements and nodes.

R

Section 1.5 Direct Formulation 9

erating a model with additional nodes and elements. This task is left as an exercise
for you to complete. (See Problem 1 at the end of this chapter.) The given bar is
modeled using four individual segments, with each segment having a uniform cross
section. The cross-sectional area of each element is represented by an average area
of the cross sections at the nodes that make up (define) the element. This model
is shown in Figure 1.2.

. Assume a solution that approximates the behavior of an element.

In order to study the behavior of a typical element, let’s consider the deflection of
a solid member with a uniform cross section A that has a length £ when subjected
to a force F, as shown in Figure 1.3.

The average stress o in the member is given by

o=— (1.1)
The average normal strain & of the member is defined as the change in length
A{ per unit original length € of the member:
Af
€= (1.2)

Opver the elastic region, the stress and strain are related by Hooke’s Law, ac-
cording to the equation

o =Ee (1.3)

where E is the modulus of elasticity of the material. Combining Egs. (1.1), (1.2),
and (1.3) and simplifying, we have

F= (%)Ae o

Note that Eq. (1.4) is similar to the equation for a linear spring, F = kx.
Therefore, a centrally loaded member of uniform cross section may be modeled as
a spring with an equivalent stiffness of

keg = 55 (1.5)

equivalent

FIGURE 1.3 A solid member of uniform cross section subjected to a force F.
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Turning our attention to Example Problem 1.1, we note once again that the bar’s
cross section varies in the y-direction. As a first approximation, we model the bar
as a series of centrally loaded members with different cross sections, as shown in Fig-
ure 1.2. Thus, the bar is represented by a model consisting of four elastic springs
(elements) in series, and the elastic behavior of an element is modeled by an equiv-
alent linear spring according to the equation

A E A+ A)E
f= keq(ui+1 —w) = ; (i1 ~ ) = (Jr;ze’_ (Uiv1 — wy) (1.6)

where the equivalent element stiffness is given by

(Aiy + A)E
keg = —127—— (1.7)

A; and A, are the cross-sectional areas of the member at nodes i and i + 1, re-
spectively, and £ is the length of the element. Employing the above model, let us con-
sider the forces acting on each node. The free body diagram of nodes, which shows
the forces acting on nodes 1 through 5 of this model, is depicted in Figure 1.4.
Static equilibrium requires that the sum of the forces acting on each node be

zero. This requirement creates the following five equations:

nodel: R, —kjuy —u) =0 (1.8)

node 2. Kki(uy — uy) — ky{u; — u,) = 0

node 3:  ky(us — uy) — ka{ug — u3) = 0

node 4:  k3(uy — u3) — ky{us — uy) =0

nodeS:  k4us —uy)) — P =0

Rearranging the equilibrium equations given by Eq. (1.8) by separating the reac-
tion for¢e R, and the applied external force P from the internal forces, we have:

kyuy —kyu, =-R
~kiwy tkiu, tkouy, —kyus =0
—kauy, “‘hyuz tksus  —kyuy =0 (1.9)
~kyuy tksu, +ku, —kyus=0
—ksu, +tksus =P

Presenting the equilibrium equations of Eq. (1.9) in a matrix form, we have:

k& —k 0 0 0 7 (u -R,

ki ki +ky =k 0 0 | |u 0
0 —~ky ky+ks —ky 0 [{uzp =4 0 (1.10)
0 0 ks kst kg —kg | | 0
0 0 0 ke ke | \us P

Section 1.5 Direct Formulation 11

FIGURE 1.4 Free body diagram of the
nodes in Example 1.1.

It is also important to distinguish between the reaction forces and the ap-
plied loads in the load matrix. Therefore, the matrix relation of Eq. (1.10) can be
written as:

—R, k, —k 0 0 0] (u 0
0 -k ki +k -~k 0 0 | |w 0
0 =] 0 —ky ky+ky —ks 0 [{uzp—{0 (1.11)
0 0 0 —ky ks ky ke | | u 0
0 0 0 0 kg ke | lus P

We can readily show that under additional nodal loads and other fixed boundary
conditions, the relationship given by Eq. (1.11) can be put into the general form

{R} = [K]{u} - {F} (1.12)

which stands for
{reaction matrix} = [stiffness matrix}{displacement matrix} — {load matrix}

Turning our attention to Example 1.1 again, we find that because the bar is
fixed at the top, the displacement of node 1 is zero. Thus, the first row of the sys-
tem of equations given by Eq. (1.10) should read u; = 0. Thus, application of the
boundary condition leads to the following matrix equation:
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1 0 0 0 0 u, 0
Kk k+k, —k 0 0 ||w 0

0 —k, ky+ky —ks 0 |Qusp=40 (1.13)
0 0 —ky kst ky —ky||ug 0

0 0 0 ke ke | lus P

The solution of the above matrix yields the nodal displacement values. In the next
section, we will develop the general elemental stiffness matrix and discuss the con-
struction of the global stiffness matrix by inspection.

. Develop equations for an element.

Because each of the elements in Example 1.1 has two nodes, and with each node
we have associated a displacement, we need to create two equations for each ele-
ment. These equations must involve nodal displacements and the element’s stiff-
ness. Consider the internally transmitted forces f; and f,,, and the end displacements
u; and u;, of an element, which are shown in Figure 1.5.

Static equilibrium conditions require that the sum of f; and f;;, be zero. Note
that the sum of f; and f,, is zero regardless of which representation of Figure 1.5
is selected. However, for the sake of consistency in the forthcoming derivation, we
will use the representation given by Figure 1.5(b), so that f; and f;,, are given in the
positive y-direction. Thus, we write the transmitted forces at nodesiandi + 1 ac-
cording to the following equations:

fi= keq(ui = Uiyq) (1.14)
finn = keq(ui+1 - u;)

Equation (1.14) can be expressed in a matrix form by

Fl | kg —ke U
{f.-ﬂ}—[—k:q keqq] {um} (1.15)

4. Assemble the elements to present the entire problem.

Applying the elemental description given by Eq. (1.15) to all elements and as-
sembling them (putting them together) will lead to the formation of the global
stiffness matrix. The stiffness matrix for element (1) is given by

fi= keq(ui+1 - u) 1 fi= keq(ui )]
node i node i
Wy b b T
OR y
T nodei+1 T nodei+1
u; u:
s fun1 = keq(tiy1 — ) ! fur = keqltisr — )

(a) (b)

FIGURE 1.5 Internally transmitted forces through an arbitrary element.
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k -k
™ = ! !
(K] [—kl , ]

and its position in the global stiffness matrix is given by

ki —k, 0 0 0]u
—k, k, 0 0 O |u
K= 0 0 00 0fu
0 0 00 0fu

0 0 0 0 0_us

The nodal displacement matrix is shown alongside the position of element 1
in the global stiffness matrix to aid us to observe the contribution of a node to its
neighboring elements. Similarly, for elements (2), (3), and (4), we have

k, -k
K@ = 2 2
[k [—kz ky

and its position in the global matrix
0 0 0

00 uy
0 k2 _kz 0 0 Uy
K9 =10 -k, k, 0 0 ]u
0 o0 0 0 0y,
0 0 0 0 0 fus
k k
3) — 3 3
=5 ]
and its position in the global matrix
00 0 0 0y
00 O 0 0w
KP9 =10 0 ky —k; 0wy
0 0 _k3 k3 0 Uy
00 O 0 0 ]us
and
ky —k
@ = 4 T
[l [_k4 ky }
and its position in the global matrix
000 O 0 |y
000 O 0 {u
K =10 00 0 0 |u
0 00 k4 _k4 Uy
000 _k4 k4 Us
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The final global stiffness matrix is obtained by assembling, or adding, together
each element’s position in the global stiffness matrix:

[K](G) _ [K](IG) + [K](zc) + [K]"G) + [K]“‘G)

kK —k 0 0 0
—k kit k, =k 0 0
KI9=| 0 -k, ky+hks —ky O (1.16)
0 0 —ks  ky+ kg —kq
0 0 0 A 7

Note that the global stiffness matrix obtained using elemental description, as given by

Eq.(1.16),is identical to the global stiffness matrix we obtained earlier from the analy-

sis of the free body diagrams of the nodes, as given by the left hand side of Eq. (1.10).
5. Apply boundary conditions and loads.

The bar is fixed at the top, which leads to the boundary condition #; = 0.The ex-

ternal load P is applied at node 5. Applying these conditions results in the fol-

lowing set of linear equations.

1 0 0 0 0 (u 0
—k ky+k,  —k 0 0 | |u 0

0 —ky, ky+ks —k5 0 [{uzp=+0 (1.17)
0 0 —ky kst ks ke | |ua 0

0 0 0 —ky ke | lus P

Again, note that the first row of the matrix in Eq. (1.17) must contain a 1 followed
by four 0s to read u; = 0, the given boundary condition. Also note that in solid
mechanics problems, the finite element formulation will always lead to the fol-
lowing general form:

[stiffness matrix}{displacement matrix} = {load matrix}
Solution Phase

6. Solve a system of algebraic equations simultaneously.
In order to obtain numerical values of the nodal displacements, let us assume that
E = 10.4 x 10°Ib/in? (aluminum),w; = 2in,w, = lin,z = 0.125in,L = 10in,
and P = 1000 Ib. You may consult Table 1.4 while working toward the solution.

TABLE 1.4 Properties of the elements in Example 1.1

bl

Average Modulus of Element’s stiffness
cross-sectional Length elasticity coefficient
Element Nodes area (in?) (in) (Ibfin?) (Ib/in)
1 1 2 0.234375 25 104 x 10° 975 % 10°
2 2 3 0.203125 25 104 X 10° 845 x 10°
3 3 4 0.171875 25 104 x 10°¢ 715 x 10°
4 4 5 0.140625 25 104 X 10° 585 x 10°
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The variation of the cross-sectional area of the bar in the y-direction can be
expressed by:

Aly) = (w‘l + (“’2 ; w‘>y)t = (2 + a 1_02)y>(0.125) =025 — 00125y  (1.18)

Using Eq. (1.18), we can compute the cross-sectional areas at each node:
Ay = 025in? A; = 025 - 0.0125(2.5) = 0.21875 in’
A; = 025 — 0.0125(5.0) = 0.1875in> A, = 0.25 — 0.0125(7.5) = 0.15625 in’

As = 0.125 in?
Next, the equivalent stiffness coefficient for each element is computed from the
equations
P (Airy + A)E
@ 2¢
(021875 + 0.25)(104 X 10°) Ib
1= 225) =975 X 1035
(0.1875 + 0.21875)(10.4 x 10%) 1b
ky, = =845 X 10> —
2 2(2.5) 5X 10 in
(0.15625 + 0.1875)(10.4 x 10°%) b
ks = =715 X 10° —
? 2(2.5) 10 in
(0.125 + 0.15625)(10.4 x 10%) Ib
= = X pu——
¢ 2(2.5) 585 X 10° in
and the elemental matrices are
[k k] [ 975 -9757]
K0 = i =108
(K] | ~ky k| | —975 975 |
[k —ky | [ 845 8457
K@ = 2 2 | =
K] | —ks ko] 1 | —845 845 |
[k -k ] [ 715 -7157]
K1® = 3 3 =108
(K] | —ks ks 10 | —715 715 |
[ k. -k, | [ 585 —5857]
K® = 4 4 =108
(K] ks kg | | —585 585 ]
Assembling the elemental matrices leads to the generation of the global stiffness
matrix:
975 —975 0 0 0
—975 975 + 845 —845 0 0
[K9=10*] 0 —845 845+ 715  -715 0
0 0 =715 715 + 585 —585

0 0 0 —585 585
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Applying the boundary condition #; = 0 and the load P = 1000 Ib, we get
1 0 0 0 0 u 0
-975 1820 -—-845 0O 0 Uy 0
10, 0 —845 1560 —715 0 uz;p =4 0
0 0 =715 1300 -585 | {us 0
0 0 0 —585 585 Us 10°

Because in the second row, the —975 coefficient gets multiplied by u; = 0, we need
only to solve the following 4 X 4 matrix:

1820 —845 0 0 (u, 0
| 845 1560 =715 0 | Ju _ )0
0 —715 1300 —585 ||u, 0
0 0 -585 585 | lus 10%

The displacement solution is: u; = 0, 4, = 0.001026 in, u; = 0.002210 in, uy =
0.003608 in, and us = 0.005317 in.

Postprocessing Phase

7. Obtain other information.
For Example 1.1, we may be interested in obtaining other information, such as the
average normal stresses in each element. These values can be determined from
the equation
Aual ( )
Uu; — Uu;
f keg(ttir — u;) 4 i+l ! Uipy — U
o=—"—= = =E (1.19)
Aa"g AﬂVE Aavg ¢

Since the displacements of different nodes are known, Eq. (1.19) could have been
obtained directly from the relationship between the stresses and strains,

o = Es = E(iﬂe_—“> (1.20)

Employing Eq. (1.20) in Example 1.1, we compute the average normal stress for
each element as

Section 1.5
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FIGURE 1.6 The internal forces in Example 1.1.
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In Figure 1.6, we note that for the given problem, regardless of where we cut a

section through the bar, the internal force at the section is equal to 1000 Ib. So,

o) = Afm = % = 4267 %
o = Aj:vg = % = 4923 i—lnb—z
o® = Afa - ST = 5818 1
o = Af = % = 7111 %

avg

6

e E(uz e ul) _ (104 %10 );(.)5001026 0 _ et %

o E(u3 uz) _ (10.4 X 109(0.002210 — 0.001026) _ s
14 25 in?

o - E<u4 - u3) _ (104 X 10)(0.003608 — 0.002210) _ __ b
14 25 in?

o = E(us u4) _ (104 X 109(0.005317 - 0.003608) _ _ Ib
¢ 2.5 in?

Ignoring the errors we get from rounding off our answers, we find that these re-
sults are identical to the element stresses computed from the displacement infor-
mation. This comparison tells us that our displacement calculations are good for
this problem.

Reaction Forces For Example 1.1, the reaction force may be computed in
a number of ways. First, referring to Figure 1.4, we note that the statics equilibri-
um at node 1 requires

R, = ki(u, — uy) = 975 X 10°(0.001026 — 0) = 1000 Ib
The statics equilibrium for the entire bar also requires that
R, = P =10001b

As you may recall, we can also compute the reaction forces from the general re-
action equation

{R} = [K){u} - {F}

or



18 Chapter 1 Introduction
{reaction matrix} = [stiffness matrix]}{displacement matrix} — {load matrix}
Because Example 1.1 is a simple problem, we do not actually need to go through
the matrix operations in the aforementioned general equation to compute the re-
action forces. However, as a demonstration, the procedure is shown here. From the
general equation, we get
R, 9715 =975 0 0 0 0 0
R, -975 1820 -845 0 0 0.001026 0
Ry = 10° 0 -85 1560 -715 O 0.002210 — ¢ O
R, 0 0 -715 1300 -585 | |0.003608 0
Rs 0 0 0 -—585 585 0.005317 10°
where Ry, Ry, R;, R,, and R; represent the reactions forces at nodes 1 through S,
respectively. Performing the matrix operation, we have
R, —1000
R, 0
R3 = 0
R, 0
Rs 0
The negative value of R, simply means that the direction of the reaction force is
up (because we assumed that the positive y-direction points down). Of course, as
expected, the outcome is the same as in our earlier calculations because the rows
of the above matrix represent the static equilibrium conditions at each node. Next,
we will consider finite element formulation of a heat transfer problem.
EXAMPLE 1.2
A typical exterior frame wall (made up of 2 X 4 studs) of a house contains the materi-
als shown in the table below. Let us assume an inside room temperature of 70°F and an
outside air temperature of 20°F, with an exposed area of 150 ft*>. We are interested in de-
termining the temperature distribution through the wall.
Resistance U-factor
Items href-F/Btu Btu/hreft%F
1. Outside film resistance (winter, 15-mph wind) 0.17 5.88
2. Siding, wood (1/2 X 8 lapped) 0.81 123
3. Sheathing (1/2 in regular) 1.32 0.76
4. Insulation batt (3 — 31/2in) 11.0 0.091
5. Gypsum wall board (1/2 in) 045 222
6. Inside film resistance (winter) 0.68 1.47

T,=20°F
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T;=70°F

FIGURE 1.7 Finite element model of Example 1.2.

Preprocessing Phase

1.

Discretize the solution domain into finite elements.

We will represent this problem by a model that has seven nodes and six elements,
as shown in Figure 1.7.

Assume a solution that approximates the behavior of an element.

For Example 1.2, there are two modes of heat transfer (conduction and convection)
that we must first understand before we can proceed with formulating the con-
ductance matrix and the thermal load matrix. The steady state thermal behavior
of the elements (2), (3), (4), and (5) may be modeled using Fourier’s Law. When
there exists a temperature gradient in a medium, conduction heat transfer occurs,
as shown in Figure 1.8. The energy is transported from the high-temperature re-
gion to the low-temperature region by molecular activities. The heat transfer rate
is given by Fourier’s Law:

=-kA— 1.21
ax 3X (12
g is the X-component of the heat transfer rate, k is the thermal conductivity of the

. . aT . . . -
medium, A is the area, and X is the temperature gradient. The minus sign in

—— ———»

FIGURE 1.8 Heat transfer in a medium by
conduction.
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Eq. (1.21) is due to the fact that heat flows in the direction of decreasing temper-
ature. Equation (1.21) can be written in a difference form in terms of the spacing
between the nodes (length of the element) € and the respective temperatures of
the nodesiandi + 1, T; and T}, according to the equation

_ kA(T;'ﬂ - Tx)
B ¢

In the field of heat transfer, it is also common to write Eq. (1.22) in terms of
the thermal transmittance coefficient U, or, as it is often called, the U-factor
(U = %). The U-factor represents thermal transmission through a unit area and
has the units of Btu/hr-ft>F. It is the reciprocal of thermal resistance. So,

q=UA{T, - T) (1.23)

The steady state thermal behavior of elements (1) and (6) may be modeled
using Newton’s Law of Cooling. Convection heat transfer occurs when a fluid in
motion comes into contact with a surface whose temperature differs from the mov-

ing fluid. The overall heat transfer rate between the fluid and the surface is gov-
erned by Newton’s Law of Cooling, according to the equation

q = hA(T, — Tj) (1.24)
where h is the heat transfer coefficient, T is the surface temperature, and T rep-

resents the temperature of the moving fluid. Newton’s Law of Cooling can also be
written in terms of the U-factor, such that

q=UA(T, - Ty) (1.25)
where U = h, and it represents the reciprocal of thermal resistance due to con-
vection boundary conditions. Under steady state conduction, the application of
energy balance to a surface requires that the energy transferred to this surface via
conduction must be equal to the energy transfer by convection. This principle,

aT

—kAa—Aj = hA[T, — T;] (1.26)

(122)

is depicted in Figure 1.9.

<—-——€—>|

Ti+1

FIGURE 1.9 Energy balance at a surface
with a convective heat transfer.

SR
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Now that we understand the two modes of heat transfer involved in this
problem, we can apply the energy balance to the various surfaces of the wall, start-
ing with the wall’s exterior surface located at node 2. The heat loss through the
wall due to conduction must equal the heat loss to the surrounding cold air by
convection. That is,

LAT - T) =0 AT - T,)

The application of energy balance to surfaces located at nodes 3,4, and 5 yields the
equations

VAT, - T;) = VAT - T,)
UAT - T) = AT, - T3)
UsA(Ts — Ts) = U, A(Ts ~ To)

For the interior surface of the wall, located at node 6, the heat loss by convection
of warm air is equal to the heat transfer by conduction through the gypsum board,
according to the equation

Us AT, — Te) = Us A(T, — T)
Separating the known temperatures from the unknown temperatures, we have:

+U, + B)AT, —~U,AT, = U AT,
_Uz AT‘Z +(U2 + U])AT:; _U3 AT4 = 0

—U; AT, +U; + Uy) AT, —-U,AT; = 0
~U, AT, +(U, + Us) AT; =U; AT = 0
-U; AT, +Us + Ug) ATy = U AT,
The above relationships can be represented in matrix form as
Ul + UZ _U2 O O 0 T2 Ul ATI
_U2 Uz + U3 "U3 O 0 T3 0
A 0 -, GL+U U, 0 Tyt = 0 (1.27)
0 0 -U, U +U —Us T 0
0 0 0 _U5 US + U6 Tﬁ U6 AT7

Note that the relationship given by Eq. (1.27) was developed by applying the con-

servation of energy to the surfaces located at nodes 2,3,4, 5, and 6. Next, we will con-

sider the elemental formulation of this problem, which will lead to the same results.
3. Develop equations for an element.

In general, for conduction problems, the heat transfer rates, q; and g;,,,and the nodal

temperatures, T; and T}, , for an element are related according to the equations

kA
q = _e_(Ti = Tis1)

kA
div1 = T(THI -T) (1.28)
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-« ——— -~ ————

Ti+1

i1 = ’% (Tin-T)

(a) ®)
FIGURE 1.10 Heat flow through nodes i and i + 1.

The heat flow through nodes i and i + 1 is depicted in Figure 1.10.

Because each of the elements in Example 1.2 has two nodes, and we have as-
sociated a temperature with each node, we want to create two equations for each
element. These equations must involve nodal temperatures and the element’s ther-
mal conductivity or U-factor, based on Fourier’s Law. Under steady state conditions,
the application of the conservation of energy requires that the sum of g; and g;,;
into an element be zero; that is, the energy flowing into node i + 1 must be equal
to the energy flowing out of node i. Note that the sum of g; and g, is zero re-
gardless of which representation of Figure 1.10 is selected. However, for the sake
of consistency in the forthcoming derivation, we will use the representation given
by Figure 1.10(b). Elemental description given by Eq. (1.28) can be expressed in ma-

trix form by
== 1.29
{‘Ii+1} ¢ L1 1 T ( )

The thermal conductance matrix for an element is

kAl 1 -1
() = ——
(K19 == [_ L1 ] (130)
The conductance matrix can also be written in terms of the U-factor (U = %)
1 _
[K]“)=UA[_ . 11] (131)

Similarly, under steady state conditions, the application of the conservation of en-
ergy to the nodes of a convective element gives

q; = hA(T; — Tyy)
g1 = BA(T,, — T) (1.32)
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Equation (1.32) expressed in a matrix form is

{qql} -k [—11 _11] {TTI}

The thermal conductance matrix for a convective element then becomes

o 1 -1
[(K]® = hA [_1 ) J (1.33)

Equation (1.33) can also be written in terms of the U-factor (U = h):

o 1 -1
(K@ =UA [_ L1 J (1.34)

. Assemble the elements to present the entire problem.

Applying the elemental description given by Egs. (1.31) and (1.34) to all of the el-
ements in Example 1.2 and assembling leads to the formation of the global stiff-

ness matrix. So,
U -U
K®=24 1 1
[ ] |:”'U1 U

and its position in the global matrix is

T
T
I
T,
Ts
Ty
T;

[K](IG) =A

OO0 C oo O

|
ooooo_qg
ooooogé
cocoocoocooo
coocoocooo
coooc oo o
coococ o oo

0

The nodal temperature matrix is shown along with the global thermal conduc-
tance matrix to help you observe the contribution of a node to its neighboring el-
ements:

I
[
I
T,
Ts
Ts
I

[ E—
=)

=3

o

R

8
i

b

cooo o oo

|
ooooSSo
ooooNQQ':o

)
coococoo oo
coocoocooo
coocoo oo
cocooocooo
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1

00 0 0 00
00 0 0 00
U -U 00 U -U 00
[K](”:A[_Ij Uﬂ and [KI®®=4|0 0 -U, U; 0 0
P 00 0 0 00
00 0 0 00
00 0 0 00
[0 00 0 0 0
000 O O O
U -u 000 O 0 0
[K](“)‘A[_(} U“J and [K]*'=A4|0 0 0 U, -U, 0
M 000 -U U 0
000 0 0 O
1000 0 0 0
0000 0 0
0000 O 0
U -u 0000 0 0
[K]“MA[_;] US] and [K]*9=410 0 00 0 0
s 0000 U -Us
0 000 —-U U
L0000 0 ©
[0 0000 o
00000 O
U -u 00000 O
[K]“”zA[_(j UG} and (K]*)=4|0 0 0 0 0 0
6 e 00000 O
00000 U
(00 0 0 0 ~U
The global conductance matrix is
[K]©@ = [K]1O + [K]®D + [K]*9 + (K4 + [K]®O + K]
U -U 0 0 0 0 0
U, U+U, -U 0 0 0 0
0 U, U+U U 0 0 0
K9 =4} 0 0 U, Us+U  -U, 0 0
0 0 0 U, U +U ~Us 0
0 0 0 0 -Us U+ U U
| 0 0 0 0 0 -Us U |

&

(=R e R o B e B e}

S

OO0 OO OO0 OO ODO0OOO0 OO0 OO OO

|

(1.35)

[

-0
0

[N I e B o
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5. Apply boundary conditions and thermal loads.

For the given problem, the exterior of the wall is exposed to a known air temper-
ature 7, and the room temperature, T3, is also known. Thus, we want the first row
toread T; = 20°F and the last row to read T; = 70°F. So, we have

0 0 0 0 0 0 (T 20°F
Uu+U, -U 0 0 0 o ||n 0
U, U+U -U 0 0 o ||n 0
0 U, U +U -U, 0 0 {({T.} =X 0 (1.36)
0 0 -U, U+U -U 0 ||% 0
0 0 0 -Us U +U U ||T 0
0 0 0 0 0 v 4 \n 70°F

Note that the finite element formulation of heat transfer problems will always lead
to an equation of the form

[KNT} = {q}
{conductance matrix }{temperature matrix} = {heat flow matrix}

Also note that for Example 1.2, the heat transfer rate through each element was
caused by temperature differences across the nodes of a given element. Thus, the
external nodal heat flow values are zero in the heat flow matrix. An example of a
situation in which external nodal heat values are not zero is a heating strip at-
tached to a solid surface (e.g., the base of a pressing iron); for such a situation, the
external nodal heat value is equal to the amount of heat being generated by the
heating strip over the surface. Turning our attention to the matrices given by Eq.
(1.36), and incorporating the known boundary conditions into rows 2 and 6 of the
conductance matrix, we can reduce Eq. (1.36) to

U +U, -U 0 0 0 T, U, AT,
-U, U,+U -U 0 0 T 0
Al o -U, U +U -U, 0 T,p={ 0
0 0 U, U +U U T 0

0 0 0 Uy U +U | \T, UAT,

Keep in mind that the above matrix was obtained by assembling the elemental
description and applying the boundary conditions. Moreover, the results of this
approach are identical to the relations we obtained earlier by balancing the heat
flows at the nodes, as given by Eq. (1.27). This equality in the outcome is expect-
ed because the elemental formulations are based on the application of energy bal-
ance as well.

Referring to the original global matrix, substituting for the U-values, and em-
ploying the given boundary conditions, we have
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L 0 0 0 0 0 0
150 T, 20°F
-5.885.88+123 -1.23 0 0 0 0 T, 0
0 -123 123+076 -0.76 0 0 0 T; 0
0 0 -0.76 0.76+0.091 -0.091 0 0 Typ=4 O
0 0 0 —-0.091 0.091+222 -222 0 Ts 0
0 0 0 0 —222 222+147-147 | |Ts 0
1 T, 70°F
0 0 0 0 0 0 150 B
Simplifying, we obtain
711 -123 0 0 0 T, (5.88)(20)
-123 199 -0.76 0 0 T3 0
0 —-0.76 0.851 -0.091 0 Ty = 0
0 0 -0.091 2311 =222 Ts 0
0 0 0 -222 369 T (1.47)(70)

Solution Phase

6. Solve a system of algebraic equations simultaneously.
Solving the previous matrix yields the temperature distribution along the wall:

T, 20.00
T 20.59
T 23.41
Ty = {27.97 °C
Ty 66.08
T, 67.64
T 70.00

For problems similar to the type discussed here, the knowledge of temperature dis-
tribution within the wall is important in determining where condensation may occur
in the wall and, thus, where should one place a vapor barrier to avoid moisture con-
densation. To demonstrate this concept, let us assume that moisture can diffuse
through the gypsum board and that the inside air has a relative humidity of 40%. With
the help of a psychometric chart, using a dry bulb temperature of 70°F and the value
¢ = 40%, we identify the condensation temperature to be 44°F, Therefore, the water
vapor in the air at any surface whose temperature is 44°F or below will condense. In
the absence of a vapor barrier, the water vapor in the air will condense somewhere
between surface 5 and 4 for the assumed conditions in this problem.

Postprocessing Phase

7. Obtain other information. i
For this example, we may be interested in obtaining other information, such as heat
loss through the wall. Such information is important in computing the heat load for
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a building. Because we have assumed steady state conditions, the heat loss through
the wall should be equal to the heat transfer through each element. This value can
be determined from the equation

q=UA(T.; - T) (137
The heat transfer through each element is:

q = UA(T;, — T;) = (1.47)(150)(70 — 67.64) = (2.22)(150)(67.64 — 66.08) = ---

= (5.88)(150)(20.59 — 20) = 5201—3}:7“

We also could have calculated the heat loss through the wall using the over-
all U-factor in the following manner:

1
q= UoverallA(Tinside - Toutside) = S Resistance A(Tinside - Tontside)
Bt
= (0.0693)(150)(70 — 20) = szoir‘i

This problem is just another example of how we can generate finite element mod-
els using the direct method.

A Torsional Problem: Direct Formulation

EXAMPLE 1.3

Consider the torsion of circular shafts, shown in Figure 1.11. Recall from your previous
study of the mechanics of materials that the angle of twist 8 for a shaft with a constant
cross-sectional area with a polar moment of inertia J and length €, made of homogenous
material with a shear modulus of elasticity G, subject to a torque T is given by

_Ie
—JG

FIGURE 1.11 A torsion of circular shaft.
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Using direct formulation, equilibrium conditions, and
T¢
6 =—
JG
we can show that for an element comprising of two nodes, the stiffness matrix, the angle
of twists, and the torques are related according to the equation
JG1 1 -1]/[e, T
>~ = 1.38
SEIINEH e
We will discuss torsional problems in much more detail in Chapter 8. For now, let
us consider a shaft that is made of two parts, as shown in Figure 1.12. Part AB is made
of material with a shear modulus of elasticity of G,; = 3.9 X 10° Ib/in? and has a di-
ameter of 1.5 in. Segment BC is made of slightly different material with a shear modu-
lus of elasticity of G- = 4.0 X 10° Ib/in? and with a diameter of 1 in. The shaft is fixed
at both ends. A torque of 200 1b-ft is applied at D. Using three elements, let us determine
the angle of twist at D and B, and the torsional reactions at the boundaries.
We will represent this problem by a model that has four nodes at A,B,C,and D,
respectively, and three elements (AD, DB, BC).
The polar moment of inertia for each element is given by:
_ o, 1 .1 (15 . 4
h=5L= 2T = 217( 2 ln) = 0.497 in
1 1 (10, \*
Jo==mrt = = q| 22 = Q. in*
s =5 2"n'< 2 1n) 0.0982 in'
The stiffness matrix for each element is computed from Eq.(1.38) as
JG| 1 -1
Kl© = =
(K] ¢ [—1 1 :l
So, for element (1), the stiffness matrix is
o (3.9 X 10°1b/in®)(0.497in*) [ 1 -1 64610 64610 .
(K@ = - = 1b-in
(12 X 2.5) in -1 1 —64610 64610
and its position in the global stiffness matrix is
15in T=2001b- ft

FIGURE 1.12 A schematic of the shaft in

Example 1.3.
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i
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64610 —64610 0 0]86,
(K]0O) = —64610 64610 0 O |6,
0 0 0 0],

0 0 0 0]e,

Similarly, for elements (2) and (3), their respective stiffness matrices and positions in the
global stiffness matrix are as follows:

6 11 /in2 ind = _
KD = (3.9 X 10° Ib/in?)(0.497 in*) [ 1 1} _ [ 161525 161525] Ibein

(12 X 1.0) in -1 1 -161525 161525
0 0 0 06,
ey _ | 0 161525 —161525 0 |6,
[KI™ =10 61525 161525 0 8,
0 0 0 0|,
6 in? iy [ _ _
[K](3)=(4.0><10 Ib/in”)(0.0982in%) [ 1 -1] _ [ 16367 16367] b
(12 X 2.0) in [ -1 1 -16367 16367
00 O 0 0,
K] = 00 0 0 0,
0 0 16367 -—16367 |6,

0 0 —16367 16367 |6,

The final global matrix is obtained simply by assembling, or adding, elemental descrip-
tions:

[KJ9 = [KI'9 + [KI* + [K]*®

64610 —64610 0 0
G _ | —064610 64610 + 161525 —161525 0.
(K™ = 0 —161525 161525 + 16367 —16367
0 0 ~16367 16367

Applying the fixed boundary conditions at points A and C and applying the external
torque, we have:

1 0 0 0 6, 0
—64610 226135 —161525 0 6,0 _ )—(200 x 12} 1b-in
0 —161525 177892 —16367 | |6, 0
0 0 0 1 0, 0
Solving the above set of equations, we obtain

0, 0
6, _ ]—0.03020 rad
8,  |-0.02742rad

04 0
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The reaction moments at boundaries A and C can be determined as follows:

{R} = [K]{6} - {T}

R, 64610  —64610 0 0 0 0

Rp| | —64610 226135 -161525 0 —0.03020rad | | —(200 X 12) Ib-in
Re[ | 0 —161525 177892 —16367 | |—0.02742rad [~ 0

Re 0 0 ~16367 16367 0 0

R.) (19511b-in

Ryl ] 0

Rg| 0

Re] | 4491b-in

Note that the sum of R4 and R is equal to the applied torque of 2400 Ib-in. Also note
that the change in the diameter of the shafts will give rise to stress concentrations that
are not accounted for by the model we used here.

800 1b

EXAMPLE 1.4

A steel plate is subjected to an axial load, as shown in Figure 1.13. Approximate the de-
flections and average stresses along the plate. The plate is 1/16 in thick and has a mod-
ulus of elasticity E = 29 X 10°Ib/in2.

We may model this problem using four nodes and four elements, as shown in Fig-
ure 1.13. Next, we compute the equivalent stiffness coefficient for each element:

_AE _ (5)(0.0625)(29 X 10°)

FIGURE 1.13 A schematic of the steel plate
in Example 1.4.

k, A 1 = 9,062,500 Ib/in B
! 0625129 X 105 [0 0 0 0
2)(0. X 10 - n
ky =k = AgE = 2)( l( ) = 906,250 1b/in [K](Z) _ ky, —k, [K](ZG) _ 0 k —kkz 0w
2 _—kz i, 0 —k, 2 0 [u
AE  (5)(0.0625)(29 X 10° 0 0 o0 O
ky = 2 _ 68X )2( ) _ 4,531,250 Ib/in L ﬁ Ua
4 0 0 0 0|y
The stiffness matrix for element (1) is & [ &, —k; | oo _ |0 ks —ks 0|,
KP=1 -k, & KI=10 & & 0|u
[K](l) = ke h 3 3 . 3 3 3
—k Kk 7_0 0 0 0 u
and its position in the global stiffness matrix is ~ 00 0 0 juy
ki —k 0 07w Ko <| % —k, | K@=|00 0 0 ju
_k4 k4 0 0 k4 _k4 Us
ki ki 0 0 |u L =
(K19 = 0 0 —k, ki |u
0 0 0 0 |u — 4 T dT4

0 0 0 0ju,

Similarly, the respective stiffness matrices and positions in the global stiffness matrix
for elements (2), (3), and (4) are

The final global matrix is obtained simply by assembling, or adding, the individual
elemental matrices:

[KI® = [KI' + [K]® + [KI* + (K}
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kl _k1 0 0
[K]© = ki kit kyt+ky  —k, — ks 0

0  —ky—ky hyt kst ks —k

0 0 ~k, ks

Substituting for the elements’ respective stiffness coefficients, the global stiffness matrix
becomes:

9,062,500  —9,062,500 0 0

[K]©) = 9,062,500 10,875,000 —1,812,500 0
0 1,812,500 6,343,750 —4,531,250
0 0 —4,531,250 4,531,250

Applying the boundary condition u; = 0 and the load to node 4, we obtain

1 0 0 0 u 0
—9,062,500 10,875,000 —1,812,500 0 w| )0
0 —-1,812,500 6,343,750 -4,531250 | Ju,[ " ]} ©
0 0 —4,531,250 4,531,250 Uy 800
Solving the system of equations yields the displacement solution as
Uy 0
u| _ }8827 x 1075 .
s 5296 x 1074 ™
Uy 7.062 X 107
and the stresses in each element are:
o) = E(uz - u1> _ (29 x 10°)(8.827 x 107 — 0) — 2560 b
¢ 1 - in?
5@ = 4O - E<u3 - uz) _ (29 X 10°)(5.296 x 10 — 8,827 X 107%) _ 3200111
¢ 4 in?
o — E<u4 - u3> _ (29 X 10°)(7.062 X 107 - 5.296 x 1074 _ 2560£
¢ 2 B in

Note that the model used to analyze this problem consisted of springs in parallel
as well as in series. The two springs in parallel could have been combined and repre-
sented by a single spring having a stiffness equal to k, + k5. Also note that because of
the hole, the abrupt changes in the cross section of the strip will give rise to stress con-
centrations with values exceeding those average values we computed here. After you
study plane-stress finite element formulation (discussed in Chapter 8), you will revisit
this problem (see Problem 8.13) and be asked to solve it using ANSYS. Furthermore, you
will be asked to plot the components of the stress distributions in the plate and, thus, iden-
tify the location and magnitude of maximum stresses,
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A ANSYS Graphies

FIGURE 1.14 The x-component of stress distribution for the plate in Example 1.4, as
computed by ANSYS.

To give you just a taste of what is to come in Chapter 8 and also to shed more light
on our discussion about the stress concentration regions, we have solved Example 1.4
using ANSYS and have determined the x-component of the stress distribution in the
plate, as shown in Figure 1.14. In the results shown in Figure 1.14, the load was applied
as a pressure over the entire right surface of the bar. Note the variation of the stresses
at section A-A from approximately 3000 psi to 3500 psi. At section B—B, the x-compo-
nent of the stresses varies from approximately 2300 psi to 2600 pst. These values are not
that far off from the average stress values obtained using the direct model. Also note that
the maximum and minimum stress values given by ANSYS could change, depending
upon how we apply the load to the bar, especially in the regions near the point of load
application and the regions near the hole. Keeping in mind Example 1.4 and Figure 1.13,
remember that in a real situation, the load would be applied over an area, not at a sin-
gle point. Thus, remember that how you apply the external load to your finite element
model will influence the stress distribution results, particularly in the region near where
the load is applied. This principle is especially true in Example 1.4 because it deals with
a short plate with a hole.

1.6 MINIMUM TOTAL POTENTIAL ENERGY FORMULATION

The minimum total potential energy formulation is a common approach in generating
finite element models in solid mechanics. External loads applied to a body will cause the
body to deform. During the deformation, the work done by the external forces is stored
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FIGURE 1.15  The elastic behavior of a member subjected to a central load.

in the material in the form of elastic energy, called strain energy. Let us consider the

strain energy in a solid member when it is subjected to a central force F, as shown in Fig-
ure 1.15.

Also shown in Figure 1.15 is a'piece of material from the member in the form of
differential volume and the normal stresses acting on the surfaces of this volume. Ear-
lier, it was shown that the elastic behavior of the member may be modeled as a linear

spring. When the member is stretched by a differential amount dy’, the stored energy in
the material is

y y 1 1
dA = j Fdy' = [ ky'dy = Zky? = (——ky’)y’ (1.39)
A A 2 2
We can write Eq. (1.39) in terms of the normal stress and strain:

elastic force

y
1~ 1 ~= 1
dA=§ (ky') y = Eo—ydxdz edy=§aedV

Therefore, for amember or an element under axial loading, the strain energy A is given by
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2
A© = IdA = J %dV = I ETSdV (1.40)
|4 14

where V is the volume of the member. The total potential energy II for a body consist-
ing of n elements and m nodes is the difference between the total strain energy and the
work done by the external forces:

I=3A0- > Fu (1.41)
e=1 i=1

The minimum total potential energy principle simply states that for a stable sys-
tem, the displacement at the equilibrium position occurs such that the value of the sys-
tem’s total potential energy is a minimum.

all J < 3 &
—=—>A9— — N Fu;=0 fori =1273,.,n 1.42)
ou; oy ;o au; i3

Let us turn our attention back to Example 1.1. The strain energy for an arbitrary
element (e) can be determined from Eq. (1.40) as

2 A E
A€ = LETS”V = 2 i~ ) (1.43)

where £ = (u;,; — u;)/€ was substituted for the axial strain. Minimizing the strain en-
ergy with respect to u; and u;,, leads to

dN® A, E
—a_uT = "j;i“(“i — Uipq) (1.44)
IA© B Aang ( )
F =7 Uiv] — U;
and, in matrix form,
IA®
o kg —keg { u; }
= 145
aA® li—keq keq Uiy (145)
MUieq

where k., = (A,,E)/¢. Minimizing the work done by the external forces at nodes i and
i + 1 of an arbitrary element (e), we get

)
—(Fu)) = F. 1.46
2 (Fu) = F (146)
|
E (Fattiny) = Fiq

For Example 1.1, the minimum total potential energy formulation leads to a global stiff-
ness matrix that is identical to the one obtained from direct formulation:



36 Chapter 1 Introduction

k, -k, 0 0 0
—ky ky+k, -k, 0 0
K@=| o —ky, kytky —ks 0
0 0 —ks kst ky —k
0 0 0 ~k, ks
Furthermore, application of the boundary condition and the load results in:
1 0 0 0 0 u 0
—k kit ky -k 0 0 u, 0
0 ~ky, kytks ks 0 us p =140 (1.47)
0 0 —ky kst kg —ky | fug 0
0 0 0 ~ky k, us P

The displacement results will be identical to the ones obtained earlier from the direct
method, as given by Eq. (1.17). The concepts of strain energy and minimum total po-
tential energy will be used to formulate solid mechanics problems in Chapters 4, 8, and
10. Therefore, spending a little extra time now to understand the basic ideas will bene-
fit you enormously later.

Example 1.1: Exact Solution

In this section, we will derive the exact solution to Example 1.1 and compare the finite
element formulation displacement results for this problem to the exact displacement
solutions. As shown in Figure 1.16, the statics equilibrium requires the sum of the forces
in the y-direction to be zero. This requirement leads to the relation

P = (o.)A(y) = 0 (1.48)

Once again, using Hooke’s Law (o =E¢) and substituting for the average stress in terms
of the strain, we have

P P

FIGURE 1.16 The relationship between the external force P and the average stresses
for the bar in Example 1.1
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P — EeA(y) =0 (1.49)

Recall that the average normal strain is the change in length du per unit original length
of the differential segment dy. So,

_du
€ dy

If we substitute this relationship into Eq. (1.49), we now have

du
- - = 1.50
P~ EA( G =0 (1:50)
Rearranging Eq. (1.50), we get
Pdy
du = (1.51)
EA(y)

The exact solution is then obtained by integrating Eq. (1.51) over the length of the bar

u L de
= 1.52
Ldu L EA(y) (152

o-[F- |y

where the area is
w, — W
ap) = (w+ (222),)

The deflection profile along the bar is obtained by integrating Eq. (1.52), resulting in:

u(y) = E(—wfli—w]) [ln(w1 + (wz Z wl)y) —In w,} (1.53)

Equation (1.53) can be used to generate displacement values at various points along
the bar. It is now appropriate to examine the accuracy of the direct and potential ener-
gy methods by comparing their displacement results with the exact values. Table 1.5
shows nodal displacements computed using exact, direct, and energy methods.
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TABLE 1.5 Comparison of displacement results

Results from the

Location of a Exact Displacement Results from the Results from the
Point Along Method (in) Direct Method Energy Method
the Bar (in) Eq. (1.53) (in) (in)

y=20 0 0 0

y=25 0.001027 0.001026 0.001026
y =150 0.002213 0.002210 0.002210
y=15 0.003615 0.003608 0.003608
y =10 0.005333 0.005317 0.005317

It is clear from examination of Table 1.5 that all of the results are in good agree-
ment with each other.

1.7 WEIGHTED RESIDUAL FORMULATIONS

The weighted residual methods are based on assuming an approximate solution for the
governing differential equation. The assumed solution must satisfy the initial and bound-
ary conditions of the given problem. Because the assumed solution is not exact, substi-
tution of the solution into the differential equation will lead to some residuals or errors.
Simply stated, each residual method requires the error to vanish over some selected in-
tervals or at some points. To demonstrate this, concept, let’s turn our attention to Example
1.1. The governing differential equation and the corresponding boundary condition for
this problem are as follows:

d
A(y)E ﬁ -P=0 subject to the boundary condition «(0) = 0 (1.54)

Next, we need to assume an approximate solution. Again, keep in mind that the as-
sumed solution must satisfy the boundary condition. We choose

uy) =cay + oy + oy (1.55)

where c;, ¢;, and ¢; are unknown coefficients. Equation (1.55) certainly satisfies the fixed
boundary condition represented by u(0) = 0. Substitution of the assumed solution, Eq.
(1.55), into the governing differential equation, Eq. (1.54), yields the error function ®:

du

A(y) dy
,————/h—“
w, — W 5 _
wy + T Y tE(c; + 20y +33°) — P =R (1.56)

Substituting for values of w;,w,, L,t,and E in Example 1.1 and simplifying, we get

R/E = (025 — 0.0125y)(c; + 2,y + 3c3y%) — 96.154 X 107

Section 1.7 WeigHted Residual Formulations 39

Collocation Method

In the collocation method the error, or residual, function R is forced to be zero at as
many points as there are unknown coefficients. Because the assumed solution in this
example has three unknown coefficients, we will force the error function to equal zero
at three points. We choose the error function to vanish at y = L/3,y = 2L/3, and
y=L:

Ric,y)| =0
=3
10\?
R = (0.25 - 0.0125(%))(01 + 2c2(13—0) + 3@(;) ) - 96154 X 10% =0
%(c,y)| ,, =0
y=3
2
R = (0.25 - 0.0lZS(?))(q + 202<?> + 303(23—0) > - 96154 X 10°% =
R(c,y) =0
y=L

R = (025 — 0.0125(10))(c; + 2¢,(10) + 3c;(10)2) — 96.154 X 1076 = 0

This procedure creates three linear equations that we can solve to obtain the unknown
coefficients c;, ¢,,and ¢3:

o+ ?cz + 12—9@ = 461.539 x 107¢
¢+ 43—0c2 + ?03 = 576.924 x 107

¢ + 20¢, + 300c; = 769.232 X 107¢

Solving the above equations yields ¢; = 423.0776 X 1075,c, = 21.65 X 1075, and ¢c; =
1.153848 x 107%.Substitution of the c-coefficients into Eq. (1.55) yields the approximate
displacement profile: .

u(y) = 423.0776 X 107% + 21.65 X 1075 y? + 1.153848 X 109y 1.57)
In order to get an idea of how accurate the collocation approximate results are, we will
compare them to the exact results later in this chapter.
Subdomain Method

In the subdomain method, the integral of the error function over some selected subin-
tervals is forced to be zero. The number of subintervals chosen must equal the number
of unknown coefficients. Thus, for our assumed solution, we will have three integrals:

L
F Rdy=0 - (1.58)
(]
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J
J

|
[

Integration of Eqgs. (1.58) results in three linear equations that we can solve to obtain the
unknown coefficients ¢;, ¢, and ¢;:

763.88889 X 1073¢; + 2.4691358¢, + 8.1018519¢c; = 320.513333 x 107
0.625¢; + 6.1728395¢, + 47.4537041c¢, = 3.2051333 x 107*
0.4861111¢; + 8.0246917c, + 100.694444c, = 3.2051333 x 10°*

Solving the above equations yields ¢; = 391.35088 X 107%,¢, = 6.075 X 107%,and¢; =
809.61092 < 107°. Substitution of the c-coefficients into Eq. (1.55) yields the approxi-
mate displacement profile:

u(y) = 391.35088 X 10¢y + 6.075 X 1075y? + 809.61092 X 10°y*>  (1.59)

‘We will compare the displacement results obtained from the subdomain method to the
exact results later in this chapter.

it~

[(0.25 — 0.0125y)(c; + 2¢,y + 3c3)%) — 96.154 X 10%)dy = 0

" (=)
Wi

Rdy=0

[

l

e,
™l

~

[(0.25 — 0.0125y)(c; + 2¢,y + 3c3¥%) — 96.154 X 10°]dy =0

Rdy=20

R

S

[(0.25 — 0.0125y)(c; + 2c,y + 3c3¥%) — 96.154 X 107¢]dy = 0

w|

Galerkin Method

The Galerkin method requites the error to be orthogonal to some weighting functions
®,, according to the integral

b
Jd),.gtdy=o i=1,2,..,N (1.60)

The weighting functions are chosen to be members of the approximate solution. Be-
cause there are three unknowns in the assumed approximate solution for Example 1.1,
we need to generate three equations. Recall that the assumed solution is u(y) =
€1y + cy* + c3y’; thus, the weighting functions are then selected to be ®, = y,
®, = y%.and ®, = y*. This selection leads to the following equations:

L
L y[(0.25 — 0.0125y)(c; + 26,y + 3c35%) — 96.154 X 10%]dy = 0 (1.61)

L
J ¥2[(0.25 — 0.0125y)(c; + 2c,¥ + 3c3¥%) — 96.154 X 10%)dy = 0
o

L
J y’[0.25 = 0.0125y)(c; + 26,y + 3c3¥%) — 96.154 X 10°%]dy =0
)

By

i
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Integration of Egs. (1.61) results in three linear equations that we can solve to ob-
tain the unknown coefficients ¢, ¢;, and ¢;:
8.333333¢; + 104.1666667c, + 1125¢; = 0.0048077
52.083333¢; + 750c, + 8750c; = 0.0320513333
375¢, + 5833.3333¢, + 71428.57143c; = 0.240385

Solving the above equations yields ¢; = 400.642 X 107%, ¢, = 4.006 X 107%, and ¢; =
0.935 X 1075 Substitution of the c-coefficients into Eq. (1.55) yields the approximate dis-
placement profile:

uy) = 400.642 X 10y + 4.006 X 107%y? + 0.935 X 107y (1.62)
We will compare the displacement results obtained from the Galerkin method to the
exact results later in this chapter.
Least-Squares Method

The least-squares method requires the error to be minimized with respect to the un-
known coefficients in the assumed solution, according to the relationship

b
Minimize( J gtzdy)
which leads to
b
[%%dy=0 i=1,2,...N (1.63)

a

Because there are three unknowns in the approximate solution of Example 1.1, Eq.
(1.63) generates three equations. Recall that the error function is

R/E = (025 — 0.0125y)(c, + 2¢,y + 3c3 %) — 96.154 X 1076

Differentiating the error function with respect to ¢;, ¢,, and c; and substituting into Eq.
(1.63), we have:
3

R iddd
acy

10
J [(0.25 — 0.0125y)(c; + 26,y + 3¢5 %) — 96.154 X 107](0.25 — 0.0125y)dy = 0
0

R

*R fuicid
ac,

10 e
j [(0.25 — 0.0125y)(c; + 2c,y + 3c3y%) — 96.154 X 107(0.25 — 0.0125y)2y dy = 0
0

R

® o
acy

10 p
J [(0.25 — 0.0125y)(c; + 2c,y + 3c;y%) — 96.154 x 107°](0.25 — 0.0125y)3y* dy = 0
0
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Integration of the above equations results in three linear equations that we can solve to
obtain the unknown coefficients ¢, ¢;, and ¢;:

0.364583333¢, + 2.864583333¢, + 25¢; = 0.00018028%9
2.864583333c, + 33.333333¢, + 343.75¢; = 0.001602567
25¢; + 343.75¢, + 3883.928571c; = 0.015024063

Solving the set of equations simultaneously yields ¢, = 389.773 X 1079, ¢, =
6.442 X 1078, and ¢; = 0.789 X 1075, Substitution of the c-coefficients into Eq. (1.55)
yields the approximate displacement profile:

u(y) = 389.733 X 10y + 6.442 X 107 y2 + 0.789 X 107y (1.64)

Next, we will compare the displacement results obtained from the least-squares method
and the other weighted residual methods to the exact results.

Comparison of Weighted Residual Solutions

Now we will examine the accuracy of weighted residual methods by comparing their
displacement results with the exact values. Table 1.6 shows nodal displacements com-
puted using the exact, collocation, subdomain, Galerkin, and least-squares methods.

TABLE 1.6 Comparison of weighted residual results

Location Displacement Displacement Displacement Displacement Displacement
of a Results from the Results from the  Resulits from the Results from the  Results from the
Point Exact Collocation Subdomain Galerkin Least-Squares
Along Solution Method Method Method Method
the Bar Eq.(1.53) Eq.(1.57) Eq.(1.59) Eq.(1.62) Eq. §1.64)
(in) (in) (in) (in) (in) (in)
y=90 0 0 0 0 0
y=25 0.001027 0.001076 0.001029 0.001041 0.001027
y=150 0.002213 0.002259 0.002209 0.002220 0.002208
y=15 0.003615 0.003660 0.003618 0.003624 0.003618
y=10 0.005333 0.005384 0.005330 0.005342 0.005331

It is clear from an examination of Table 1.6 that the results are in good agreement
with each other. It is also important to note here that the primary purpose of Section 1.7
was to introduce you to the general concepts of weighted residual methods and the basic
procedures in the simplest possible way. Because the Galerkin method is one of the
most commonly used procedures in finite element formulations, more detail and an in-
depth view of the Galerkin method will be offered later in Chapters 4 and 7. We will em-
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ploy the Galerkin method to formulate one- and two-dimensional problems once you
have become familiar with the ideas of one- and two-dimensional elements. Also note
that in the above examples of the use of weighted residual methods, we assumed a so-
lution that was to provide an approximate solution over the entire domain of the given
problem. As you will see later, we will use piecewise solutions with the Galerkin method.
That is to say, we will assume linear or nonlinear solutions that are valid only over each
element and then combine, or assemble, the elemental solutions.

1.8 VERIFICATION OF RESULTS

In recent years, the use of finite element analysis as a design tool has grown rapidly.
Easy-to-use comprehensive packages such as ANSYS have become a common tool in
the hands of design engineers. Unfortunately, many engineers without the proper train-
ing or a solid understanding of the underlying concepts have been using finite element
analysis. Engineers who use finite element analysis must understand the limitations of
the finite element procedures. There are various sources of error that can contribute to
incorrect results. They include:

1. Wrong input data, such as physical properties and dimensions
This mistake can be corrected by simply listing and verifying physical properties
and coordinates of nodes or keypoints (points defining the vertices of an object;
they are covered in more detail in Chapters 6 and 10) before proceeding any fur-
ther with the analysis.

2. Selecting inappropriate types of elements
Understanding the underlying theory will benefit you the most in this respect. You
need to fully grasp the limitations of a given type of element and understand to
which type of problems it applies. )

3. Poor element shape and size after meshing
This area is a very important part of any finite element analysis. Inappropriate el-
ement shape and size will influence the accuracy of your results. It is important
that the user understands the difference between free meshing (using mixed-area
element shapes) and mapped meshing (using all quadrilateral area elements or
all hexahedral volume elements) and the limitations associated with them. These
concepts will be explained in more detail in Chapters 6 and 10.

4. Applying wrong boundary conditions and loads
This step is usually the most difficult aspect of modeling. It involves taking an ac-
tual problem and estimating the loading and the appropriate boundary conditions
for a finite element model. This step requires good judgment and some experience.

You must always find ways to check your results. While experimental testing of
your model may be the best way to do so, it may be expensive or time consuming. You
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should always start by applying equilibrium conditions and energy balance to different
portions of a model to ensure that the physical laws are not violated. For example, for
static models, the sum of the forces acting on a free body diagram of your model must
be zero. This concept will allow you to check for the accuracy of computed reaction
forces. You may want to consider defining and mapping stresses along an arbitrary cross
section and integrating this information. The resultant internal forces computed in this
manner must balance against external forces. In a heat transfer problem under steady
state conditions, apply conservation of energy to a control volume surrounding an ar-
bitrary node. Are the energies flowing into and out of a node balanced? At the end of
particular chapters in this text, a section is devoted to verifying the results of your mod-
els. In these sections, problems will be solved using ANSYS, and the steps for verifying
results will be shown.

1.9 UNDERSTANDING THE PROBLEM

You can save lots of time and money if you first spend a little time with a piece of paper
and a pencil to try to understand the problem you are planning to analyze. Before ini-
tiating numerical modeling on the computer and generating a finite element model, it
is imperative that you develop a sense of or a feel for the problem. There are many ques-
tions that a good engineer will ask before proceeding with the modeling process, such
as: Is the material under axial loading? Is the body under bending moments or twisting
moments or a combination of the two? Do you need to worry about buckling? Can we
approximate the behavior of the material with a two-dimensional model? Does heat
transfer play a significant role in the problem? Which modes of heat transfer are influ-
ential? If you choose to employ FEA, “back-of-the-envelope” calculations will greatly
enhance your understanding of the problem, in turn helping you to develop a good, rea-
sonable finite element model, particularly in terms of your selection of element types.
Some practicing engineers still use finite element analysis to solve a problem that could
have been solved more easily by hand by someone with a good grasp of the fundamen-
tal concepts of the mechanics of materials and heat transfer.

SUMMARY

At this point you should:

1. have a good understanding of the physical properties and the parameters that
characterize the behavior of an engineering system. Examples of these properties
and parameters are given in Tables 1.1 and 1.2.

2. realize that a good understanding of the fundamental concepts of the finite element
method will benefit you by enabling you to use ANSYS more effectively.
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3. know the seven basic steps involved in any finite element analysis, as discussed in
Section 1.4.

4. understand the differences among direct formulation, minimum total potential
energy formulation, and the weighted residual methods (particularly the Galerkin
formulation).

S. know that it is wise to spend some time to gain a full understanding of a problem
before initiating a finite element model of the problem. There may even exist a
reasonable closed-form solution to the problem, and thus, you can save lots of
time and money.

6. realize that you must always find a way to verify your FEA results.
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PROBLEMS

1. Solve Example 1.1 using (1) two elements and (2) eight elements. Compare your results to
the exact values.

2. A concrete table column-support with the profile shown in the accompanying figure is to
carry a load of approximately 500 Ib. Using the direct method discussed in Section 1.5, de-

termine the deflection and average normal stresses along the column. Divide the column
into five elements. (E = 3.27 X 10%ksi)
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500 1b \ 4. A thin steel plate with the profile shown in the accompanying figure is subjected to an axial

: load. Approximate the deflection and the average normal stresses along the plate using the
model shown in the figure. The plate has a thickness of 0.125 in and a modulus of elasticity
E = 28 x 10° ksi. You will be asked to use ANSYS to analyze this problem again in
Chapter 8.

2in. k

. : : : 12in.
3. An aluminum strap with a thickness of 6 mm and the profile shown in the accompanying fig-

ure is to carry a load of 1800 N. Using the direct method discussed in Section 1.5, determine
the deflection and the average normal stress along the strap. Divide the strap into three ele-
ments. This problem may be revisited again in Chapter 8, where a more in-depth analysis
may be sought. (E = 68.9 GPa)

ky Sky Sky ks

2in. Sk

500 Ib 500 1b

5.

Apply the statics equilibrium conditions directly to each node of the thin steel plate (using
a finite element model) in Problem 4.

6. For the spring system shown in the accompanying figure, determine the displacement of each
node. Start by identifying the size of the global matrix. Write down elemental stiffness ma-
trices, and show the position of each elemental matrix in the global matrix. Apply the bound-
ary conditions and loads. Solve the set of linear equations. Also compute the reaction forces.

a to=830
—ﬂb A'A'A'A'A
ky =510 ks =1010
—
101b -
L MWWA
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7. A typical exterior masonry wall of a house, shown in the accompanying figure, consists of

0 ir 1000 ft2. Determine the temperature distribution through the wall. Also calculate heat loss
the items in the accompanying table. Assume an inside room temperature of 68°F and an

through the ceiling.
outside air temperature of 10°F, with an exposed area of 150 ft%. Determine the temperature
distribution through the wall. Also calculate the heat loss through the wall.
Resistance U-factor
Items hrft%*F/Btu  Btwhr-ft%F
R 1. Inside attic film resistance 0.68 1.47
Resistance U-factor
Items hreft*F/Btu  Btwhrft*F 2. Insulation batt (6 in) 19 0.053
3. Gypsum board (1/2 in 0.45 222
1. Outside film resistance y? . (1/2in)
(winter, 15-mph wind) 0.17 5.88 4. Inside film resistance
2. Face brick (4 in) 044 227 (winter) 0.68 147
3. Cement mortar (1/2 in) 0.1 10.0
4. Cinder block (8 in) 172 0.581 11. A typical 13-in solid wood core door exposed to winter conditions has the characteristics
5. Air space (3/4 in) 1.28 0.781 shown in the accompanying table. Assume an inside room temperature of 70°F and an out-
6. Gypsum board (1/2 in) 0.45 222 side air temperature of 20°F, with an exposed area of 22.5 ft%. (a) Determine the inside and
7. Inside film resistance (winter) 0.68 147 outside temperatures of the door’s surface. (b) Determine heat loss through the door.
Resistance U-factor
"] 20 0 2-
8. In order to increase the thermal resistance of a typical exterior frame wall, such as the one Items hef“F/Btu - Btwhrf%F
in Example 1.2_, it is customary to use 2X6 s.tuds mstf:ad of 2 >< 4 studs to allow for place- 1. Outside film resistance (winter, 15-mph wind) 017 5.88
ment of more insulation within the wall cavity. A typical exterior (2 X 6) frame wall of a 2 12in solid wood 039
house consists of the materials shown in the accompanying figure. Assume an inside room tem- CoE .1 O(') core ) " 2.6
perature of 68°F and an outside air temperature of 20°F, with an exposed area of 150 ft?. De- 3. Inside film resistance (winter) 0.68 1.47

termine the temperature distribution through the wall.

12. The concrete table column-support in Problem 2 is reinforced with three -in steel rods, as
shown in the accompanying figure. Determine the deflection apd average normal stresses
along the column under a load of 1000 lb. Divide the column into five elements. (E; =

Hems Restance oo 327 X 10°ksi; E, = 29 X 10 ksi)

1. Outside film resistance 100016

(winter, 15-mph wind) 0.17 5.88
2. Siding, wood (1/2 X 8 lapped) 0.81 1.23
3. Sheathing (1/2 in regular) 132 0.76
4. Insulation batt (54 in) 19.0 0.053
5. Gypsum wall board (1/2 in) 0.45 222
6. Inside film resistance (winter) 0.68 1.47

9. Assuming the moisture can diffuse through the gypsum board in Problem 8, where should you
place a vapor barrier to avoid moisture condensation? Assume an indoor air temperature of
68°F with relative humidity of 40%.

| 12in. :!

10. A typical ceiling of a house consists of the items in the accompanying table. Assume an in-

side room temperature of 70°F and an attic air temperature of 15°F, with an exposed area of 13. Compute the total strain energy for the concrete table column-support in Problem 12 .




50 Chapter1 Introduction

14. A 10-in slender rod weighing 6 Ib is supported by a spring with a stiffness & = 60 1b/in. A force
P = 351bis applied to the rod at the location shown in the accompanying figure. Determine
the deflection of the spring (a) by drawing a free body diagram of the rod and applying the sta-
tics equilibrium conditions, and (b) by applying the minimum total potential energy concept.

e

|P=351b

| 6in.

15. In a DC electrical circuit, Ohm’s Law relates the voltage drop V, — V; across a resistor to a
current I flowing through the element and the resistance R according to the equation

V, - V, = RI.
Vi N Vi
o NYWVWA____

1

Using direct formulation, show that for a resistance element comprising two nodes, the con-
ductance matrix, the voltage drop, and the currents are related according to the equation

11 -11vl _ |k
RL-1 1 |» L
16. Use the results of Problem 15 to set up and solve for the voltage in each branch of the cir-

cuit shown in the accompanying figure.

5Q

R Y

10 mA 10Q 15Q
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17. The deformation of a simply supported beam under a distributed load, shown in the accom-
panying figure, is governed by the relationship

FY _MX)
dx? El

where M(X) is the internal bending moment and is given by
wX(L - X)
2

M(X) =

|
| L |

Derive the equation for the exact deflection. Assume an approximate deflection solution of

the form Y(X) = Cl[(%)z - <%>]

Use the following methods to evaluate ¢, : (a) the collocation method and (b) the subdomain
method. Also, using the approximate solutions, determine the maximum deflection of the
beam if a W24 X 104 (wide flange shape) with a span of L = 20 ft supports a distributed load
of w = 5 kips/ft.

18. For the example problem used throughout Section 1.7, assume an approximate solution of
the form u(y) = ¢,y + y? + ¢3¥° + ¢, y*. Using the collocation, subdomain, Galerkin,
and least-squares methods, determine the unknown coefficients ¢, ¢,, ¢3, and ¢,. Compare
your results to those obtained in Section 1.7.

19. The leakage flow of hydraulic fluid through the gap between a piston—cylinder arrangement
may be modeled as laminar flow of fluid between infinite parallel plates, as shown in the ac-
companying figure. This model offers reasonable results for relatively small gaps. The differ-
ential equation governing the flow is
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20.

21.

22.

d
where p is the dynamic viscosity of the hydraulic fluid, « is the fluid velocity, and d—f is the
pressure drop and is constant. Derive the equation for the exact fluid velocities. Assume an

approximate fluid velocity solution of the form u(y) = cl[ sin <%y> } Use the following

methods to evaluate ¢;: (a) the collocation method and (b) the subdomain method. Com-
pare the approximate results to the exact solution.

Use the Galerkin and least-squares methods to solve Problem 19. Compare the approximate
results to the exact solution.

For the cantilever beam shown in the accompanying figure, the deformation of the beam
under a load P is governed by the relationship

£y M)
dx? EI

where M(X) is the internal bending moment and is

Derive the equation for the exact deflection. Assume an appropriate form of a polynomial
function. Keep in mind that the assumed solution must satisfy the given boundary condi-
tions. Use the subdomain method and the Galerkin method to solve for the unknown coef-
ficients of the assumed solution.

A shaft is made of three parts, as shown in the accompanying figure. Parts AB and CD are
made of the same material with a modulus of rigidity of G = 9.8 X 10° ksi, and each has a
diameter of 1.5 in. Segment BC is made of a material with a modulus of rigidity of G =
112 X 10°ksi and has a diameter of 1 in. The shaft is fixed at both ends. A torque of 2400 Ib-in
is applied at C. Using three elements, determine the angle of twist at B and C and the torsional
reactions at the boundaries.

A B C D

21t | 1.5t 21ft
| | | |
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23. For the shaft in Problem 22, replace the torque at C by two equal torques of 1500 Ib-in at B and
C. Compute the angle of twist at B and C and the torsional reactions at the boundaries.

24. Consider a plate with a variable cross section supporting a load of 1500 Ib, as shown in the
accompanying figure. Using direct formulation, determine the deflection of the bar at loca-
tions y = 2.5in,y = 7.5in,and y = 10 in. The plate is made of a material with a modulus
of elasticity E = 10.6 X 10 ksi.

[ 4 in.

thickness = 0.125 in.

5in.

1500 1b



CHAPTER 2

Trusses

The objectives of this chapter are to introduce the basic concepts in finite element for-
mulation of trusses and to provide an overview of the ANSYS program. A major sec-
tion of this chapter is devoted to the Launcher, the Graphical User Interface, and the
organization of the ANSYS program. The main topics discussed in Chapter 2 include
the following:

2.1 Definition of a Truss

2.2 Finite Element Formulation

2.3 Space Trusses

2.4 Overview of the ANSYS Program
2.5 Examples Using ANSYS

2.6 Verification of Results

2.1 DEFINITION OF A TRUSS

A truss is an engineering structure consisting of straight members connected at their
ends by means of bolts, rivets, pins, or welding. The members found in trusses may con-
sist of steel or aluminum tubes, wooden struts, metal bars, angles, and channels. Trusses
offer practical solutions to many structural problems in engineering, such as power trans-
mission towers, bridges, and roofs of buildings. A plane truss is defined as a truss whose
members lie in a single plane. The forces acting on such a truss must also lie in this plane.
Members of a truss are generally considered to be two-force members. This term means
that internal forces act in equal and opposite directions along the members, as shown in
Figure 2.1.

In the analysis that follows, it is assumed that the members are connected togeth-
er by smooth pins and by a ball-and-socket joint in three-dimensional trusses. More-
over, it can be shown that as long as the center lines of the joining members intersect at
a common point, trusses with bolted or welded joints may be treated as having smooth
pins (no bending). Another important assumption deals with the way loads are applied.
All loads must be applied at the joints. This assumption is true for most situations be-
cause trusses are designed in a manner such that the majority of the load is applied at
the joints. Usually, the weights of members are negligible compared to those of the ap-
plied loads. However, if the weights of the members are to be considered, then half of

At b e
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Load / \
3 3
3 compression

two-force members

1 2 /1 2\

e e
1 tension 2

FIGURE 2.1 A simple truss subjected to a load.

the weight of each member is applied to the connecting joints. Statically determinate
truss problems are covered in many elementary mechanics text. This class of problems
is analyzed by the methods of joints or sections. These methods do not provide infor-
mation on deflection of the joints because the truss members are treated as rigid bod-
ies. Because the truss members are assumed to be rigid bodies, statically indeterminate
problems are impossible to analyze. The finite element method allows us to remove the
rigid body restriction and solve this class of problems. Figure 2.2 depicts examples of
statically determinate and statically indeterminate problems.

2.2 FINITE ELEMENT FORMULATION

Let us consider the deflection of a single member when it is subjected to force F, as
shown in Figure 2.3. The forthcoming derivation of the stiffness coefficient is identical
to the analysis of a centrally loaded member that was presented in Section 1.4. As a re-
view and for the sake of continuity and convenience, the steps to derive the elements’
equivalent stiffness coefficients are presented here again. Recall that the average stress-
es in any two-force member are given by

o=— 2.1)

The average strain of the member can be expressed by

_ AL
T L

€

(22)

Over the elastic region, the stress and strain are related by Hooke’s Law,
o =Ee 2.3)
Combining Egs. (2.1), (2.2), and (2.3) and simplifying, we have

F= (AL—E)AL (24)
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Statically Determinate

Statically Indeterminate

Load
3
1
Load Load
3 3
1 2 1 2
Rlx—>1 1 RU(—>T I—»RZX
Ryy Ryy Ryy Ry

3 unknown reactions 4 unknown reactions

3 equilibrium equations 3 equilibrium equations

T Fy=0 S Fy=0
T Fy=0 S Fy=0
TM=0 TM=0

FIGURE 2.2 Examples of statically determinate and statically indeterminate problems.

FIGURE 2.3 A two-force member
subjected to a force F.
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Load Load

FIGURE 2.4 A balcony truss.

Note that Eq. (2.4) is similar to the equation of a linear spring, F = kx. There-
fore, a centrally loaded member of uniform cross section may be modeled as a spring with
an equivalent stiffness of

_AE

keq = 7

2.5)

A relatively small balcony truss with five nodes and six elements is shown in Fig-
ure 2.4. From this truss, consider isolating a member with an arbitrary orientation. Let
us select element (5).

In general, two frames of reference will be required to describe truss problems: a
global coordinate system and a local frame of reference. We choose a fixed giobal coor-
dinate system, XY (1) to represent the location of each joint (node) and to keep track
of the orientation of each member (element), using angles such as 6; (2) to apply the con-
straints and the applied loads in terms of their respective global components; and (3) to
represent the solution—that is, the displacement of each joint in global directions. We
will also need a local, or an elemental, coordinate system to describe the two-force mem-
ber behavior of individual members (elements). The relationship between the local (el-
ement) descriptions and the global descriptions is shown in Figure 2.5.

The global displacements are related to the local displacements according to the
equations

Uyx = u;,cos 8 — u;,sin 6 (2.6)
Uy = u;,sin 6 + u;,cos 6
Ux = uj,cos 8 — u;,sin 6
Uy = uj,sin 0 + u;,cos 6
If we write Egs. (2.6) in matrix form, we have
{U} = [THu} @7

where
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FIGURE 2.5 Relationship between local and global coordinates.

Ux cos @ —sin 6 0 0 Uiy

Uy sin® cosH 0 0 u;

Ul = s T] = = iy
v} U; (T 0 0 cos® —sin@ »and {u} i
Uy 0 0 sin® cos 6 u;

{U} and {u} represent the displacements of nodes i and j with respect to the global XY
and the local xy frame of references, respectively. [T] is the transformation matrix that
allows for the transfer of local deformations to their respective global values. In a sim-
ilar way, the local and global forces may be related according to the equations

Fyx = fircos 0 — f;, sin 0
Fiy = fisin® + f;, cos @ (2.8)
Fix = fixco88 — f;,sin 0
Fy = fxsin @ + f;,cos 6
or, in matrix form,
{F} = [T]{f} (2.9)

where
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{F} =

are components of forces acting at nodes i and j with respect to global coordinates and
S

fy

fix

fiy

represent the local components of the forces at nodes i and j.

A general relationship between the local and the global properties was derived in
the preceding steps. However, we need to keep in mind that the displacements and the
forces in the local y-direction are zero. This fact is simply because under the two-force
assumption, the members can only be stretched or shortened along their longitudinal axis
(local x-axis). Of course, this fact also holds true for the internal forces that act only in
the local x-direction. We do not initially set these terms equal to zero in order to main-
tain a general matrix description that will make the derivation of the element stiffness
matrix easier. This process will become clear when we set the y-components of the dis-
placements and forces equal to zero. The local internal forces and displacements are re-
lated through the stiffness matrix

{f=

fix k 0 -k 0] (u,
f,-y {0 6 0 O u;,
fel |-k 0 k 0 }u, (2.10)
fiy 0 0 0 0]y,

AE
where k = kg = A and using matrix form we can write

{f} = [K}{u} (211)
After substituting for {f} and {u} in terms of {F} and {U}, we have
(T]{F} = [K][T]"{U} (2.12)
where [T]™ is the inverse of the transformation matrix [T} and is
cos® sin @ 0 0
1 _ | —sin® cos8 0 0
[T} 0 0 cos® sin® (213)
0 0 -—sin® cosé@
Multiplying both sides of Eq. (2.12) by [T] and simplifying, we obtain:
{F} = [T)[K][T]{U} (2.14)

Substituting for values of the [T], [K], [T]™, and {U} matrices in Eq. (2.14) and multi-
plying, we are left with
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F, cos? 9 sin 6 cos 8 —cos’8  —sin®cos6 | [Uy

Fyl| _ X sin 6 cos sin’@ —sinfcos®  —sin’d Uy 2.15)
F, —cos’@  —sin O cos § cos’ @ sin 6 cos 0 y; )

F; —sinBcos®  —sin®6 sin 6 cos 6 sin®@ Uy

Equations (2.15) express the relationship between the applied forces, the element stiff-
ness matrix [K]®, and the global deflection of the nodes of an arbitrary element. The
stiffness matrix [K]© for any member (element) of the truss is

cos’ 0 sin 8 cos 6 ~cos’8®  —sin@cos®
sin 8 cos 0 sin 6 —sin 6 cos 6 —sin’ @
K = k . . 2.16
(K] —cos’®  —sin 0 cos O cos? 0 sin 6 cos 6 (216)
—sin 8 cos 6 —sin’ @ sin 8 cos 6 sin? @

The next few steps involve assembling, or connecting, the elemental stiffness ma-
trices, applying boundary conditions and loads, solving for displacements, and obtaining
other information, such as normal stresses. These steps are best illustrated through an
example problem.

EXAMPLE 2.1

Consider the balcony truss in Figure 2.4, shown here with dimensions. We are interest-
ed in determining the deflection of each joint under the loading shown in the figure. All
members are made from Douglas-fir wood with a modulus of elasticity of E =
1.90 X 10° Ib/in? and a cross-sectional area of 8 in%. We are also interested in calculat-
ing average stresses in each member. First, we will solve this problem manually. Later,
once we learn how to use ANSYS, we will revisit this problem and solve it using ANSYS.

500 Ib 500 Ib
I 3t | 3t

[ ——

As discussed in Section 1.4, there are seven steps involved in any finite element
analysis. Here, these steps are discussed again to emphasize the three phases (prepro-
cessing, solution, and postprocessing) associated with the analysis of truss problems.

Preprocessing Phase

1. Discretize the problem into nodes and elements.
Each truss member is considered an element, and each joint connecting members

is a node. Therefore, the given truss can be modeled with five nodes and six ele-
ments. Consult Table 2.1 while following the solution.
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TABLE 2.1 The relationship between the elements and their
corresponding nodes

[}
Node Node See Figures
Element i j 2629
m 1 2 0
2) 2 3 135
3) 3 4 0
@) 2 4 90
5 2 5 45
©) 4 5 0

2. Assume a solution that approximates the behavior of an element.
As discussed in Section 2.2, we will model the elastic behavior of each element as
a spring with an equivalent stiffness of k as given by Eq. (2.5). Since elements (1),
(3), (4), and (6) have the same length, cross-sectional area, and modulus of elasticity,
the equivalent stiffness constant for these elements (members) is

Ib
(8 1n2)(190 x 10¢ '—2>
_AE in
T L 36in

The stiffness constant for elements (2) and (5) is

k = 422 X 10° Ib/in.

1b
in?){ 1.90 x 1 6——)
_£~(8m)<190 Oi2
L 50.9 in
3. Develop equations for elments.
For elements (1), (3), and (6), the local and the global coordinate systems are

aligned, which means that = 0.This relationship is shown in Figure 2.6. Using Eq.
(2.16), we find that the stiffness matrices are

k =298 X 10° Ib/in.

cos* 8 sin 6 cos 8 —cos?’6  —sin 0 cos 0
KO = k sin 0 cos 6 sin’ 6 —sin 6 cos 6 —sin*
(K] = —cos’@  —sin 8 cos 6 cos? 9 sin 8 cos 6
—sin 0 cos 6 —sin’0 sin 6 cos 6 sin 8
v y

i=1 element (1) j=2
or
element (3) 4 FIGURE 2.6 The orientation of the local
or 5 coordinates with respect to the global
element (6) coordinates for elements (1), (3), and (6).
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cos(0) sin(0) cos(0) —cos*(0) —sin(0) cos(0) B 4
[K]® = 422 X 10° sin(0) cos(0) sin%(0) ~sin(0) cos(0) —sin’(0)
’ —cos}(0)  —sin(0) cos(0) cos¥0) sin(0) cos(0)
| —sin(0) cos(0) —sin*(0) sin(0) cos(0) sin%(0) Y
71 0 -1 07U, '
0 0 0 01U X element (4)
(1) = 1y
(K =422 %10 S 0o Y
Lo 0 0 o]y,

FIGURE 2.7 The orientation of the local

and the position of element (1)’s stiffness matrix in the global matrix is
coordinates with respect to the global

™ 422 0 —422 0 0 0 0 0 0 O Uy y:2 coordinates for element (4).
0 0 0 O00O0O0O0O0O0|Uy . . .
4220 422 00 0 0 0 0 0|y The stiffness matrix for element (6) is
0 0 0 000000 0|Uy 1 0 -1 0 |Ux
(K] = 10° 0 0 0 00000 0 0fUgy [K]® = 422 X 10° _01 g (1> g 34)’
0 0 0 O O0O0O0O0O0O0|Uy 5X
0 0 0 000000 0|Uy 0 0 0 0]Usy
0 0 0 00O0O0O0O0 O0|Uy and its position in the global matrix is
00 0 000000 0 Uy (000000 0 0 0 0]Uy
L 0 0 0 000000 0]Uy 000000 0 O 0 O|Uy
Note that the nodal displacement matrix is shown alongside element (1)’s position 000000 0 0 0 0 | Uax
in the global matrix to aid us in observing the location of element (1)’s stiffness ma- 000000 0 0 0 0 | Uy
trix in the global matrix. Similarly, the stiffness matrix for element (3) is (K6 = 105 000000 O 0 0 O0)|Uyx
000000 O O 0 O0]|Uy
1 0 -1 0 |Uy :
0 0 oluw 000000 422 0 —-422 0 |Uy
(KPP =a2x10°0 0 0 ol 000000 0 0 0 O0|Uy
“‘ 000000 —422 0 422 0 |Usy
0 0 0 0 |Uy
. . L0 00000 0 0 0 04Uy
and its position in the global matrix is . . . .
For element (4), the orientation of the local coordinate system with respect
0 0 00 0 0 0 0 0 07Uy to the global coordinates is shown in Figure 2.7. Thus, for element (4), 8 = 90,
0000 O O 0 00 0]|Uy which leads to the stiffness matrix
0000 O O 0 00 0]|Uy cos%(90) $in(90) cos(90) —cos}(90)  —sin(90) cos(90)
0000 O 0 0 00 0|Uy (K@ = 422 X 10° sin(90) cos(90) sin(90) —sin(90) cos(90) —sin?(90)
(Koo = 15| © 0 0 0 422 0 -422 0 0 0 |Usy ’ —cos¥(90)  —sin(90) cos(90)  cos’(90) sin(90) cos(90)
0000 0 0 0O 00 0]Uy |_—sin(90) cos(90) —sin%(90) 5in(90) cos(90) sin%(90)
0 000 —422 0 422 0 0 0 |Uy 0 0 0 0 |Uy
0000 O O O 00 0|Uy 01 0 -1]|U
@ = g
0000 0 0O 0 00 0]|Usy (K9=422>10°) o o o |ug
LOG OO 0 0 0 00 0]Usy 10 -1 0 1 {Uy
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FIGURE 2.8 The orientation of the local
coordinates with respect to the global
coordinates for element (2).

and its global position

000 0 000 0 0 0]Uy
000 0 000 0 00]|Uy
000 0 000 0 0 0]|Uy
000 42 00 0 —422 0 0 |Uy
[K](“G)=105000 0 000 0 0 0]|Uy
000 0 000 0 00]|U,
000 0 000 0 0 0]|Uy
000 -422 00 0 422 0 0|U,y
000 0 000 0 0 0]|Usy
(000 0 000 0 0 0]Uy

For element (2), the orientation of the local coordinate system with respect
to the global coordinates is shown in Figure 2.8. Thus, for element (2), 8 = 135,
yielding the stiffness matrix

cos}(135) sin(135) cos(135)
[K]® = 2.98 x 10° sin(135)2cos(135) sin?(135)
—cos4(135) —sin(135) cos(135)
—sin(135) cos(135) —sin?(135)
—cos?(135) —sin(135) cos(135)
—sin(135) cos(135) —sin’(135)
cos}(135) sin{135) cos(135)
sin(135) cos(135) sin%(135)

5 =5 -5 5 |Uy
5 5 5 -5|Uy
5 5 5 -5 |Uy
5 =5 -5 5 |Uy

[K)® =298 x 105 _

Simplifying, we get
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FIGURE 2.9 The orientation of the local
coordinates with respect to the global
coordinates for element (5).

1 -1 -1 1 | Uy
1 1 1 -1 Uy
1 1 1 -1|Uy
1 -1 -1 1 |Uy

(K] = 1.49 X 10°|

and its position in the global matrix is

00 0 0 0 0 000 0 Uy
00 0 0 0 0 000 0|Uy
0 0 149 -149 -149 149 0 0 0 0 |Uy
0 0 —149 149 149 —149 0 0 0 0 |Uy
(K] = 10° 0 0 —149 149 149 -149 0 0 0 0 |Usy
00 149 —-149 —149 149 0 0 O 0 |Uy
00 O 0 0 0 00 0 0|Uy
00 O 0 0 0 000 0|Uy
00 O 0 0 0 0 0 0 0|Uy
lo o o 0 0 0 000 0]Uy

For element (5), the orientation of the local coordinate system with respect
to the global coordinates is shown in Figure 2.9. Thus, for element (5), 8 = 45,
yielding the stiffness matrix

cos¥(45) sin(45) cos(45) —cos*(45) —sin(45) cos(45)
sin(45) cos(45) sin’(45) —sin(45) cos(45) —sin*(45)

[K]? =298 x10° —cos’(45)  —sin(45) cos(45) cos(45) sin(45) cos(45)
—sin(45) cos(45) —sin?(45) sin(45) cos(45) sin’(45)

5 5 -5 -5 |Ux
5 5 -5 —5|Uy
-5 -5 5 5 |Uy
-5 -5 5 5 |Uy

(K]® = 2.98 x 10°

and its position in the global stiffness matrix is
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00 0 0 0000 O 0 (U
00 0 0 0000 O 0 |Uy
00 149 149 0 0 0 0 —149 -149 |Upy
00 149 149 0 0 0 0 -149 —149 | Uy
(K59 = 10° 00 o0 0 0000 O 0 |Ux
00 0 0 0000 O 0 Uy
00 0 0 0000 O 0 |Ux
00 0 0 0000 O 0 |Uy
0 0 —149 -149 0 0 0 0 149 149 |Usy
L0 0 -149 149 0 0 0 0 149 149 | Uy

It is worth noting again that the nodal displacements associated with each el-
ement are shown next to each element’s stiffness matrix. This practice makes it
easier to connect (assemble) the individual stiffness matrices into the global stiff-
ness matrix for the truss.

4. Assemble elements. The global stiffness matrix is obtained by assembling, or adding
together, the individual elements’ matrices:

(K]© = [K](IG) + [K]PD + [K]PO + [K]#O) + [K]59 + (K]

422 0 —422 0 0
0 0 0 0 0
—422 0 422+ 149 + 1.49 ~1.49 + 1.49 ~1.49
0 0 1.49 — 1.49 422 + 1.49 + 1.49 1.49
o _ 0 0 -1.49 1.49 422 + 149
[K]® = 10° 0 0 1.49 —-1.49 —1.49
0 0 0 0 -4.22
0 0 0 -422 0
0 o ~-1.49 ~-1.49 0
L 0 o -1.49 —1.49 0
0 0 0 0 0 MUy
0 0 0 0 0 |Uy
1.49 0 0 ~149  —149 | Uy
-1.49 0 -422  -149 149 | Uy
-149  -422 0 0 0 |Uy
1.49 0 0 0 0 Uy
0 422+422 0 -4.22 0 |Uy
0 0 422 0 0 | Uy
0 -4.22 0 422+149 149 |Usy
0 0 0 1.49 149 | Uy

Simplifying, we get
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(422 0 -422 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
—422 0 72 0 -149 149 0 0 -149 -149
0 0 0 72 149 -149 0 —422 -149 -149
KO = 10° 0 0 -149 149 571 -149 —-422 0 0 0
0 0 149 -149 —-149 149 0 0 0 0
0 0 0 0 -422 0 8.44 0 -422 0
6 0 0 -422 0 0 0 42 o0 0
0 0 -149 -149 0 0 -42 0 571 149
L 0 0 -149 -149 0 0 0 0 149 149

5. Apply the boundary conditions and loads.
The following boundary conditions apply to this problem: nodes 1 and 3 are fixed,;
which implies that Ujy = 0, Uy = 0, Usy = 0, and Usy = 0. Incorporating
these conditions into the global stiffness matrix and applying the external loads
at nodes 4 and 5 such that F,, = —500 b and Fs, = —500 1b results in a set of lin-
ear equations that must be solved simultaneously:

T 1 0 o0 0 0 0 0 0 0 0 ] (Uyx 0
0 1 0 0 0 0 0 0 0 0 Uy 0
~422 0 72 0 =149 149 0 0 —149 =149 | | Uy 0
0 0 0 72 149 -149 0 —422 —149 -149 || Uy 0
ol 0 00 0 1 0 0 0 0 0 Ux{_) 0
0 0 0 0 0 1 0 0 0 0 Usy 0
0 0 © 0 —-422 0 844 0 -422 0 Usx 0

0 0 0 -422 0 0 0 422 0 0 U,y -500
0 0 -149 —149 0 0 -422 0 571 149 ||Ugy 0

L 0 0 -149 —149 0 0 0 0 149 149 | \Usy —500

Because Uy = 0,U;y = 0,Usx = 0,and U,y = 0, we can eliminate the first, sec-
ond, fifth, and sixth rows and columns from our calculation such that we need only
solve a 6 X 6 matrix:

72 0 0 0 —149 —1497] (Uy 0
0 72 0 —422 —149 -149 | [Uy 0
ol 0 0 844 0 —422 0 Ux|_J) 0
0 -422 0 422 0 0 Uy -500
-149 -149 —422 0 571 149 | |Usy 0
~1.49 -149 0 0 149 149 | \Us —500

Solution Phase

6. Solve a system of algebraic equations simultaneously.
Solving the above matrix for the unknown displacements yields U, = —0.00355
in, U,y = —0.01026 in, U,y = 0.00118 in, Uy = —0.0114 in, Usy = 0.00240 in,
and Uy = —0.0195 in. Thus, the global displacement matrix is
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Performing matrix operations, yields the reaction results

Trusses
Uix 0
Uy 0
U, x —0.00355
U,y —0.01026
Ux \ _ 0 .
Usy = 0 in.
Usx 0.00118
Uy —-0.0114
Usy 0.00240
Usy —0.0195

Recognize that the displacements of the nodes are given with respect to the glob-
al coordinate system.

Rix 1500

Ry 0

Ryx 0

Ry 0

Ry _ )-1500%
Ry 1000

Rex 0

Rey 0

Rsx 0

Rsy 0

Postprocessing Phase

7. Obtain other information.

Reaction Forces As discussed in Chapter 1, the reaction forces can be comput-

Internal Forces and Normal Stresses Now let us compute internal forces,
and the average normal stresses, in each member. The member internal forces f;,
and f;,, which are equal and opposite in direction, are

fix = k(u:x - ujx) (217)
fjx = k(“/x ~ Uiy)

Note that the sum of f;, and f;, is zero regardless of which representation of Fig-
ure 2.10 we select. However, for the sake of consistency in the forthcoming de-
rivation, we will use the second representation so that f;, and f;, are given in the
positive local x-direction. In order to use Eq. (2.17) to compute the internal force
in a given element, we must know the displacements of the element’s end nodes,
u;, and u,, , with respect to the local coordinate system, x, y. Recall that the glob-

f}x = k(uy - u;)

ed from
{R} = [K]{U} - {F}
such that

Ry (422 0 -422 0 0 0 0 0 0 0 ]

Riy 0 0 0 0 0 0 0 0 0 0

Rox -422 0 72 0 -149 149 0 0 -149 -149

Ray 0 0 0 72 149 -149 0 422 -149 -149

Ryl ool 0 0 -149 149 571 -149 -422 0 0 0

Rsy 0 0 149 -149 -149 149 0 0 0 0

Rux 6 0 0 0 -422 0 844 0 —422 0

Ry 0 0 0 -422 0 0 0 422 0 0

Rsx 0 0 -149 -149 0 0 —422 0 571 149

Rsy L 0 0 -149 -149 0 0 0 0 149 149 |
0 0
0 0
-0.00355 0
—0.01026 0
0 0
0 "l o
0.00118 0
—0.0114 ~500
0.00240 0
—0.0195 ~500

fix = ki~ “/x)

FIGURE 2.10 Internal forces in a truss member.
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al displacements are related to the local displacements through a transformation
matrix, according to Eq. (2.7), repeated here for convenience,

{U} = [T){u}

and the local displacements in terms of the global displacements:

{u} = [T]{U}

7 cos® sin@ 0 0 Uy
uy{ | —sin® cos® 0 0 Uy
Uy B 0 0 cos® sin® Ux
ujy 0 0 —sin® cosH Uy

Once the internal force in each member is computed, the normal stress in
each member can be determined from the equation

- = internal force _ f
area A

or alternatively, we can compute the normal stresses from

AE
f k(uix - uit) _ L (uix N qu) (uix - uix)
L

o= = = =E

" " - (2.18)

As an example, let us compute the internal force and the normal stress in el-
ement (5). For element (5),0 = 45, U,y = —0.00355in, U, = —0.01026 in, Usy =
0.0024 in, and Usy = —0.0195 in. First, we solve for local displacements of nodes
2 and 5 from the relation

Uy, cos45 sin45 0 0 —0.00355
Uy, | _ | —sin4S cos 45 0 0 —0.01026
us. [ 0 0  cos45 sindS || 0.00240

us, 0 0 —sin45 cos45 | |—0.01950

which reveals that u,, = —0.00976 in and 5, = —0.01209 in. Upon substitution of
these values into Egs. (2.17) and (2.18), the internal force and the normal stress in
element (5) are 696 Ib and 87 Ib/in, respectively. Similarly, the internal forces and
stresses can be obtained for other elements.
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This problem will be revisited later and solved using ANSYS. The verification
of these results will also be discussed in detail later in this chapter.

2.3 SPACE TRUSSES

A three-dimensional truss is often called a space truss. A simple space truss has six mem-
bers joined together at their ends to form a tetrahedron, as shown in Figure 2.11. We can
create more complex structures by adding three new members to a simple truss. This ad-
dition should be done in a manner where one end of each new member is connected to
a separate existing joint, attaching the other ends of the new members together to form
a new joint. This structure is shown in Figure 2.12. As mentioned earlier, members of a
truss are generally considered to be two-force members. In the analysis of space truss-
es, it is assumed that the members are connected together by ball-and-socket joints. It
can be shown that as long as the center lines of the adjacent bolted members intersect
at a common point, trusses with bolted or welded joints may also be treated under the
ball-and-socket joints assumption (negligible bending moments at the joints). Another
restriction deals with the assumption that all loads must be applied at the joints. This as-
sumption is true for most situations. As stated earlier, the weights of members are usu-
ally negligible compared to the applied loads. However, if the weights of the members
are to be considered, then half of the weight of each member is applied to the connect-
ing joints.

Finite element formulation of space trusses is an extension of the analysis of plane
trusses. In a space truss, the global displacement of an element is represented by six un-
knowns, U;x, Uy, Uiz, U;x, Uy, and U,z, because each node (joint) can move in three

FIGURE 2.11 A simple truss. FIGURE 2.12 Addition of new elements to a simple truss to
form complex structures.
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FIGURE 2.13 The angles formed by a
member with the X-, Y-, and Z-axis.

directions. Moreover, the angles 8,8y, and 8, define the orientation of a member with
respect to the global coordinate system, as shown in Figure 2.13.

The directional cosines can be written in terms of the difference between the co-
ordinates of nodes j and i of a member and the member’s length according to the re-
lationships

X;— X
cosfy = — T (2.19)
By = ~— 2.20
cos By 2 (220
Z; - Z;
cos 0, = ’L (2.21)

where L is the length of the member and is given by

L=V(X, - X+ -Y)+(Z - Z) (2.22)

The procedure for obtaining the element stiffness matrix for a space-truss mem-
ber is identical to the one we followed to derive the two-dimensional truss element stiff-
ness. We start the procedure by relating the global displacements and forces to local
displacements and forces through a transformation matrix. We then make use of the
two-force-member property of a member. We use a matrix relationship similar to the one
given by Eq. (2.14). This relationship leads to the stiffness matrix [K]® for an element.
However, it is important to realize that the elemental stiffness matrix for a space-truss
element is a 6 X 6 matrix, rather than the 4 X 4 matrix that we obtained for the two-
dimensional truss element. For a space-truss member, the elemental stiffness matrix is

iR T
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cos? 8y cos By cos 8y  cos By cos 6,
cos By cos Oy cos? 8y cos By cos 0,
(K] = k % :os 0, cosOycosé, cos? 0,
—cos” 0y —c0s Oy cos 8y —cos 0, cos 6,
—cos 0y cos By —cos® 0y —cos By cos 6,
—cos Oy cos0; —cos 8y cos 0, —cos? 9,
—cos? 8y —~cos 0y cos By —cos 8 cos 87
—cos 0y cos Oy —cos® 8y —cos 9y cos 6,
—cos By cos 0, —cos @y cos, —cos? 9, 2.23)
cos? By cos By cos By  cos Oy cos 0, )
cos B cos 8y cos? 0y cos By cos 6,
cos 0y cos 8,  cos By cos 8, cos? 9,

The procedure for the assembly of individual elemental matrices for a space-truss
member—applying boundary conditions, loads, and solving for displacements—is ex-
actly identical to the one we followed for a two-dimensional truss.

2.4 OVERVIEW OF THE ANSYS' PROGRAM
Entering ANSYS

This section provides a brief overview of the ANSYS program. More detailed informa-
tion about how you should go about using ANSYS to model a physical Problem is pro-
vided in Chapter 6. But for now, enough information will be provided to get you started.
The simplest way to enter the ANSYS program is through the ANSYS Launcher, shown
in Figure 2.14. The Launcher has a menu containing push buttons that provide the choic-
es you need to run the ANSYS program and other auxiliary programs.

When using the Launcher to enter ANSYS, follow these basic steps:

1. Activate the Launcher by issuing the command xansys54 at the system prompt if
you are running ANSYS on a Unix Platform.

2. Select the Interactive Set Up option from the Launcher menu by positioning the
cursor of the mouse over it and clicking the left mouse button. This command
brings up a dialog box containing interactive entry options.

a. Working directory: This directory is the one in which the ANSYS run will be ex-
ecuted. If the directory displayed is not the one you want to work in, pick the ...”
button to the right of the directory name and specify the desired directory.

b. Initial jobname: This jobname is the one that will be used as the prefix of the
file name for all files generated by the ANSYS run. Type the desired jobname
in this field of the dialog box.

¢. GUI configuration: This command brings up a dialog box that allows you to
choose the desired menu layout and font size. Do not change the default set-
tings, but simply press OK on this dialog box so that the proper X resource

"Materials were adapted with permission from ANSYS documents.
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f ANSYS 5.4 INTERACTIVE r

ANSYS /University Low Option ‘

FIGURE 2.14 The ANSYS Launcher.

file is created for the terminal you are using. This step is only required the first
time you enter ANSYS. Then choose the Interactive Set Up dialog box.

3. Pick ANSYS Interactive from the Launcher menu. This command activates the
ANSYS program by bringing up a window entitled ANSYS_Output. Move the
mouse cursor into the window and press <Return> or <Enter> to acknowledge
that you have read the disclaimer notice. The Graphical User Interface (GUT) will
then be activated, and you are ready to begin.

Program Organization

Before introducing the Graphical User Interface, we will discuss some basic concepts of
the ANSYS program. The ANSYS program is organized into two levels: (1) the Begin
level and (2) the Processor level. When you first enter the program, you are at the Begin
level. From this level, you can enter the ANSYS processors, as shown in Figure 2.15.
You may have more or fewer processors available to you than the ones shown in
Figure 2.15. The actual processors available depend on the particular ANSYS product
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Enter ANSYS Exit ANSYS
BEGIN LEVEL
PREP7 POST1 POST26 Etc.
General SgrLUTION General Time-History
Preprocessor ocessor Postprocessor Postprocessor
PROCESSOR LEVEL

FIGURE 2.15 The organization of ANSYS.

you have. The Begin level acts as a gateway into and out of the ANSYS program. It is also
used to access certain global program controls. At the Processor level, several routines
(processors) are available; each accomplishes a specific task. Most of your analysis will
be done at the Processor level. A typical analysis in ANSYS involves three distinct steps:

1. Preprocessing: Using the PREP7 processor, you provide data such as the geome-
try, materials, and element type to the program.

2. Solution: Using the Selution processor, you define the type of analysis, set bound-
ary conditions, apply loads, and initiate finite element solutions.

3. Postprocessing: Using POST1 (for static or steady state problems) or POST26 (for
transient problems), you review the results of your analysis through graphical dis-
plays and tabular listings.

You enter a processor by selecting it from the ANSYS main menu in the Graphical User
Interface (GUI). You can move from one processor to another by simply choosing the
processor you want from the ANSYS main menu. The next section presents a brief
overview of the Graphical User Interface.

The Graphical User Interface (GUI)

The simplest way to communicate with ANSYS is by using the ANSYS menu system,
called the Graphical User Interface (GUI). The GUI provides an interface between you
and the ANSYS program. The program is internally driven by ANSYS commands. How-
ever, by using the GUI, you can perform an analysis with littie or no knowledge of
ANSYS commands. This process works because each GUI function ultimately produces
one or more ANSYS commands that are automatically executed by the program.

Layout of the GUI The ANSYS GUI consist of six main regions, or windows, as
shown in Figure 2.16.
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A ANSYS Graphues

e  ANSY]
INITIAL JOBNGNE E
HEMORY RFQUESTED <

006763 vi]
[CURRENT JOBNAME=Tesx(|
/SHOW SET WITH DRIVE

RUN SETUP PROCEDURE
|

/TNPUT PILE= menust
i

FIGURE 2.16 The ANSYS GUL

ANSYS program through this menu.

timizer, etc.

and functions. You may add your own push buttons by defining abbreviations.

easy reference and access.
Graphics Window: A window where graphics displays are drawn.

VvV vV V V

behind the other windows and can be brought to the front when necessary.

=

B

Utility Menu: Contains utility functions that are available throughout the ANSYS
session, such as file controls, selecting, and graphics controls. You will also exit the

Main Menu: Contains the primary ANSYS functions, organized by processors.
These functions include preprocessor, solution, general postprocessor, design op-

Toolbar: Contains push buttons that execute commonly used ANSYS commands

Input Window: Shows program prompt messages and allows you to type in com-
mands directly. All previously typed-in commands also appear in this window for

Output Window: Receives text output from the program. It is usually positioned

P

7

o

I
£

o
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Title Bar

Menu
< Topics

FIGURE 2.17 The main menu.

The ANSYS main menu and the ANSYS utility menu, both of which you will use most
often, are discussed next.

The Main Menu

The main menu, shown in Figure 2.17, contains main ANSYS functions such as prepro-
cessing, solution, and postprocessing. All functions in the main menu are “modal” with
respect to each other; that is, you must complete one function before starting the next one.

Each menu topic on the main menu either brings up a submenu (indicated by a
> after the topic) or performs an action. The symbol to the right of the topic indicates
the action:

no symbol for immediate execution of the function
... for a dialog box
+ for a picking menu.

The left mouse button is used to select a topic from the main menu. The submenus in
the main menu stay in place until you choose a different menu topic higher up in the hi-
erarchy. If a menu topic is obscured by its submenus, you can bring it to the front by
clicking anywhere in the title bar or on its border. '

The Utility Menu

The utility menu, shown in Figure 2.18, contains ANSYS utility functions such as file
controls, selecting, and graphic controls. Most of these functions are “modeless;” that is,
they can be executed at any time during the ANSYS session. The modeless nature of the
utility menu greatly enhances the productivity and user friendliness of the GUL

Each menu topic on the utility menu activates a pull-down menu of subtopics, which
in turn will either cascade to a submenu, indicated by a > after the topic, or perform an
action. The symbols used to indicate the actions are the same as for the main menu.

Clicking the left mouse button on a menu topic on the utility menu is used to “pull
down” the menu topic. Pressing the left mouse button while dragging the cursor of the

FIGURE 2.18 The utility menu.
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mouse allows you to move cursor of the mouse rapidly to the desired subtopic. Releas-
ing the mouse button while the cursor is on an “action” subtopic causes that action to
be performed. Clicking the left mouse button leaves the pull-down and cascading menus
in place. The menus will disappear when you click on an action subtopic or elsewhere
in the GUL

Graphical Picking

In order to use the GUI effectively, it is important to understand graphical picking. You
can use the mouse to identify model entities and coordinate locations. There are two
types of graphical-picking operations: locational picking, where you locate the coordi-
nates of a new point, and retrieval picking, where you identify existing entities. For ex-
ample, creating key points by picking their locations on the working plane is a
locational-picking operation, whereas picking already-existing key points to apply a
load on them is a retrieval-picking operation.

Whenever you use graphical picking, the GUI brings up a picking menu. Figure 2.19
shows the picking menus for locational and retrieval picking.

The features of the picking menu that are used most frequently in upcoming ex-
amples are described in detail below.

Picking Mode: Allows you to pick or unpick a location or entity. You can use ei-
D ther these toggle buttons or the right mouse button to switch between pick and
unpick modes. The mouse pointer is an up arrow for picking and a down arrow

b Function Title b‘ Cieate KPs on WP

@ L]

=
<
z.
=]
[
1%
4
=
2
£
&

Keyboard
Entry Options

P Action Buttons

FIGURE 2.19 Picking menu for locational and retrieval picking.

T
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for unpicking. For retrieval picking, you also have the option to choose from sin-

gle pick, box, circle, and polygon mode.

Picked Data: Shows information about the item being picked. For locational pick-
D ing, the working plane and global Cartesian coordinates of the point are shown.

For retrieval picking, this area shows the entity number. You can see this data by

pressing the mouse button and dragging the cursor of the mouse into the graph-

ics area. This procedure allows you to preview the information before releasing

the mouse button and picking the item.

Action Buttons: This area of the menu contains buttons that take certain actions
b on the picked entities, as follows:

OK: Applies the picked items to execute the function and closes the picking menu.
Apply: Applies the picked items to execute the function.

Reset: Unpicks all picked entities.

Cancel: Cancels the functiofi and closes the picking menu.

Pick All: Picks all entities available for retrieval picking only.

Help: Brings up help information for the function being performed.

Mouse-Button Assignments for Picking A summary of the mouse-button as-
signments used during a picking operation is given below:

The left button picks or unpicks the entity or location closest to the cursor of the
mouse. Pressing the left mouse button and dragging the cursor of the mouse al-
lows you to preview the items being picked or unpicked.

The middle button applies the picked items to execute the function. Its function
H is the same as that of the Apply button on the picking menu.

The right button toggles between pick and unpick mode. Its function is the same
ﬁ as that of the toggle buttons on the picking menu. :

The Help System

The ANSYS help system gives you information for virtually any component in the
Graphical User Interface and any ANSYS command or concept. It can be accessed with-
in the GUI via the help topic on the utility menu or by pressing the help button from
within a dialog box. You can access a help topic by choosing from a manual’s table of con-
tents or index. Other features of the help system includes hypertext links, word search,
and the ability to print out help topics. An in-depth explanation of the capabilities and
the organization of the ANSYS program is offered in Chapter 6.

25 EXAMPLES USING ANSYS

In this section, ANSYS is used to solve truss problems. ANSYS offers two types of ele-
ments for the analysis of trusses: LINK1 and LINKS. A two-dimensional spar, called
LINK1, with two nodes and two degrees of freedom (U, Uy) at each node is com-
monly used to analyze plane truss problems. Input data must include node locations,
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cross-sectional area of the member, and modulus of elasticity. If a member is prestressed,
then the initial strain should be included in the input data as well. As we learned previ-
ously in our discussion on the theory of truss element, we cannot apply surface loads to
this element; thus, all loads must be applied directly at the nodes. To analyze space-truss
problems, ANSYS offers a three-dimensional spar element. This element, denoted by
LINKS, offers three degrees of freedom (Uy, Uy, U,) at cach node. Required input
data is similar to LINK1 input information. To get additional information about these
elements, run the ANSYS on-line help menu.

EXAMPLE 2.1 (revisited)

Consider the balcony truss from Example 2.1, as shown in the accompanying figure. We
are interested in determining the deflection of each joint under the loading shown in the
figure. All members are made from Douglas-fir wood with a modulus of elasticity of
E = 1.90 x 10°lb/in® and a cross-sectional area of 8 in?. We can now analyze this prob-
lem using ANSYS.

00 1b 00 16
; 3ft i [y
o)

(6)

The following steps demonstrate how to create the truss geometry, choose the ap-
propriate element type, apply boundary conditions and loads, and obtain results:

Enter the ANSYS program by using the Launcher.

Type xansys54 on the command line if you are running ANSYS on a UNIX plat-
form, or consult your system administrator for information on how to run ANSYS
from your computer system’s platform.

Pick Interactive from the Launcher menu.

Type Truss (or a file name of your choice) in the Initial Jobname entry ficld of the
dialog box.
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NSYS 5.4 INTERACTIVE

Pick Run to start the Graphic User Interface (GUI). A window will open with
some disclaimer information. You will eventually be asked to press the <Return>
kev to start the graphics window and the main menu. Do so in order to proceed.
Create a title for the problem. This title will appear on ANSYS display windows
to provide a simple way of identifying the displays.To create a title.1ssue the com-
mand

utility menu: File — Change Title ...

Change 1 e

Define the element type and material properties:

main menu: Preprocessor — Element type — Add/Edit/Delete ...
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i Libraty leleme

Element Types

NONE DEFINED

Iypes s i v

Hyperelastic
Uisco Seolid
Gontact
Comhination

LINK1

T T T
;

Assign the cross-sectional area of the truss members:

main menu: Preprocessor — Real Constants ...
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i Real Constants

NONE DEFINED

: Etement Type for Real Constants

sy EEEEEN EESETS

eal Constants ]

: Real Constants for LINK1

.De lete

Assign the value of the modulus of elasticity:

main menu: Preprocessor — Material Props — -Constant-Isotropic ...
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: Isotiopic Material Propesties

(i
NPT I

Srezn Sigy l v

. Toggle on the workplane by the following sequence:
Save the input data:

utility menu: Workplane — Display working plane
ANSYS Toolbar: SAVE_DB y p play g plan

Set up the graphics arca (i.c.. workplane, zoom. ctc.): Bring the workplane to view using the following sequence:

utility menu: Workplane — WP Settings .. utility menu: PlotCtrls -~ Pan, Zoom, Rotate ...
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You may want to turn off the workplane now and turn on node numbering in-
stead:

utility menu: Workplane — Display Working Plane

utility menu: PlotCtrls -— Numbering ...

i Plot Numbering Cantrols

Click on the small circle until you bring the workplane to view. You can also use

the arrow huttons to move the workplane in a desired direction. Then. create nodes You may want to list nodes at this point in order to check your work:
by picking points on the workplane:

N e Pre R . dino-Create - . . .

main menu: Preprocessor - > -Modeling-Create — Nodes utility menu: List — nodes ...

-—— On Working Plane +

On the workplane, pick the location of joints (nodes) and apply them:
[WP -~ 0.0}

COIWP o 360]
: e A 9
I WP - 030

1 IwWP

36.36]

I WP = 7230]
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A NLIST  Command

Fle

LI4T ALL SELECTED NODES.
S0FT TARLE ON NODE NODE

NULE s T Z

L Q00QoanacoRa
L 000000300000

Goapnonoon

Close
ANSYS Toolbar: SAVE_DB
Define elements by picking nodes:
main menu: Preprocessor — -Modeling-Create — Elements —

-Auto Numbered-Thru Nodes +

1L [node 1 and then node 2]

[} [Usc the middle button anywhere in the ANSYS graphics window to apply.]

I [node 2and then node 3]
o

R [anywhere in the ANSYS graphics window]
[ Iu; [node 3 and then node 4]

|

(B} lanywhere in the ANSYS graphics window]

B0 [node 2and then node 4]

Section 2.5 Examples Using ANSYS

|[anywhere in the ANSYS graphics window]

B [node 2 and then node 5]

rh

[l]] [anywhere inthe ANSYS graphics window]
QU] [node 4 and then node 5)

F

[anywhere in the ANSYS graphics window]

OK

OANSYS Grophics

ANSYS Toolbar: SAVE_DB

89
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Apply boundary conditions and loads:

main menu: Solution — -Loads-Apply — -Structural-Displacement
— On Nodes +

[node 1}

[ [node 3]

[anywhere in the ANSYS graphics window]|

*Apply U .ROT on Nodes
g

main menu: Solutions — -Loads-Apply — -Structural-Force/Moment
— On Nodes +

[node 4]

[node 5]

fanywhere in the ANSYS graphics window])

:Apply ¥/M on Nodes

ANSYS Toolbar: SAVE DB
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Solve the problem:

main menu: Solution > -Solve-Current LS

olve Current Load Step

Close (the solution is done!) window.
Close (the /STAT Command) window.

For the postprocessing phase. first plot the detformed shape:

main menu: General Postproc — Plot Results — Deformed Shape ..

1 Plat Deformed Shape

91
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General Postproc — List Results -—» Nodal Solutions ...

« List Nodal Solution

Command

PEINT DOF  NODAL 3OLUTION PER NODE
®®*tr POSTL NODAL DEGREE OF FREEDOM LISTIKG *#x**

LOAD STEP= 1 SUBSTEP= L
TIKE= 1.00900 LCADL CASE= o

THE FOLLAWING DESREE OF FREELOM FESULTA ARE IN GLOBAL COORDINATE:Z

HODE uy
i . Q0000
< - Oz -.1025ZE-01
B .ponoo
4 -0& - 1143G6E-01
b 23R84E-0Z -, 19S22F-01
MAINMM ABSOLUTE VALUES
WCDE é 5
VALUL ShbERE-aL - 1YSLZE-U)

To review other results, such as axial forces and axial stresses, we must copy these
results into element tables. These items are obtained using itesm label and sequence
numbers, as given in the Table 4.1-4.3 section of the ANSYS elements manual. For
truss elements. the values of internal forces and stresses, which ANSYS computes
from the nodal displacement results, may be looked up and assigned to user defined
lables. For Example 2.1, we have assigned the internal force, as computed by
ANSYS. in each member to a user defined lable “Axforce.” However, note that
ANSYS allows up to eight characters to define such lables. Similarly, the axial
stress result for cach member is assigned to the lable “Axstress.” We now run the
following sequence:

main menu: General Postproc — Element Table — Define Table . .

Section 2.5

i Define Additional Element \"

ncrgy

Ervor estimation
Geometry
Strain-elastic
Strain-thermal
train-plastic
Strain-creepn
Strain-other

B

* Define Additional Element Table items

ry,
n-elastic
n-thernal
n-plastic

Examples Using ANSYS
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main menu: General Postproc — Element Table — Plot Element Table ...

or

main menu: General Postproc — Element Table —> List Element Table ...

+ Elemenl Table Data

iList Eiement YTable Data

Close

AXFORCE

ARSTRESS
1-16 GRP1
11-2@ GRP2
21-3@ GRP3
31-4@ GRP4
41-5@8_GRPS

PRINT ELEMENT TABLE ITEMS PER ELEMENT

***%* POST1 ELEMENT TABLE LISTING *#***%

STAT CURRENT CURRENT
ELEM AXFORCE AXSTRESS
1 -1500.0 -187.50
2 l4l4.z2 176.78
3  500.00 62.500
4 -500.00 -62.500
5 -707.11 -88.388
6 500.00 62.500

MININUM VALUES
ELEM 1 1
VALUE -1500.90 -187.50

MAXINUM VALUES
ELEM 2
VALUE 1414.2 176.78
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List reaction solutions:

main menu: General Postproc — List Results — Reaction Solu ...

PRRSOL Command

PRINT REACTION SOLUTIONS PER NODE
*r*x% POSTL TOTAL REACTION SOLUTION LISTING *****

LOAD STEP=- 1 SUBSTEP= 1
TIME= 1.000C LOAD CASE= a

THE FOLLOWING X,Y,2 SOLUTIONS ARE IN GLOBAL COORDINATES

NODE FX FY
1 1500.0 .00000
3 -1500.0 1000.90
TOTAL VALUES
VALUE . 00000 1000.0

Exit ANSYS and save everything, including element tables and reaction forces:
ANSYS Toolbar: QUIT

tExit bram ANSYS
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If, for any reason, you need to modify a model. first launch ANSYS and then type
the file name of the model in the Initial Jobname entry field of the Interactive di-
alog box. Then press Run. From the File menu, choose Resume Jobname.DB. Now
you have complete access to your model. You can plot nodes, elements, and so on
to make certain that you have chosen the right problem.

EXAMPLE 2.2

Consider the three-dimensional truss shown in the accompanying figure. We are inter-
ested in determining the deflection of joint 2 under the loading shown in the figure. The
Cartesian coordinates of the joints with respect to the coordinate system shown in the
figure are given in feet. All members are made from aluminum with a modulus of elas-
ticity of £ = 10.6 % 10° Ib/in” and a cross-sectional area of 1.56 in.

Uy=0
3

(0,0, 3)

(6'.0.0)

0,0.3) 2001

To solve this problem using ANSYS. we employ the following steps:

Enter the ANSYS program by using the Launcher.

Type xansys54 on the command line if you are running ANSYS on a UNIX plat-
form, or consult your system administrator for information on how to run ANSYS
from your computer system’s platform.

Pick Interactive from the Launcher menu.

Type Truss3D (or a file name of your choice) in the Initial Jobname entry field
of the dialog box.
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ANSYS 5.4 INTERACTIVE

Pick Run to start the Graphic User Interface (GUI). A window will open with
some disclaimer information. You will eventually be asked to press the <Return>
key to start the graphics window and the main menu. Do so in order to proceed.

Create a title for the problem. This title will appear on ANSYS display windows
to provide a simple way of identifying the displays:
utility menu: File — Change Title ...

< Lhange 1ilie

Define the element type and material propertics:

main menu: Preprocessor — Element Type — Add/Edit/Delete ...
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Element 1ppes

NONE DEFINED

i Library of Element Types

Assign the cross-sectional arca of the truss members:

main menu: Preprocessor — Real Constant ...

{ Heat Constants
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NONE DEFINED

lement Type tor Real Constants

i Real Constants

Assign the value of the modulus of elasticity:

main menu: Preprocessor — Material Props — -Constant-Isotropic ...

i Isotropic Matenal Pioperties
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i Create Nodes in Acl

K |sottopic Malerig! Elﬂpglllct

i Create Nodes in Active Coordinate System

ANSYS Toolbar: SAVE_DB
Create nodes in active coordinate system:
main menu: Preprocessor — -Modeling-Create — Nodes — In Active Cs ...

reate Nodes in Active Cooidinate System

You may want (o turn on node numbering:

utility menu: PlotCtrls — Numbering ..
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i Plot Numbenng Lontiols

L |

L]

L]

Colors & numbers i}
fReplos Ml

You may want to list nodes at this point in order to check your work:

utility menu: List — nodes ...

INODE Nunber I
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| ANLIST Command [

LIST ALL SELECTED NODES. bp3YS= O
SORT TABLE ON NODE NODE XODE
NODE X Y r4 THXY THYZ THZX
1 . 00000 .00000 36.000 .00 .00 .00
2 72.000 .00000 . 00000 .00 .00 .00
3 . 00000 . 00000 -36.000 .00 .00 .00
4 .00000 72.000 . 00000 .00 .00 .00
Close

ANSYS Toolbar: SAVE_DB

Define elements by picking nodes. But first set the view angle:

utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Select the oblique or isometric viewing.

[(E(E[(E[(EB[ELE

main menu: Preprocessor — -Modeling-Create — Elements —

-Auto Numbered-Thru Nodes +

[node 1 and then node 2]

[Use the middle button anywhere in the ANSYS graphics window to
apply]

[node 1 and then node 3]

[anywhere in the ANSYS graphics window]

[node 1 and then node 4]

[anywhere in the ANSYS graphics window]
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[node 2 and then node 3] main menu: Solution — -Loads-Apply — -Structural-Displacement

~> On Nodes +
[node 1]
fanywhere in the ANSYS graphics window} ﬁ

ﬁ [anywhere in the ANSYS graphics window]
[node 2 and then node 4]

+Apply U.ROT on Nodes

[anywhere in the ANSYS graphics window}

[node 3 and then node 4]

[anywhere in the ANSYS graphics window]

E(E(E(E(E [T

OK
ANSYS Toolbar: SAVE_DB main menu: Solution — -Loads-Apply — -Structural-Displacement
Apply boundary conditions and loads: — On Nodes +
main menu: Solution — -Loads-Apply — -Structural-Displacement Eﬂ [node 4]
— On Nodes +
Fﬂ[ [node 1] ﬁ [anywhere in the ANSYS graphics window]
E [node 3]  Apply U.ROT on Nodes [

all DOF
UX

fﬂ[ [node 4] 7 : e —

E [anywhere in the ANSYS graphics window]

“Apply U.ROT on Nodes

main menu: Solution ~ -Loads-Apply — -Structural-Force/Moment

— On Nodes +
fﬂ% [node 2]

Eﬂ |anywhere in the ANSYS graphics window]
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Apply F/M on Nodes

ANSYS Toolbar: SAVE_DB
Solve the problem:
main menu: Solution — -Solve-Current LS
OK
Close (the solution is done!) window.
Close (the /STAT Command) window.
Now we run the postprocessing phase by listing nodal solutions (displacements):
main menu: General Postproc — List Results — Nodal Solu ...

ist Nodat Solution

Strain-other

|

PEINT DOF NODAL 5C0LUTION FER NODE

#a&ss POSTY NODAL DEGREE QF FREEDDM LISTIRG **#87

LOAD STEP= 1 SUBSTEP= 1
TIKE= 1.0000 LOAD CASE= )

THE FOLLOWING DEGREE 9F FRFEEDOM RESULTS AFE IN GLOBAL COORDINATES

NODE s vz
1 L0000 Laonag
2 - RRZ84FE-0T - - INARSF-03
3 . 0oosn L1GBESE-03 -.21771E-03
4 .Q0B00 .0oono

MAXINUM AESULINE VALUES
NCLE 2 Z 3
VALUE -8 IE-02 -.Z1771E-03

AE-03 -3
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Toreview other results, such as axial forees and axial stresses, we must copy these
results into element tables. These items are obtained using irenn label and .\<';/m'n<‘<'
mumbers.as given in the Table 4.1-4.3 section of the ANSYS elements manual. So,
we run the following sequence:

main menu: General Postproc — Element Table — Define Table

i Element Table Data
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i Element able Data

i List Reaction Solution

ALl iten
bt

UV PHASOL Lommand

; PRINT REACTION SOLUTIORS PER NODE
Lest Element Table Data 4 ;
*x¥1% POSTL TOTAL REACTION SOLUTION LISTING *#%%=
zi{fgggfq LOAD STEP= 1 SUBSTEP= 1
) TIME= 1.0000 LOAD CASE= O

THE FOLLOWING X,Y,Z SOLUTIONS ARE IN GLOBAL COORDINATES

NODE FX FY FZ
1 100.00 -.14211E-13
3 100,00
4 -200.00 200.00
TOTAL VALUES
VALUE -.28422E-13 200.00 -.14211E-13
PRINT ELEMENT TABLE ITEMS PER ELEMERT
###3% POST1 ELEMENT TABLE LISTIRG s¥*%%
STAT CURRENT CURRENT 3 ClOSe
ELEM AXFORCE AXSTRESS 3
; —;;1633 -;; ggf; - Exit ANSYS and save everything, including element tables and reaction forces:
3 .00000 00000 g
a4 -111.80 -71.669 -3 ANSYS Toolbar: QUIT
5 282.84 181.31 > .
6 .00000 .00000 -

Exit rom ANSYS
MININUM VALUES
ELEM 1 1

VALUE -111.80 -71.669

MAXINUM VALUES

ELEM 5 5
VALUE 282.84 181.31
Close

List reaction solutions:

G o i e R D3 et A S SRSl B VAL 1

main menu: General Postproc — List Results — Reaction Solu ...
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2.6 VERIFICATION OF RESULTS
There are various ways to verify your findings.

1. Check the reaction forces.
We can use the computed reaction forces and the external forces to check for sta-
tics equilibrium:

SF=0

SF =0
and

2 Mg = 0

The reaction forces computed by ANSYS are: Fjx = 1500 1b; Fyy = O;F3x =
—1500 1b; and F3y = 1000 Ib. Using the free body diagram shown in the accompany-
ing figure and applying the static equilibrium equations, we have:

SFy=0 1500 — 1500 = 0
SF =0 1000 - 500 — 500 = 0
2 Myoger =0 (1500)(3) — (500)(3) — (S00)(6) = 0O
1000 Ib

500 Ib 500 b
3ft 3ft
(3) (6)

1500 1b

1500 Ib

Now consider the internal forces of Example 2.1 as computed by ANSYS, shown in

Table 2.2.
TABLE 2.2 Internal forces in each element as
computed by ANSYS
Element Internal
Number Forces (Ib)
1 ~1500
2 1414
3 500
4 —500
5 =707
6 500
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2. The sum of the forces at each node should be zero.
Choose an arbitrary node and apply the equilibrium conditions. As an example, let

us choose node 5. Using the free body diagram shown in the accompanying fig-
ure, we have:

ZFy=0 -500 + 707cos 45 = 0
ZF, =0 —-500 + 707sin 45 = 0
500 Ib

500 1b 5

45°

707 Ib

3. Pass an arbitrary section through the truss.

Another way of checking for the validity of your FEA findings is by arbitrarily
cutting a section through the truss and applying the statics equilibrium conditions.
For example, consider cutting a section through elements (1), (2), and (3), as shown
in the accompanying figure.

500 Ib

1414 1b

FEI) R, ...........o.

@ 2
SFy=0 —500 + 1500 — 1414 cos 45 = 0

SF =0 ~500 — 500 + 1414 cos 45 = 0
2 Muoaer =0 —=(300)(3) + (500)(3) = 0

Again, the validity of the computed internal forces is verified. Moreover, it is im-

portant to realize that when you analyze statics problems, statics equilibrium con-
ditions must always be satisfied.
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SUMMARY

At this point you should:

1. have a good understanding of the underlying assumptions in truss analysis.

2. understand the significance of using global and local coordinate systems in de-
scribing a problem. You should also have a clear understanding of their role in de-
scribing nodal displacements and how information presented with respect to each
frame of reference is related through the transformation matrix.

3. know the difference between the elemental stiffness matrix and the global stiffness
matrix and know how to assemble elemental stiffness matrices to obtain a truss’s
global stiffness matrix.

4. know how to apply the boundary conditions and loads to a global matrix to obtain
the nodal displacement solution.

5. know how to obtain internal forces and stresses in each member from displace-
ment results.

6. have a good grasp of the basic concepts and commands of ANSYS. You should re-
alize that a typical analysis using ANSYS involves: the preprocessing phase, where
you provide data such as geometry, materials, and element type to the program; the
solution phase, where you apply boundary conditions, apply loads, and initiate a fi-
nite element solution; and the postprocessing phase, where you review the results
of the analysis through graphics displays and or tabular listings.

7. know how to verify the results of your truss analysis.

REFERENCES

ANSYS User's Manual: Procedures,Vol. I, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Commands, Vol. I1, Swanson Analysis Systems, Inc.
ANSYS User's Manual: Elements, Vol. IT1, Swanson Analysis Systems, Inc.

Beer F. P, and Johnston, E. R., Vector Mechanics for Engineers: Statics, 5th ed., New York, McGraw-
Hill, 1988.

Segrlind, L., Applied Finite Element Analysis, 2d. ed., New York, John Wiley and Sons, 1984.

PROBLEMS

1. Starting with the transformation matrix, show that the inverse of the transformation matrix
is its transpose. That is, show that

cos® sin 0 0
—sin® cos@ 0 0
T =
(T] 0 0 cos® sin@
0 0 —sin® cos @

2. Starting with Eq. (2.14), {F} = [T][K][T]"{U}, and substituting for values of the [T], (K],
[T]™%, and {U} matrices in Eq. (2.14), verify the elemental relationship
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Fix cos? B sin 6 cos 0 —cos’@  —sinBcos8 | (U,
Fy | _ X sin 6 cos 9 sin? @ -sin@cos§  —sin’ @ U
Fx —~cos’®  —sin 6cos 6 cos? 0 sin 6 cos 6 U;
Fy —sin 6 cos 0 —sin® 8 sin 6 cos 6 sin® 8 Uy

3. The. members of the truss shown in the accompanying figure have a cross-sectional area of
2.3 in? and are made of aluminum alloy (E = 10.0 X 10° Ib/in?). Using hand calculations,

determine the deflection of joint A, the stress in each member, and the reaction forces, Ver-
ify your results.

4. Th;: members of the truss shown in the accompanying figure have a cross-sectional area of 8
cm” and are made of steel (E = 200 GPa). Using hand calculations, determine the deflection
of each joint, the stress in each member, and the reaction forces. Verify your results.

2kN

5. The members of the truss shown in the accompanying figure have a cross-sectional area of
15 cm? and are made of aluminum alloy (2024-T4). Using hand calculations, determine the
deflection of each joint, the stress in each member, and the reaction forces. Verify your results.
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8. The members of the three-dimensional truss shown in the accompanying figure have a cross-
sectional area of 15 cm? and are made of steel (E = 200 GPa). Using hand calculations, de-

termine the deflection of joint A, the stress in each member, and the reaction forces. Verify
your results.

6. The members of the truss shown in the accompanying figure have a cross-sectional area of 2
in? and are made of structural steel (ASTM-A36). Using hand calculations, determine the
deflection of each joint, the stress in each member, and the reaction forces. Verify your results.

2kN

10001b 9. Consider the power transmission-line tower shown in the accompanying figure. The members

7. The members of the three-dimensional truss shown in the accompanying figure have a cross- 1 have a cross-sect.ional area of 19 in?and a “}ij“‘“S of elasticity of E = 29 X 10°Ib/in’. Using

sectional area of 2.5 in? and are made of aluminum alloy (E = 10.0 X 10°Ib/in?). Using hand i ANSYS, determine the deflection of each joint, the stress in each member, and the reaction
calculations, determine the deflection of joint A, the stress in each member, and the reaction forces at the base. Verify your results.

forces. Verify your results.

Y | 5at10ft
11’ 12 13 14 15 16
~ 250 lbl }
9 1o 10 ft
8 i
7
1000 Ib 10 ft 1000 1b
5 6
10 ft
3 4
151t
1 2
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10. Consider the staircase truss shown in the accompanying figure. There are 14 steps, each with
a rise of 8 in and a run of 12 in. The members have a cross-sectional area of 4 in? and are
made of steel with a modulus of elasticity of E = 29 X 10° Ib/in%. Using ANSYS, determine
the deflection of each joint, the stress in each member, and the reaction forces. Verify your
results.

200 1b

200 1b

100 1b 100 Ib

200 1b

200 Ib

’<— 12 in.—»‘
200 1b

11. The members of the roof truss shown in the accompanying figure have a cross-sectional area
of approximately 21.5 in” and are made of Douglas-fir wood with a modulus of elasticity of
E = 1.9 x 10 Ib/in’. Using ANSYS, determine the deflection of each joint, the stresses in
each member, and the reaction forces. Verify your results. Also, replace one of the fixed
boundary conditions with rollers and obtain the stresses in each member. Discuss the differ-
ence in results.

ra i ey
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12. The members of the floor truss shown in the accompanying figure have a cross-sectional area

13.

of approximately 21.5 in” and are made of Douglas-fir wood with a modulus of elasticity of
E = 1.9 x 10°Ib/in’. Using ANSYS, determine the deflection of each joint, the stresses in
each member, and the reaction forces. Verify your results. Also, replace one of the fixed
boundary conditions with rollers and solve the problem again to obtain the stresses in each
member. Discuss the difference in results.

500 Ib 500 Ib 5001b 5001b

97 ':W//WM{V/M//W”/WI/W”MIMM/MM% —_—T
; % 7 ? 4 ? A 7/ f%
YANVANDANDY
7 7 2 2 7
7 Vi v/ 7 7
/Y v v /. N7 V]
QU777 7247777724 7707 et 207 0% P e e P B e 0 0 7 —————

|
0t
| |

The three-dimensional truss shown in the accompanying figure is made of aluminum alloy
(E = 10.9 X 10° psi) and is to support a load of 500 Ib. The Cartesian coordinates of the
joints with respect to the coordinate system shown in the figure are given in feet. The cross-
sectional area of each member is 2.246 in2. Using ANSYS, determine the deflection of each
joint, the stress in each member, and the reaction forces. Knowing that the second moment
of area is 4.090 in®, do you think that buckling is a concern for this truss? Verify your results.

Y
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14. The three-dimensional truss shown in the accompanying figure is made of aluminum alloy

(E = 104 X 10°Ibfin?) and is to support a sign weighing 1000 Ib. The Cartesian coordinates
of the joints with respect to the coordinate system shown in the figure are given in feet. The
cross-sectional area of each member is 3.14 in%, Using ANSYS, determine the deflection of
joint E, the stresses in each member, and the reaction forces. Verify your results.

D (-0.5,2.0,2.0)

1000 Ib

E(10,25,0)

The three-dimensional truss shown in the accompanying figure is made of steel (E =
29 X 10° psi) and is to support the load shown in the figure. The Cartesian coordinates of the
joints with respect to the system shown in the figure are given in feet. The cross-sectional
area of each member is 3.093 in%. Using ANSYS, determine the deflection of each joint, the
stresses in each member, and the reaction forces. Verify your results.

Y

16.

17.

18.
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During a maintenance process on the three-dimensional truss in Problem 15, the AB mem-
ber is replaced with a member with the following properties: E = 28 X 10° psi and A =
2.246 in%. Using ANSYS, determine the deflection of each joint and the stresses in each mem-
ber. Hint: you may need to ask your instructor for some help with this problem or you may
want to study example 4.2 (revisited) on your own to learn about how to assign different at-
tributes to an element in ANSYS.

During a maintenance process on the three-dimensional truss in Problem 13, members 4-5,
4-6, and 5-6 are replaced with steel members with the following properties: E = 29 X 10°
psiand A = 1.25in%. Member 1-5 is also replaced with a steel member with a cross-sectional
area of 1.35 in”. Using ANSYS, determine the deflection of each joint and the stresses in each
member. See the hint given for Problem 16.

Derive the transformation matrix for an arbitrary member of a space truss, shown in the ac-
companying figure. The directional cosines, in terms of the difference between the coordinates
of nodes j and i of a member and its length, are

X - X, Y-, z-2,
L ; cos 8y = 2 H cos 07 =

cos By =

where L is the length of the member and is

L=V(X; - X + (Y, - Y +(z,- Z)".
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19. The three-dimensional truss shown in the accompanying figure is made of steel (E =
29 x 10° psi) and is to support the load shown in the figure. Dimensions are given in feet. The
cross-sectional area of each member is 3.25 in?. Using ANSYS, determine the deflection of
each joint, the stresses in each member, and the reaction forces. Verify your results.

One-Dimensional Elements

Y

The objectives of this chapter are to introduce the concepts of one-dimensional ele-
ments and shape functions and their properties. The idea of local and natural coordinate
systems will also be presented here. In addition, one-dimensional elements used by
ANSYS will be discussed. These are the main topics discussed in Chapter 3:

3.1 Linear Elements

3.2 Quadratic Elements

3.3 Cubic Elements

3.4 Global, Local, and Natural Coordinates

3.5 Numerical Integration: Gauss-Legendre Quadrature
3.6 Examples of One-Dimensional Elements in ANSYS

Zz

20. Design Problem Size the cross section of each member for the outdoor truss structure shown
in the accompanying figure so that the end deflection of the truss is kept under 1 in. Select
appropriate material and discuss how you arrived at your final design.

3.1 LINEAR ELEMENTS

The structural and heat transfer examples in this section are employed to introduce the
basic ideas of one-dimensional elements and shape functions. Steel columns are com-
monly used to support loads from various floors of multi story buildings, as shown in Fig-
ure 3.1. The column shown in the figure may be divided into four elements and five
nodes to generate a finite element model. The loading from the floors causes vertical dis-
placements of various points along the column. Assuming axial central loading, we may
approximate the actual deflection of the column by using a series of linear functions, de-
scribing the deflection over each element or each section of the column. In Chapter 4,
we will formulate the stiffness and loading matrices for problems in which columns are
subjected to axial loading.

As another example, let us consider a heat transfer problem. Fins are commonly
used in a variety of engineering applications to enhance cooling. Common examples in-
clude a motorcycle engine head, a lawn mower engine head, extended surfaces (heat
sinks) used in electronic equipment, and finned-tube heat exchangers. A straight fin of
a uniform cross section is shown in Figure 3.2, along with a typical temperature distrib-
ution along the fin. As a first approximation, let us divide the fin into three elements and
four nodes. The actual temperature distribution may be approximated by a combination
of linear functions, as shown in Figure 3.2. To better approximate the actual temperature
gradient near the base of the fin in our finite element model, we have placed the nodes

Y

1”1
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FIGURE 3.1 Deflection of a steel column subject to floor loading.

Actual temperature profile

Approximate temperature profile

FIGURE 3.2 Temperature distribution for a
| fin of uniform cross section.

closer to each other in that region. It should be clear that we can improve the accuracy
of our approximation by increasing the number of elements as well. However, for now,
let us be content with the three-element model and focus our attention on a typical el-
ement, as shown in Figure 3.3. The temperature distribution along the element may be
interpolated (or approximated) using a linear function, as depicted in Figure 3.3.

The linear temperature distribution for a typical element may be expressed as

TO=¢, +c, X (3.1)

Section 3.1 Linear Elements 123

i (e) lj
X;

X
/ FIGURE 3.3 Linear approximation of
“ ¢ > temperature distribution for an element.

X

The element’s end conditions are given by the nodal temperatures T; and T';, according
to the conditions

T=T, at X=X 3.2)
T=T; at X=X
Substitution of nodal values into Eq. (3.1) results in two equations and two unknowns:
T=c+oX (3.3)
T=c¢c + X
Solving for the unknowns ¢; and c,, we get
T.X, - T,X,
“=Txox
_ -7
X; - X,
The element’s temperature distribution in terms of its nodal values is:
T(‘)=E§_Z&+)§_1X (3.6)

]

(3.4)

s (3.5)

Grouping the T; terms together and the T; terms together, we obtain
X, - X X - X
ﬂ%{J——ﬁ+C——%4 3.7
%)t (x=x)7 &)
We now define the shape functions, S; and S;, according to the equations
X-X X-X
X -Xx ¢
X-X X-
= 3.9
X; - X (39)

S (3.8)

i

S =

]

G
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Si|X=X,- = ¢

Silx=x,= ¢
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where ¢ is the length of the element. Thus, the temperature distribution of an element
in terms of the shape functions can be written as

TO = §T, + §;T, (3.10)

Equation (3.10) can also be expressed in matrix form as

O =5, s {;} (.11)

7

For the structural example in Figure 3.1, the deflection u*) for a typical column element
is represented by

Uj

W =[s, s {“‘} (3.12)
where u; and u; represent the deflections of nodes i and j of an arbitrary element (e). It
should be clear by now that we can represent the spatial variation of any unknown vari-
able over a given element by using shape functions and the corresponding nodal values.

Thus, in general, we can write

¥O =[5 s] {i} (3.13)

]

where ¥; and ¥; represent the nodal values of the unknown variable, such as tempera-
ture, or deflection, or velocity.

Properties of Shape Functions

The shape functions possess unique properties that are important for us to understand
because they simplify the evaluation of certain integrals when we are deriving the con-
ductance or stiffness matrices. One of the inherent properties of a shape function is that
it has a value of unity at its corresponding node and has a value of zero at the other ad-
jacent node. Let us demonstrate this property by evaluating the shape functions at
X = X;and X = X;.Evaluating S; at X = X, and X = X, we get
XX X=X X - X XX
= =1and Sfy-x;, = —5— =———=0 (3.14)

J

x=x, ¢
Also evaluating S; at X = X; and X = X;, we obtain

X, ,»
= * =0 and Sjx-x, = = =1 (315
X=X, ¢ ]|X X; ¢ |X=Xj ¢ ( )

This property is also illustrated in Figure 3.4.
Another important property associated with shape functions is that the shape func-

tions add up to a value of unity. That is,

X, - X, X - X

Fag

o
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>
M

X X, X, X

T, 50

T, 41
1 @ 2 2 3 3 4 2 . °
o @ 3) . L 3 C

T, 20

|2 cm+f«—3 cm—{ 5cm |

FIGURE 3.5 The nodal temperatures and their corresponding positions along the fin in
Example 3.1

It can also be readily shown that for linear shape functions, the sum of the derivatives
with respect to X is zero. That is,

X, — X X -X
L(J )+L( ')z_ 1L 1 -0 @
ax\x,-x) " ax \x, - x, X -X X -X

EXAMPLE 3.1

We have used linear one-dimensional elements to approximate the temperature distri-
bution along a fin. The nodal temperatures and their corresponding positions are shown
in Figure 3.5. What is the temperature of the fin ata) X = 4 cm and b) X = 8 cm?

In Chapter 4, we will discuss in detail the analysis of one-dimensional fin prob-
lems, including the computation of nodal temperatures. However, for now, using the
given nodal temperatures, we can proceed to answer both parts of the question:

(a) The temperature of the fin at X = 4 cm is represented by element (2);

X3—XT+X"‘X2
¢ 7 ¢

T = 9T, + $P1, = T,

T= §;—4(41) +4 ; 2 (34) = 363°C
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(b) The temperature of the fin at X = 8 cm is represented by element (3);

X, - X X - X,

T0 = $97, + s971, = Bt

T,

10

T = 5_8(34)+8

; 3 (20) = 25.6°C

For this example, note the difference between $& and 9.

EXAMPLE 3.2

Consider a four-story building with steel columns. One column is subjected to the load-
ing shown in Figure 3.6. Under axial loading assumption and using linear elements, the
vertical displacements of the column at various floor-column connection points were de-
termined to be

Uy 0

uy 0.03283

u; ¢ = ¢0.05784 ; in.
Uy 0.07504

us 0.08442

The modulus of elasticity of E = 29 X 10° Ib/in?, and area of A = 39.7 in? were used in
the calculations. A detailed analysis of this problem is given in Chapter 4. For now, given

30,000 Ib 30,000 Ib

' @ 81t
25,000 Ib 250001b 156t

FIGURE 3.6 The column in Example 3.2.
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the nodal displacement values, we are interested in determining the deflections of points
A and B.

(a) Using the global coordinate Y, the displacement of point A is represented by ele-
ment (1):
h-Y Y-n

uV = S0y, + sPu, = 7

15 - 10 10 -0 .
= + . = 0. .
u 5 (0) 15 (0.03283) = 0.02188 in
(b) The displacement of point B is represented by element (4):
s -Y Y - Y,
u® = S?)u,, + S(;)uS =3 R + 7 4

52

Us

60 —

52
0.07504) +
5 )

u =

-4
T 5 (0.08442) = 0.07941 in.

3.2 QUADRATIC ELEMENTS

We can increase the accuracy of our finite element findings by either increasing the
number of linear elements used in the analysis or by using higher order interpolation
functions. For example, we can employ a quadratic function to represent the spatial vari-
ation of an unknown variable. Utilizing a quadratic function instead of a linear func-
tion requires that we use three nodes to define an element. We need three nodes to
define an element because in order to fit a quadratic function, we need three points.
The third point can be created by placing a node, such as node k, in the middle of an el-
ement, as shown in Figure 3.7. Referring to the previous example of a fin, using quadratic
approximation, the temperature distribution for a typical element can be represented by

T = ¢ + 6, X + ¢, X? (3.18)

X

FIGURE 3.7 Quadratic approximation of
the temperature distribution for an element.
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and the nodal values are
T=T a X =X (3.19)
T=T, at X =X,
T=T7T, aa X=X

Three equations and three unknowns are created upon substitution of the nodal values
into Eq. (3.18):

T=ca+6X +cX? (3.20)
Ti=+ X+ X3
T,=0+X + c3X,2-
Solving for ¢y, ¢;, and ¢; and rearranging terms leads to the element’s temperature dis-
tribution in terms of the nodal values and the shape functions:
T = 5T, + 5;T; + S, T, (321)
In matrix form, the above expression is

T,
TO9=1[S, S ST, (322)
T,
where the shape functions are
2
S = E(X - X)X - X}) (3.23)

S; = %(X - X)X - X,)

S = (X = X)X - X)

In general, for a given element the variation of any parameter, ¥ in terms of its nodal
values may be written as

v,
YO =[S, S S]{Y, (324)

A7
It is important to note here that the quadratic shape functions possess properties
similar to those of the linear shape functions; that is: (1) a shape function has a value of unity
at its corresponding node and a value of zero at the other adjacent node and (2) if we sum
up the shape functions, we will again come up with a value of unity. The main difference

between linear shape functions and quadratic shape functions is in their derivatives The
sum of the derivatives of the quadratic shape functions with respect to X is not zero.

3.3 CUBIC ELEMENTS

The quadratic interpolation functions offer good results in finite element formulations.
However, if additional accuracy is needed, we can resort to even higher order interpo-

R el T
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FIGURE 3.8 Cubic approximation of the
temperature distribution for an element.

lation functions, such as third-order polynomials. Thus, we can use cubic functions to
represent the spatial variation of a given variable. Utilizing a cubic function instead of
a quadratic function requires that we use four nodes to define an element. We need four
nodes to define an element because in order to fit a third-order polynomial, we need four
points. The element is divided into three equal lengths. The placement of the four nodes
is depicted in Figure 3.8. Referring to the previous example of a fin, using cubic ap-
proximation, the temperature distribution for a typical element can be represented by

TO = ¢, + &, X + 3 X2+ ¢, X° (3.25)
and the nodal values are
T=T a X=X ’ (3.26)
T=T, at X=X,
T=T, at X=2X,
T=T, at X=X

Four equations and four unknowns are created upon substitution of the nodal values into
Eq. (3.25). Solving for ¢, ¢;, ¢3,and ¢, and rearranging terms leads to the element’s tem-
perature distribution in terms of the nodal values and the shape functions:

7€ = §T, + S;T; + ST + ST, (3.27)
In matrix form, the above expression is
T;
T,
TO =[S, S S Sn){.’ (3.28)
T,
T,
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where the shape functions are

9

Si= = ga(X - X)X — X)X - X,) (3.29)
9
Sj = ﬁ(x - X)X - X)X - X,)
S = 2 (X = X)X = X)(X = X,)
-2 _ -
Sm = Ya (X = X)X - X)X - X)

It is worth noting here that when the order of the interpolating function increases,
it is necessary to employ Lagrange interpolation functions instead of taking the above
approach to obtain the shape functions. The main advantage the Lagrange method offers
is that using it, we do not have to solve a set of equations simultaneously to obtain the un-
known coefficients of the interpolating function. Instead, we represent the shape functions
in terms of the products of linear functions. For cubic interpolating functions, the shape
function associated with each node can be represented in terms of the product of three
functions. For a given node—for example, i—we select the functions such that their prod-
uct will produce a value of zero at other nodes—namely, j, k, and m—and a value of unity
at the given node, i. Moreover, the product of the functions must produce linear and non-
linear terms similar to the ones given by a general third-order polynomial function.

To demonstrate this method, let us consider node i, with the global coordinate X;.
First, the functions must be selected such that when evaluated at nodes j, k, and m, the
outcome is a value of zero. We select

S = a(X = X)(X — X)X ~ X,) (330)

which satisfies the above condition. That is, if you substitute for X = X 1,0 X = X, or
X = X,,, the value of §; is zero. We then evaluate a, such that when the shape function
S; is evaluated at node i, it will produce a value of unity:

[4 2¢
1 =a(X;, — X)X, — X)X, - X)) = al(_g)(.. 5)(_ ?)
Solving for a,, we get
“= "2
and substituting into Eq. (3.30), we have
9
Si==5a (X~ X)X - X)X - X,,)

The other shape functions are obtained in a similar fashion. Keeping in mind the ex-
planation offered above, we can generate shape functions of an (n — 1)-order polyno-
mial directly from the Lagrange polynomial formula:

Sk
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B 1’_"[ X — Xpyomitting (X - X¢) (X = X)) (X - X3) (X ~ Xy) (3.31)
M=1 Xk — Xyoomitting (X — X¢) (X — X)) (Xg = Xp) - (Xx — Xy) ’

Note that in order to accommodate any order polynomial representation in Eq. (3.31)
numeral values are assigned to the nodes and the subscripts of the shape functions.

In general, using a cubic interpolation function, the variation of any parameter ¥
in terms of its nodal values may be written as

v;

VO =[S, S S Sn gi
k
v,

Once again, note that the cubic shape functions possess properties similar to those of the
linear and the quadratic shape functions; that is, (1) a shape function has a value of unity
at its corresponding node and a value of zero at the other adjacent node and (2) if we
sum up the shape functions, we will come up with a value of unity. However, note that
taking the spatial derivative of cubic shape functions will produce quadratic results.

3.4 GLOBAL, LOCAL, AND NATURAL COORDINATES

Most often, in finite element modeling, it is convenient to use several frames of refer-
ence, as we briefly discussed in Chapter 2. We need a global coordinate system to rep-
resent the location of each node, orientation of each element, and to apply boundary
conditions and loads (in terms of their respective global components). Moreover, the so-
lution, such as nodal displacements, is generally represented with respect to the global
directions. On the other hand, we need to employ local and natural coordinates because
they offer certain advantages when we construct the geometry or compute integrals.
The advantage becomes apparent particularly when the integrals contain products of
shape functions. For one-dimensional elements, the relationship between a global co-
ordinate X and a local coordinate x is given by X = X; + x, as shown in Figure 3.9.
Substituting for X in terms of the local coordinate x in Egs. (3.8) and (3.9), we get

X,-X X - (X +x) x

S = 7 = ; = 7 (3.32)
X-X (Xi+x)_Xi_x

S = 7 = 7 =7 (3.33)

where the local coordinate x varies from 0 to €; thatis0 = x < ¢.

Global X
Local x
Node i Node j
X; X;
| p | FIGURE 3.9 The relationship between a
! |

global coordinate X and a local coordinate x.
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One-Dimensional Linear Natural Coordinates

Natural coordinates are basically local coordinates in a dimensionless form. It is often
necessary to use numerical methods to evaluate integrals for the purpose of calculating
elemental stiffness or conductance matrices. Natural coordinates offer the convenience
of having —1 and 1 for the limits of integration. For example, if we let
2x
=— -1
¢ £
where x is the local coordinate, then we can specify the coordinates of node i as —1 and
node j by 1. This relationship is shown in Figure 3.10.
We can obtain the natural linear shape functions by substituting for x in terms of
¢ into Egs. (3.32) and (3.33). This substitution yields

1
Si=5(1-§ (3.34)

S = %(1 +§) (3.35)

Natural linear shape functions possess the same properties as linear shape functions;
that is, a shape function has a value of unity at its corresponding node and has a value
of zero at the other adjacent node in a given element. As an example, the temperature
distribution over an element of a one-dimensional fin may expressed by

1 1
T = 8T, + ST, = U =T + S+ 97, (3.36)
Itisclear thatat{ = -1,T = T;andat&£ = 1, T = T';. It should also be clear that we
can represent other variables, such as the displacement u, in terms of the natural shape
functions §; and S; according to the equation
1 1
U = Su; + Sju; = 5(1 - E)u; + E(l + Eu; (3.36a)
Also note that the transformation from the global coordinate X (X; < X =< X, ;) or the
local coordinate x (0 < x = ¢) to £ can be made using the same shape functions §; and
S;. That is,
1 1
X =8X+8X = 5(1 -§)X; + 5(1 + £)X; (3.36b)

or

1 1
x=8x; + Sixi = 5(1 - &)x; + 5(1 + §)xj

Local x £=1
Node i Node j
X; X; FIGURE 3.10 The relationship between the

| local coordinate x and the natural
I ¢ > coordinate £.
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Comparing the relationships given by Egs. (3.36), (3.36a), and (3.36b), we note that we
have used a single set of parameters (such as S;, 5}) to define the unknown variables
u, T, and so on, and we used the same parameters (S;, §;) to express the geometry. Fi-
nite element formulation that makes use of this idea is commonly referred to as
isoparametric formulation, and an element expressed in such a manner is called an
isoparametric element. We will discuss isoparametric formulation further in Chapters
Sand8.

EXAMPLE 3.3

Determine the temperature of the fin in Example 3.1 at the global location X = 8 cm
using local coordinates. Also determine the temperature of the fin at the global location
X = 7.5 cm using natural coordinates.

(a) Using local coordinates, we find that the temperature of the fin at X = 8 cm is
represented by element (3) according to the equation

7O = s975 + $OT, = (1 - %)n + %n

Note that element (3) has a length of 5 cm and the location of a point 8 cm from
the base is represented by the local coordinate x = 3:

T = (1 - %)(34) + %(20) =256°C

(b) Using natural coordinates, we find that the temperature of the finat X = 7.5cm
is represented by element (3) according to the equation

1 1
TO = SO, + SOTy = 5 (L - 6T + 5 (1 + £,

Because the point with the global coordinate X = 7.5 cm is located in the middle
of element (3), the natural coordinate of this point is given by £ = 0:

TO = %(1 - 0)(34) + %(1 +0)(20) = 27°C
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One-Dimensional Natural Quadratic
and Cubic Shape Functions

The natural one-dimensional quadratic and cubic shape functions can be obtained in a
way similar to the method discussed in the previous section. The quadratic natural shape
functions are:

S=-3E1-8) (337)

S; = %&(1 + §) (3.38)

Se=@1+§E)(1-¥) (3.39)

The natural one-dimensional cubic shape functions are:

5= 1 (1= )3 + 1B~ 1) (340)

S; = 11—6(1 +E)(3E +1)3E - 1) (341)

Se=1c 1+ )E - DEE- D) (342

9
Sm=1e(1+EA-HEE+T) (3.43)
For the sake of convenience, the results of Sections 3.1 to 3.4 are summarized in Table
3.1. Make sure to distinguish the differences among presentations of the shape func-
tions using global, local, and natural coordinates.

EXAMPLE 3.4
'

Evaluate the integral [ ’S,Z dX using (a) global coordinates and (b) local coordinates.

X
(a) Using global coordinates, we obtain

A Xi (X — X.\? 1
Sz-dX=J (—')dX=—X—X—3
Li ! X; 1 332( )

X;

¢
.3

(b) Using local coordinates, we obtain

Xiz 14 x 2 x3
Stdx = | [Z) dx ==
J st = [ (3 e =36

This simple example demonstrates that local coordinates offer a simple way to
evaluate integrals containing products of shape functions.

‘ot

0 3

One-dimensional shape functions
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3.5 NUMERICAL INTEGRATION: GAUSS-LEGENDRE QUADRATURE

As we discussed earlier, natural coordinates are basically local coordinates in a dimen-
sionless form. Moreover, most finite element programs perform element numerical in-
tegration by Gaussian quadratures, and as the limit of integration, they use an interval
from —1 to 1. This approach is taken because when the function being integrated is
known, the Gauss-Legendre formulae offer a more efficient way of evaluating an inte-
gral as compared to other numerical integration methods such as the trapezoidal method.
Whereas the trapezoidal method or Simpson’s method can be used to evaluate integrals
dealing with discrete data, the Gauss-Legendre method is based on the evaluation of a
known function at nonuniformally spaced points to compute the integral. The two-point
Gauss-Legendre formula is developed next in this section. The basic goal behind the
Gauss-Legendre formulae is to represent an integral in terms of the sum of the prod-
uct of certain weighting coefficients and the value of the function at some selected points.
So, we begin with

b n
1= [ fxyax - 3 wftx) (3.44)

Next, we must ask: (1) How do we determine the value of the weighting coefficients,
represented by the w;’s? (2) Where do we evaluate the function, or, in other words, how
do we select these points? We begin by changing the limits of integration from a-b to
—1 to 1 with the introduction of the variable \ such that

X =c¢y+ ¢\
Matching the limits, we get

a=cy+ ¢-1)

b=c+ (1)
and solving for ¢, and c;, we have
_(b+a)
Cy = 5
and
_(b-a)
¢ = 2
Therefore,
(b+a) (b-a)
=t — .
X > 2 A (3.45)
and
(b~a)
dx = 2 d\ (3.46)
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Thus, using Eqs. (3.45) and (3.46), we find that any integral in the form of Eq. (3.44) can
be expressed in terms of an integral with its limits at —1 and 1:

1 n
I= J f\) dx = E;w FO\) (3.47)
_1 =

The two-point Gauss-Legendre formulation requires the determination of two
weighting factors w; and w, and two sampling points A; and A, to evaluate the function
at these points. Because there are four unknowns, four gquations are created using Le-
gendre polynomials (1, A, A2, \?) as follows:

1
/) + wif0g) = [ 1ah =2
-1
1

wfh) + w0 = [ A =0
-1

2 2

wf) + wnfhg) = [ Nan =
-1
1

wif(\) + wf(N,) = f AMdn=0

-1
The above equations lead to the equations

wil) + wy(1) =2
wi(Ay) + wy(h) =0

2
wi(M) + wy(Ay)? = 3

wi(\) + w(Ay)’ = 0
Solving for w,, w;, A\, and A,, we have w; = w, = 1, \; = —0.577350269, and
A\, = 0.577350269. The weighting factors and the 2, 3, 4, and 5 sampling points for
Gauss-Legendre formulae are given in Table 3.2. Note that as the number of sampling
point increases, so does the accuracy of the calculations. As you will see in Chapter 5, we

can readily extend the Gauss-Legendre quadrature formulation to two- or three-di-
mensional problems.

EXAMPLE 3.5
6

Evaluate the integral I = J (x? + 5x + 3) dx using the Gauss-Legendre two-point

2
sampling formula.

This integral is simple and can be evaluated analytically, leading to the solution
= 161.333333333. The purpose of this example is to demonstrate the Gauss-Legendre
procedure. We begin by changing the variable x to A by using Eq. (3.45). So, we obtain
(b+a) (b-a) ©6+2) (6-2)
= = +
YTt M 2

A=4+2)
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TABLE 3.2 Weighting factors and sampling points for Gauss-Legendre formulae

Sampling points (\))

A = —0.577350269
A, = 0.577350269

Points (n) Weighting Factors (w;)
2 w; = 1.00000000
w, = 1.00000000
3 wy = 0.55555556

w, = 0.88888889
w; = 0.55555556

Ay = —0.774596669
A =0
Ay = 0.774596669

4 wy = 03478548
w, = 06521452
w; = 0.6521452
w, = 0.3478548

A = ~0.861136312
A, = —0.339981044
Ay = 0339981044
As = 0861136312

5 w, = 02369269
w, = 04786287
w, = 0.5688889
w, = 04786287
wy = 0.2369269

A, = —0.906179846
A, = —0.538469310
A =0

e = 0.538469310
As = 0.906179846

and
(b —a) (6-2)
= = d\ = 2d\
dx 2 dx 2
Thus, the integral [ can be expressed in terms of \:
f(x) )
——A————

6 1
I= J (x*+ 5x +3)dx = J @)[(4 + 20)? + 54 + 2)) + 3)]dn

Using the Gauss-Legendre two-point formula and Table 3.2, we compute the value of
the integral / from:

I=w f(\) + wf(\)

From Table 3.2, we find that w; = w, = 1, and evaluating f(A) at A, = —0.577350269
and A, = 0.577350269, we obtain

FON) = )[4 + 2(-0.577350269) ] + 5(4 + 2(-0.577350269) + 3)] = 50.6444526769
FN) = ()[4 + 2(0.577350269) + 5(4 + 2(0.577350269) + 3)] = 110.688880653
1 = (1)(50.6444526769) + (1)110.688880653 = 161.33333333

EXAMPLE 3.6
. X ‘

Evaluate the integral J §?dX in Example 3.4 using the Gauss-Legendre two-point

X

formula.
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Recall from Egq. (3.35) that §; = $(1 + &) and dx = { d&. Also note that for this
problem, & = X. So,

" N(X - X\ “fx\? ¢ (' 2
— 2 — i _ x _¢ 1
I_LS"dX_Li< ¢ )dX_L(() dx ZL{Z(H&)] dt

Using the Gauss-Legendre two-point formula and Table 3.2, we compute the value of
the integral I from

[

I=w f(\) + wrf(Ny)
From Table 3.2, we find that w; = w, = 1, and evaluating f(\) at A; = —0.577350269
and \, = 0.577350269, we obtain

ef1 4 2
(&) = 5 [5 (1+ ;ﬁ)] =3 B (1 - 0.577350269)} = 0.022329099389¢

¢f1 2 ef1 2
&) = > [5 (1+ gz)] =3 [5(1 + 0.577350269)} = (.31100423389¢

I = (1)(0.022329099389¢) + (1)(0.31100423389¢) = 0.333333333¢

Note that the above result is identical to the results of Example 3.4.

3.6 EXAMPLES OF ONE-DIMENSIONAL ELEMENTS IN ANSYS

ANSYS offers uniaxial link elements that may be used to represent one-dimensional
problems. These link elements include LINK31, LINK32, and LINK34. The LINK32 el-
ement is a uniaxial heat conduction element. It allows for the transfer of heat between
its two nodes via conduction mode. The nodal degree of freedom associated with this el-
ement is temperature. The element is defined by its two nodes, cross-sectional area, and
material properties such as thermal conductivity. The LINK34 element is a uniaxial con-
vection link that allows for heat transfer between its nodes by convection. This element
is defined by its two nodes, a convective surface area, and a convective heat transfer (film)
coefficient. The LINK31 element can be used to model radiation heat transfer between
two points in space. The element is defined by its two nodes, a radiation surface area, a
geometric shape factor, emmissivity, and the Stefan-Boltzman constant. In Chapter 4,
we will use LINK32 and LINK34 to solve a one-dimensional heat-conduction problem.

SUMMARY
At this point you should:
1. have a good understanding of the linear one-dimensional elements and shape func-
tions, their properties, and their limitations.

2. have a good understanding of the quadratic and cubic one-dimensional elements
and shape functions, their properties, and their advantages over linear elements.

know why it is important to use local and natural coordinate systems.
know what is meant by isoparametric element and formulation.

have a good understanding of Gauss-Legendre quadrature.

know examples of one-dimensional elements in ANSYS.

AU o
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PROBLEMS

1. We have used linear one-dimensional elements to approximate the temperature distribution
along a fin. The nodal temperatures and their corresponding positions are shown in the ac-
companying figure. (a) What is the temperature of the fin at X = 7 cm? (b) Evaluate the
heat loss from the fin using the relationship

dar
o= - kA:iyl,\eo

where k = 180W/m « K and A = 10 mm?

T, 100
T, 80

—— 0o, C
T 64

f-—Z cm [ 3om I 5 cm————l T4 41

X

2. Evaluate the integral J IS,? dX for a linear shape function using a) global coordinates and
Xi
b) local coordinates.

3. Starting with the equations
T =c + X +cX?
Ti=c + X, + X3
- 2
T,=c¢+t X +alX;

solve for ¢y, ¢,,and c;, and rearrange terms to verify the shape functions given by

5= 5 (X = X)X - X,)
5= 5 (X = X)X - X

5= (X = X)(X - X)

4. For Problem 3, use the Lagrange functions to derive the quadratic shape functions by the
method discussed in Section 3.3.

i

10.

11.

13.
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. Derive the expressions for quadratic shape functions in terms of the local coordinates and

compare your results to the results given in Table 3.1.

Verify the results given for one-dimensional quadratic natural shape functions in Table 3.1
by showing that (1) a shape function has a value of unity at its corresponding node and a
value of zero at the other nodes and (2) if we sum up the shape functions, we will come up
with a value of unity.

Verify the results given for the local cubic shape functions in Table 3.1 by showing that (1) a
shape function has a value of unity at its corresponding node and a value of zero at the other
nodes and (2) if we sum up the shape functions, we will come up with a value of unity.

Verify the results given for the natural cubic shape functions in Table 3.1 by showing that (1)
a shape function has a value of unity at its corresponding node and a value of zero at the
other nodes and (2) if we sum up the shape functions, we will come up with a value of unity.

Obtain expressions for the spatial derivatives of the quadratic and cubic shape functions.

As previously explained, we can increase the accuracy of our finite element findings either
by increasing the number of elements used in the analysis to represent a problem or by using
a higher order approximation. Derive the local cubic shape functions.
X
1
Evaluate the integral | S;dX for a quadratic shape function using a) global coordinates,

Xi
b) natural coordinates, and c) local coordinates.

. Assume that the deflection of a cantilever beam was approximated with linear one-dimen-

sional elements. The nodal deflections and their corresponding positions are shown in the
accompanying figure. a) What is the deflection of the beam at X = 2 ft? b) Evaluate the
slope at the endpoint.

100 Ib/ft

y
N 0
s 0.003275
= ys ¢ = §0.022275 » in.
‘ ‘ I ‘ J e 0.034400
1 ft—] 2t b1 ft—ste1 ft ¥ 0.046875

We have used linear one-dimensional elements to approximate the temperature distribution
inside a metal plate. A heating element is embedded within a plate. The nodal temperatures
and their corresponding positions are shown in the accompanying figure. What is the tem-
perature of the plate at X = 25 mm? Assume that (a) linear elements were used in obtain-
ing nodal temperatures and (b) quadratic elements were used.
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T, 120
T, 119
1 g om Lo 116
| T, 111
o< T, % = {104} °C
T, 95
23 45 6 7 89 |p o
h" T 7
T, 56

14. Quadratic elements are used to approximate the temperature distribution in a straight fin.
The nodal temperatures and their corresponding positions are shown in the accompanying
figure. What is the temperature of the fin at X = 7 cm?

T, 100
T, 74
T 56

1 2 3 4 5 6 7 g =y¥(°C
.- ‘ . T 36
&<—2 cm*l«Z cm—>1<—2 cm—>1<—2 cm*‘<—2 cm—>\<—2 cm~>’ TG 31
T, 28

15. Develop the shape functions for a linear element, shown in the ac-
companying figure, using the local coordinate x whose origin lies at the one-fourth point of
the element.

16. Using the natural coordinate system shown in the accompanying figure, develop the natural
shape functions for a linear element.

i« e » j

¢ lX,

17. In the accompanying figure, the deflection of nodes 2 and 3 are 0.02 mm and 0.025 mm, re-
spectively. What are the deflections at point A and point B, provided that linear elements
were used in the analysis?
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| 10 cm ! Scm [ 7 et s

18. Conside.r the steel column in Example 3.2, depicted in the accompanying figure. Under the
assumption of axial loading, and using linear elements, we determined that the vertical dis-
placements of the column at various floor~column connection points are

uy 0

u 0.03283

uz ) = £0.05784 } in.
Uy 0.07504

us 0.08442

Using local shape functions, determine the deflections of points A and B, located in the mid-
dle of elements (3) and (4), respectively.

30,000 Ib

19. Determine the deflection of points A and B on the column in Problem 18 using natural
coordinates.
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20. A 20-ft-tall post is used to support advertisement signs at various locations along its height,
as shown in the accompanying figure. The post is made of structural steel with a m.odul'us of
elasticity of E = 29 X 10°Ib/in>. Not considering wind loadirig on the signs and using linear
elements, we determined that the deflections of the post at the points of load application are

uy 0

| _ J 6312 %107 .
w{ - Y878 x10 (™
u 11.470 x 107

O  A.=075in?
15016

2001b

@ A,=215in?

CHA

PTER 4

Analysis
of One-Dimensional Problems

The main objective of this chapter is to introduce the analysis of one-dimensional prob-
lems. Most often, a physical problem is not truly one-dimensional in nature; however, as
a starting point, we may model the behavior of a system using one-dimensional ap-
proximation. This approach can usually provide some basic insight into a more complex
problem. If necessary, as a next step we can always analyze the problem using a two- or
three-dimensional approach. This chapter first presents the one-dimensional Galerkin
formulation used for heat transfer problems. This presentation will be followed by a dis-
cussion of the minimum potential energy formulation of one-dimensional solid me-

10ft

chanics problems. The main topics discussed in Chapter 4 are:

4.1 Heat Transfer Problems

4.2 Solid Mechanics Problems
4.3 An Example Using ANSYS
4.4 Verification of Results

4.1 HEAT TRANSFER PROBLEMS

Recall that in Chapter 1 we discussed the basic steps involved in any finite element

analysis; to refresh your memory, these steps are repeated here:

PREPROCESSING PHASE

Determine the deflection of point A,located at the midpoint of the middle me.mber, using (a)
global shape functions, (b) local shape functions, and (c) natural shape functions.

21. Evaluate the integral in problem 11 using Gauss-Legendre two-point formula.

1

2.

Create and discretize the solution domain into finite elements; that is, subdivide the
problem into nodes and elements.

Assume shape functions to represent the behavior of an element; that is, assume an
approximate continuous function to represent the solution for a element. The one-
dimensional linear and quadratic shape functions were discussed in Chapter 3.
Develop equations for an element. This step is the main focus of the current chap-
ter. We will use the Galerkin approach, as well as the minimum potential energy
theorem, to formulate elemental descriptions.

Assemble the elements to represent the entire problem. Construct the global stiff-
ness or conductance matrix.

Apply boundary conditions and loading.

1A
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SOLUTION PHASE

6. Solve a set of linear algebraic equations simultaneously to obtain nodal results,
such as the temperature at different nodes or displacements.

POSTPROCESSING PHASE

7. Obtain other important information. We may be interested in determining the
heat loss or stress in each element.

We will now focus our attention on step 3 of the preprocessing phase. We will for-
mulate the conductance and the thermal load matrices for a typical one-dimensional
fin element. We considered a straight fin of a uniform cross section in Chapter 3. For the
sake of convenience, the fin is shown here again in Figure 4.1. The fin is modeled using
three elements and four nodes. The temperature distribution along the element is in-
terpolated using linear functions. The actual and the approximate piecewise linear tem-
perature distribution along the fin are shown in Figure 4.1. We will concentrate on a
typical element belonging to the fin and formulate the conductance matrix and the ther-
mal load matrix for such an element.

One-dimensional heat transfer in a straight fin is governed by the following heat
equation, as given in any introductory text on heat transfer:

a’T

kA;)—(—z_ — hpT + hpT; =0 4.1)
Equation (4.1) is derived by applying the conservation of energy to a differential sec-
tion of a fin, as shown in Figure 4.2. The heat transfer in the fin is accomplished by con-
duction in the longitudinal direction (x-direction) and convection to the surrounding
fluid. In Eq. (4.1), k is the thermal conductivity, and A denotes the cross-sectional area
of the fin. The convective heat transfer coefficient is represented by A, the perimeter of
the fin is denoted by p, and 7 is the temperature of the surrounding fluid. Equation

FIGURE 4.1 The actual and approximate
temperature distribution for a fin of uniform
cross section.
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dqconvccﬁon

We start by applying the energy balance to a differential element

9x = Grvdr + d9oonvection

dg,
9= 4u t - Ax + dqenvection
Next we use Fourier’s Law

dr
g, = —kA i

and use Newton's Law of Cooling,
Goonvection = HdANT — Ty)
dq, d dr
= ;dx + dqoonvection = o (—kA Z) dx + h(dA,)(T - T;)

Writing dA, (differential surface area) in terms of the perimeter of the fin and dx and simpli-
fying, we are left with
2

T
—kAﬁ+hp(T—T,)=0

FIGURE 4.2 Derivation of the heat equation for a fin.

(4.1) is subjected to a set of boundary conditions. First, the temperature of the base is
generally known; that is;

T0) =T, 4.2)
The other boundary condition deals with the heat loss at the tip of the fin. In general,
there are three possibilities. One possibility is that the tip is long enough so that the
temperature of the tip is equal to the temperature of the surrounding fluid tempera-
ture. This situation is represented by the condition

T(L) =T; (4.3)
The situation in which the heat loss from the tip of the fin may be neglected is repre-
sented by the condition

-kA=—| =0 (4.4)
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If the heat loss from the tip of the fin should be inciuded in the analysis, then we have
the condition

dT

kA X | L hA(T, — Ty) 4.5)
Equation (4.5) is obtained by applying the energy balance to the cross-sectional
area of the tip. Equation (4.5) simply states that the heat conducted to the tip’s surface
is convected away by the surrounding fluid. Therefore, we can use one of the boundary
conditions given by Egs. (4.3)—(4.5) and the base temperature to model an actual prob-
lem. Before we proceed with the formulation of the conductance matrix and the thermal
load matrix for a typical element, let us emphasize the following points: (1) The govern-
ing differential equation of the fin represents the balance of energy at any point along
the fin and, thus, governs the balance of energy at all nodes of a finite element model as
well and (2) the exact solution of the governing differential equation (if possible) sub-
ject to two appropriate boundary conditions renders the detailed temperature distribu-
tion along the fin, and the finite element solution represents an approximation of this
solution. We will now focus on a typical element and proceed with the formulation of the
conductance matrix, recalling that the temperature distribution for a typical element

may be approximated using linear shape functions, as discussed in Chapter 3. That is,

T;
T® =[5, s,]{ } (4.6)
T
where the shape functions are given by:
X - X X - X
S = 7 and §; = ¢ 4.7)
In order to make this derivation as general as possible and applicable to other type of
problems with the same form of differential equations, let ¢; = kA, ¢, = —hp,c3 =
hpTy,and ¥ = T.Thus, Eq. (4.1) can be written as
a*y
c EF + ¥ +c=0 4.8)

Recall from our introductory discussion of weighted residual methods in Chapter
1 that when we substitute an approximate solution into the governing differential equa-
tion, the approximate solution does not satisfy the differential equation exactly, and
thus, an error, or a residual, is produced. Also recall that the Galerkin formulation re-
quires the error to be orthogonal to some weighting functions. Furthermore, the weight-
ing functions are chosen to be members of the approximate solution. Here we will use
the shape functions as the weighting functions because they are members of the ap-
proximate solution. The Galerkin residuals for an arbitrary element with nodes i and j
are forced to be zero according to the equations

X v
R = f Si<c1ﬁ + ¥+ c3>dX =0 (4.9)
X;
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2

RO = ":S v
¥ = L. jc1m+c2‘lf+c3 dX =0 (4.10)

Evaluation of the integrals given by Egs. (4.9) and (4.10) will result in the elemental
formulation. But first, because the second derivative of a linear function equals zero,
we need to manipulate the second-order terms into first-order terms. This manipulation
is accomplished by using the chain rule in the following manner:

d(s8¥) -5, a8 dY

ax\Sax) =S Y ax ax @11
Ly d(gav) dsay
ax?  dx \“dx)  dx dx “4.12)

Substituting Eq. (4.12) into Eq. (4.9), we obtain

X;
d d¥ ds; dv
R(E)z J’ I( (q< _> _._‘_) ' N
: " a\ gy S; X IX dX + S, ¥ +¢) |dX =0 (4.13)
We eventually need to follow the same procedure for Eq. (4.10) as well, but for now

let us focus only on one of the residual equations. There are four terms in Eq. (4.13)
that need to be evaluated:

X X
(d {.ad¥ i dS, dv
N \ax Sax /)X N\ ax ax ax

X. X,
+J S{e¥)dX + f Sic;dX =0 (4.14)
X X

Considering and evaluating the first term, we have:

X,
i fd ( d¥y ) ) dv
al=—<|8S=<]|dX = —¢,—

Jx,- ‘(dX dx “ax

It is important to realize that in order for us to obtain the result given by Eq. (4.15), §; is

zeroat X = X;and S; = 1at X = X;.The second integral in Eq. (4.14) is evaluated as

(4.15)

X=X;

Xi dS, da¥v Ct
L cl(— X d—/;) dX = - 7 (¥, - ¥) (4.16)
Evaluation of the third and the fourth integrals in Eq. (4.14) yields:
X,
£ 4
J S(e¥)dx = 2w, + 2y 4.17)
x; 3 6
Xi ¢
J S,-C3 dX = C3E (4.18)
X;

In exactly the same manner, we can evaluate the second residual equation for node j, as
given by Eq. (4.10). This evaluation results in the following equations:
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X (d d¥ dv
L, Cl(d—)‘(‘ (S'E})> dX = ¢ ax iex (4.19)
X; das; d‘l’) Q
ez =——=(-¥ + ¥ 4.20
Lcl( e ax = -2 ) (4.20)
X 4 ¥4
L S, ¥)dXx = % VY, + ZT v, (4.21)
i X, .
J SI'C3 dX = 035 (422)
X;

It should be clear by now that evaluation of Egs. (4.9) and (4.10) results in two

sets of linear equations, as given by:
d¥
-t
¢ -1 1)y
X=X,

(i1
R~ av
sz 21 ‘I,,- C3€ 1 _ 0
6 L1 21{\1',}*7{1}—{0} “2)

]
“Gax
We can rewrite the Eq. (4.23) as

dv

== _ ' _ _ p

dX |x-x| o[ 1 -1 [¥]  -otf2 1]{\1/,}:@_{1} (424)

dv ¢ 1-1 1) Y 6 [1 2]y, 2 1

“dX |xax,

Combining the unknown nodal parameters, we obtain

. d¥
—
dX |x-x, © @ I Vil - pve 425
o | AR I g = (429)
©AX |ye,

where

c 1 -1
@ = 21
(X £ |:—1 1:|

is the elemental conductance for a heat transfer problem (or, it could represent the stiff-
ness for solid mechanics problems) due to the ¢, coefficient,

—€| 2 1
© = _©2
[K]Cz 6 [l 2:|

is the elemental conductance (or, for a solid mechanics problem, the stiffness) due to the
¢, coefficient, and

EsER
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€ _ﬂ 1
g

is the load matrix for a given element. The terms

dy

Cy E‘)—('
dy

- 217

X=X,

X=X,

contribute to both the conductance (or, for a solid-mechanics problem, the stiffness)
matrix and the load matrix. They need to be evaluated for specific boundary conditions.
We shall undertake this task shortly. However, let us first write down the conductance
matrix for a typical one-dimensional fin in terms of its parameters. The conductance
matrices are given by:

g_af 1 -1 _kA[ 1 -1
(K]¥ = 6[:—1 1] ¢ [_1 1] (4.26)

—-fl 2 1 hp€i2 1
(€ = _©2 _npt
(Kl =~ [1 2] 6 [1 2} (4.27)

In general, the elemental conductance matrix may consist of three terms: The
[K]Ef‘) term is due to conduction loss along the fin (through the cross-sectional area);
the [K](:z) term represents the heat loss through the top, bottom, and side surfaces (pe-
riphery) of an element of a fin; and, depending on the boundary condition of the tip,
an additional elemental conductance matrix [K]. can exist. For the very last element
containing the tip surface, and referring to the boundary condition given by Eq. (4.5),
the heat loss through the tip surface can be evaluated as

and

av daT
(51 ax |x-x,| _ dX |x-x,| _ 0 4.28)
Y _eadl hA(T, ~ T)) |
X |y-x dX |y-x

o = {hA(TI.O— Tf)} - [8 h(j4:| {;} - {h’:)Tf} “2)

0
i =0 ] (+30)
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0 . . .
The term — WAT belongs to the right side of Eq. (4.25) with the thermal load
f
matrix. It shows the contribution of the boundary condition of the tip to the load matrix:

To summarize, the conductance matrix for all elements, excluding the last element,

is given by
kA 1 -1 hpt| 2 1
(& = { —~ 4+ —
(K] {€ [—1 1:‘ 6 l:l 2:]} “32)

If the heat loss through the tip of the fin must be accounted for, the conductance ma-
trix for the very last element must be computed from the equation

o_ JkA[ 1 -1 hpt[2 1 0 0
[K]”_{e [—1 1]+ 6 [1 2:|+[0 hA]} (433)

The thermal load matrix for all elements, excluding the last element, is given by
hptT; (1
{(FYe = Tf {1} (434)

If the heat loss through the tip of the fin must be included in the analysis, the thermal
load matrix for the very last element must be computed from the relation

. hptTy (1 0
(1o == {1}+{hATf} (435)

The next set of examples demonstrates the assembly of elements to present the entire
problem and the treatment of other boundary conditions.

EXAMPLE 4.1: A Fin Problem

Aluminum fins of a rectangular profile, shown in Figure 4.3, are used to remove heat from
a surface whose temperature is 100°C. The temperature of the ambient air is 20°C. The
thermal conductivity of aluminum is 168 W/m-K (W/m-°C). The natural convective
heat transfer coefficient associated with the surrounding air is 30 W/m?. K (W/m?.°C).
The fins are 80 mm long, 5 mm wide, and 1 mm thick. (a) Determine the temperature
distribution along the fin using the finite element model shown in Figure 4.3. (b) Com-
pute the heat loss per fin.

We will solve this problem using two boundary conditions for the tip. First, let us
include the heat transfer from the tip’s surface in the analysis. For elements (1), (2),and
(3) in the situation, the conductance and thermal load matrices are given by

o kAl 1 -1 hpt[2 1
[K]()_{é":—l 1:|+ 6[1 2]}

(o) =
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FIGURE 4.3 Finite element model of a
straight fin.

30X 12x20x10°(2 1 }
6 1 2

[<-20 mm->}=-20 mm->}=-20 mm->}=-20 mm—>|

Substituting for the properties, we obtain

- (O 1T

20 X 107 1 1
(F} = 30 X 12 X 20 X 107 x 20 |1 _ 10072
2 1 0.072

The conductance matrix for elements (1), (2), and (3) is

K]0 = [KJ© = [K]@,:[ 0.0444 —0.0408 ] W
—0.0408  0.0444 | °C

and the thermal-load matrix for elements (1), (2), and (3) is
0.072
W = (F1® = (F16) =
FYY = (B = (B0 = W

Including the boundary condition of the tip, the conductance and load matrices for €l-
ement (4) are obtained in the following manner:

R ER A

[K](4)

(¥}

[0.0444 004087 , [0 0 [ 00444 —004087 W
—0.0408  0.0444 0 (30X5x1x10%) | | -00408 0.04455 | °C

hplT; {1 0
+
2 hAT;

0.072 0 0.072
4 = + =
{F} {0.072} {(30 X 5% 1X 10 x 20)} {0.075}W
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Assembly of the elements leads to the global conductance matrix [K]?) and the glob-
al load matrix {F}®:

0.0444 ~0.0408 0 0 0
—0.0408 0.0444 + 0.0444  —0.0408 0 0
(K] = 0 ~0.0408 0.0444 + 0.0444  —0.0408 0
0 0 —0.0408  0.0444 + 0.0444 —0.0408
0 0 0 ~0.0408 0.04455
0.072
0.072 + 0.072
{(F}® = {0072 + 0.072
0.072 + 0.072
0.075

Applying the base boundary condition T; = 100°C, we find that the final set of lin-
ear equations becomes

1 0 0 0 0 T, 100

—0.0408 00888 —0.0408 0 0 T, 0.144
0  —0.0408 00888 —0.0408 0 Typ = {0.144
0 0  —0.0408 0.0888 —0.0408 | | T, 0.144
0 0 0  —0.0408 0.04455 | \T; 0.075

We can obtain the nodal temperatures from the solution of the above equation. The
nodal solutions are:

T, 100
T 75.03
Typ = {59.79 ) °C
T, 51.56
TS 48.90

Note that the nodal temperatures are given in °C and not in °K.

Because the cross-sectional area of the given fin is relatively small, we could have
neglected the heat loss from the tip. Under this assumption, the elemental conductance
and forcing matrices for all elements are given by:

0.0444 -0.0408 | W
KV = [K1® = [K1® = [K1® = A
(K" = [K]™ = [K]" = [K] [—0.0408 0.04441 °C

. _ o s _ 0072
{F}() = {F}(Z) = {F}() = {F}() - {0.072} w
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Assembly of the elements leads to the global conductance matrix [K]¢ and the global
load matrix {F}°:

[~ 0.0444 —0.0408 0 0

0
—0.0408 0.0444 + 0.0444 ~0.0408 0 0
(K@ = 0 —0.0408 0.0444 + 0.0444 —0.0408 0
0 0 —0.0408 0.0444 + 0.0444 —0.0408
L 0 0 0 —0.0408 0.0444
0.072
0.072 + 0.072
{F}9 = (0.072 + 0.072
0.072 + 0.072
0.072

Applying the base boundary condition 7, = 100°C, we find that the final set of linear
equations becomes

1 0 0 0 0 T, 100
—0.0408 0.0888 —0.0408 0 0 T, 0.144
0  -0.0408 00888 —0.0408 0 T,} = {0.144
0 0 —0.0408 00888 —0.0408 | |7, 0.144
0 0 0  -0.0408 00444 | |T3 0.072

which is approximately the same solution as that calculated previously:

T, 100
T 75.08
T,p = {59.89} °C
T, 51.74
T, 49.19

Compared to the previous results, the nodal temperatures are slightly higher because we
neglected the heat loss through the end surface of the tip.

The total heat loss Q from the fin can be determined by summing the heat loss
through individual elements:

Oroa = 209 (4.36)

X
00 = J hp(T - T,) dX
X:

= jx’hp((SiT,- +8T) - T;) dX = hpe((T" ; T’) - T,) (437)

Applying the temperature results to Egs. (4.36) and (4.37), we have:
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Ol = Q(l) + Q(2) + Q(3) + Q(“)

T, +T; +
Q">=hpe(( 5 ’)— )—30x12><20x10‘6((00 7508) 20>=0.4862W

+
0P =30 X 12 X 20 X 10*((75 08 + 59 89) 20) 0.3418 W
+.
0® =30 x 12 X 20 X 10*((5989 31 74) 20) = 02578 W
O% =30 X 12 X 20 % 104((5l 74 + 4. 19) 20) 02193 W

Quom = 13051 W

EXAMPLE 4.2: A Composite Wall Problem

A wall of an industrial oven consists of three different materials, as depicted in Figure
4.4. The first layer is composed of 5 cm of insulating cement with a clay binder that has
a thermal conductivity of 0.08 W/m . K. The second layer is made from 15 cm of 6-ply

a ) @ A @) -~
‘ 1

2 3 4

FIGURE 4.4 A composite wall of an industrial oven.
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asbestos board with a thermal conductivity of 0.074 W/m . K. The exterior consists of 10-
cm common brick with a thermal conductivity of 0.72 W/m? - K. The inside wall tem-
perature of the oven is 200°C, and the outside air is 30°C with a convection coefficient
of 40 W/m? . K. Determine the temperature distribution along the composite wall.
This heat conduction problem is governed by the equation
aw
kA rd =0 (4.38)

and is subjected to the boundary conditions T; = 200°C and —kA %l X=30cm =
hA(T, — T;). For this example, we compare Eq. (4.38) to Eq. (4.8), finding that ¢, = kA,
¢; = 0,¢3 = 0,and ¥ = T.Thus, for element (1), we have:

(K[ = kAl 1 -1]_008X1| 1 -1} _ 16 -16 | W
el-1 1 0.05 -1 1 -16 16_]°C
0
1) =
mo - {0hw
For element (2), we have:
[K](Z)—'ﬁ 1 -1|_0074X1 1 -1 0493 -0493 | W
el 1 015 -1 1 —-0493 0493 | °C
0
@ =
o= {0 w

For element (3), including the boundary condition, we have

kAl 1 -1 0 o 02 x1[ 1 -1 0 0
[K](3)=7[—1 1] * [0 hA] 01 [-1 1} * [0 (40 x 1)]
_ [ 7.2 —7.2]y
=72 472]°C
0 0 0
{F}® = {hAT,} {(40 X1 x 30)} {1200}W

Assembling elements, we obtain

1.6 -1.6 0 0
—-1.6 1.6 +0.493 —0.493 0
—0.493 0493 +72 -72

0 =72 472

[K](G) =

Applying the boundary condition at the inside furnace wall, we get
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1 0 0 0 T 200
~-1.6 2093 -0493 0 L _) o
0 -0493 7693 -721||T; 0
0 0 =72 472 ) \T, 1200
and solving the set of linear equations, we have the following results:
Ty 200
L _ J1623],
o~ 309 (€
T, 315

Note that this type of heat conduction problem can be solved just as easily using fun-
damental concepts of heat transfer without resorting to finite element formulation. The
point of this exercise was to demonstrate the steps involved in finite element analysis
using a simple problem.

EXAMPLE 4.3: A Fluid Mechanics Problem

In a chemical processing plant, aqueous glycerin solution flows in a narrow channel, as
shown in Figure 4.5. The pressure drop along the channel is continuously monitored.
The upper wall of the channel is maintained at 50°C, while the lower wall is kept at
20°C. The variation of viscosity and density of the glycerin with the temperature is given
in Table 4.1. For a relatively low flow, the pressure drop along the channel is measured
to be 120 Pa/m. The channel is 3 m long, 9 cm high, and 40 cm wide. Determine the ve-
locity profile and the mass flow rate of the fluid through the channel.

The laminar flow of a fluid with a constant viscosity inside a channel is governed
by the balance between the net shear forces and the net pressure forces acting on a par-
cel of fluid. The equation of motion is

FIGURE 4.5 Laminar flow of aqueous glycerin solution through a channel.
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TABLE 4.1 Properties of aqueous glycerin solution as a function

of temperature

Temperature Viscosity Density
0 (kg/m - ) (kg/m’)

20 0.90 1255

25 0.65 1253

30 0.40 1250

35 0.28 1247

40 0.20 1243

45 0.12 1238

50 0.10 1233

du dp
by " ar (4.39)

subject to the boundary conditions u(0) = 0 and u(k) = 0. Here, u represents fluid ve-
locity, p is the dynamic viscosity of the fluid, and % is the pressure drop in the direction
of the flow. For this problem, when comparing Eq. (4.39) to Eq. (4.8), we find that¢; = p,
G =0,c,=—% andV¥ = u

Here, the viscosity of the aqueous glycerin solution varies with the height of the
channel. We will use an average value of viscosity over each element when computing
the elemental resistance matrices. The average values of viscosity and density associat-
ed with each element are given in Table 4.2.

TABLE 4.2 Properties of each element

Average Average
Viscosity Density
Element (kg/m-s) (kg/m*)
1 0.775 1254
2 0.525 1252
3 034 1249
4 024 1245
5 0.16 1241
6 0.11 1236

Using the properties from Table 4.2, we can compute the elemental flow-resistance matri-
ces as:

= B[ 1] o 078 1 -1 _[ 5167 —51677] ke
el-1 1] 15x107?[-1 1 ~51.67 5167 m*-s

ko =B 1] _os2s 1 -1 _[ 35 -357] kg
el-1 1) 15x107]-1 1 -35 35 mls
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[K]<3>=ﬂ_ 1 -1]_ 0340 [ 1 -1 [ 2267 -22677] kg
el-1 1] 15x10?%| -1 1] | -2267 2267 [mts
[K](“):_&_ 1 -1]__o0240 [ 1 ~17]_[ 16 ~167] kg
el-1 1) 15x102[ -1 1] |[-16 16 |m’-s
[K](5)=g' 1 -1]__0160 [ 1 -17_[ 1067 -1067| kg
el-1 14 15x10%| -1 1] [-1067 1067 |m’s
[K]@:g‘ 1 -1]__oa10 [ 1 -17]_[ 733 -7337) kg
el-1 1] 15x10%{-1 1] [-733 733 m’s

Since [K] represents resistance to flow, we have opted to use the term elemental flow-
resistance matrix instead of elemental stiffness matrix. Because the flow is fully devel-
oped, % is constant; thus, the forcing matrix has the same value for all elements:

dp

- _
—(-120)(1.5x 1072
A e 1 e e I Y =

The negative value associated with the pressure drop represents the decreasing nature
of the pressure along the direction of flow in the channel. The global resistance matrix
is obtained by assembling the elemental resistance matrices:

[ 51.67 —51.67 0 0 0 0 0 ]
-51.67 51.67 +35  —35 0 0 0 0
0 -35 3542267 -22.67 0 0 0
[K]© = 0 0 -2267 267+16 —16 0 0
0 0 0 ~16 16 + 1067 —10.67 0
0 0 0 0 —-10.67 10.67 + 7.33 —7.33
L0 0 0 0 0 —~733 733 |

and the global forcing matrix is

0.9
0.9 + 09
0.9 + 09
{F}¥9 = {09 + 09
0.9 + 09
0.9 + 09
09 )

Applying the no-slip boundary conditions at the walls leads to the matrix
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1 0 0 0 0 0 0 u, 0
—51.67 8667 -35 0 0 0 0 u, 1.8
0 -35 5767 -22.67 0 0 0 Uy 1.8
0 0 2267 3867 -—16 0 0 ugp =418
0 0 0 -16 2667 -—1067 O us 1.8
0 0 0 0 -10.67 18 -733 Ug 1.8
L O 0 0 0 0 0 1 | \w 0
The solution provides the fluid velocities at each node:
u,‘ 0
7 0.1233
U, 0.2538
us p = 03760 p mfs
Us 0.4366
U 0.3588
Uq 0
The mass flow rate through the channel can be determined from
m;otal = Em'(e) (440)
i i u; + u;
m = J puW dy = J pW(Siu; + Sju;) dy = pwe< 5 (4.41)
Vi Yi

In Eg. (4.41), W represents the width of the channel. The elemental and total mass
flow rates are given by:

m® = pW¢ (%—% = 1254 X 0.4 X 1.5 X 1072 X 9%1233 = 0.4638 kg/s
m® =1252 x 0.4 X 1.5 X 102 X w = 1.4164 kg/s
m® = 1249 x 0.4 X 1.5 X 1072 x w = 2.3598 kg/s
m® = 1245 x 04 X 1.5 X 1072 X 9933—0%913—63 = 3.0350 kg/s
m® = 1241 x 04 x 1.5 x 1072 x 24366 + 03588 _, 015 ke/s

2
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0.3588 +
1236 X 0.4 X 1.5 X 1072 % # = 1.3304 kg/s

m®

Mg = 11.566 kg/s

4.2 SOLID MECHANICS PROBLEMS

In this section, we will use the minimum total potential energy formulation to generate
finite element models for members under axial loading. Consider a column supporting
several floors, as shown in Figure 4.6. Assuming axial loading, we can approximate the
exact deflection of the column by a series of linear functions.

As discussed in Section 1.6, applied external loads cause a body to deform. Dur-
ing the deformation, the work done by the external forces is stored in the material in the
form of elastic energy, called strain energy. For a member (element) under axial load-
ing, the strain energy A® is given by

2
A© = f Lav = J Ee (4.42)
2 2

The total potential energy IT for a body consisting of n elements and m nodes is the dif-
ference between the total strain energy and the work done by the external forces:

n

M= 3A0- ;F,-u,- (4.43)

e=1

FIGURE 4.6 Deflection of a steel column supporting several floors.
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The minimum total potential energy principle states that for a stable system, the dis-
placement at the equilibrium position occurs such that the value of the system’s total po-
tential energy is a minimum. That is,

oIl 3 < 3 &
—— — @ _ —NFu = fori =1.2.3.... g
o ¢=Z1A o .-='S'1 u; =0 fori ,2,3,...,m (4.44)

where i takes on different values of node numbers. The deflection for an arbitrary ele-
ment with nodes i and j in terms of local shape functions is given by

W9 = Su; + S;u; (4.45)

where S; = 1 — $and S; =  and y is the element’s local coordinate, with its origin at
node i. The strain in each member can be computed using the relation ¢ = %—; as:

du d d y) y ] -+ u
=22 isu+Sul=—I(1-Z\u+Zuyl=—" .
& Ay~ dy [S,u, S,u,] dy[( ¢ u; eu, ; (4.46)

Incorporating Eq. (4.46) into Eq. (4.42) yields the strain energy for an arbitrary element (e):

AE

Y (W2 + u? - 2uu) (4.47)

EZ
A(‘)=J—8dV=
2

Minimizing the strain energy with respect to u; and i, leads to

aA©  AE
u; T (e = ) : (4.48)
A (- )
aui 4 ui .
or, in matrix form,
EY G
du; k k| ]u
A ' 4.49
e B (@
au;
AE
where k = 7 Minimizing the work done by external forces, the second term on

the right-hand side of Eq. (4.44), results in the load matrix:
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30,000 1b

FIGURE 4.7 A schematic of the column in
Example 4.4.

o _ ) F
Fyo = {F}

Computing individual elemental stiffness and load matrices and connecting them leads
to a global stiffness matrix. This step is demonstrated by the next example.

EXAMPLE 4.4: A Column Problem

Consider a four-story building with steel columns. One column is subjected to the load-
ing shown in Figure 4.7. Assuming axial loading, determine: (a) vertical displacements
of the column at various floor-column connection points and (b) the stresses in each por-
tion of the column. E = 29 X 10%1b/in%, A = 39.7 in’.

Because all elements have the same length, cross-sectional area, and physical prop-
erties, the elemental stiffness for elements (1), (2), (3), and (4) is given by:

AE|l 1 -1 39.7 x29 x 106 1 -1 1 -1
(&) = -2 e Y — % 10° .
(K] ¢ [—1 1} 15 X 12 [—1 1] 6:396 % 10 [—1 1]

K]V = [K]? = [K]? = [K]®¥ = 6396 X 106[_1 _ﬂ:—:—
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The global stiffness matrix is obtained by assembling the elemental matrices:

1 -1 0 0 0
-1 1+1 -1 0 0
[K@=639%x10°f 0 -1 1+1 -1 0
0 0 -1 1+1 -1
0 0 0 -1 1

The global forcing matrix is obtained from

F 0
R| |s0000
aFu;
{F}<G>={a—“} = {Fy3 = {50000 Ib
Hidims g 50000
F) 60000

Application of the boundary condition and loads resuits in

1 0 0 0 07](u 0
-1 2 -1 0 0 ||u 50000

6396 X105 0 —1 2 —1 0 |{usp = {50000
0 0 -1 2 -1|/{u 50000
0 0 0 -1 1 |{u 60000

u, 0

u, 0.03283

u; p = $0.05784 ) in
Uy 0.07504

Us 0.08442

The axial stresses in each element are determined from:

E(u; — u;) 29 X 1050 — 0.03283)
M = ! LA = — in?
o ¢ 5x12 5289 Ib/in

29 X 10%(0.03283 — 0.05784)

2) =— in?
o 5% 12 4029 1b/in

165
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29 X 10"(0.05784 -- 0.07504)

[P

0 - -
15 % 12

L 29 X 10Y0.07504 ~ 0.08442)
T 15 x 12

= —2771 Ib/in’

= - 1511 1b/in®

4.3 AN EXAMPLE USING ANSYS

EXAMPLE 4.2 (Revisited)

A wall of an industrial oven consists of three different materials, as shown in Figure 4.4,
repeated here as Figure 4.8, The first layer is composed of 5 cm of insulating cement
with a clay binder that has a thermal conductivity of 0.08 W/m « K. The sccond layer is
made from 15 cm of 6-ply asbestos board with a thermal conductivity of 0.074 W/m - K.
The exterior consists of 10-em common brick with a thermal conductivity of 0.72
W/m" . K. The inside wall temperature of the oven is 200°C, and the outside air is 30°C
with a convection coefficient of 40 W/m® . K. Determine the temperature distribution

along the compostte wall.

The following steps demonstrate how to create one-dimensional conduction prob-
lems with convective boundary conditions in ANSYS. This task includes choosing ap-

T

surface =

I
X
1
I
I
X
T
E
I
T
T
-
T
L T
-~ Sem-—e————— | S cm— e —— ) cm—-- >
—
A
(1) (2) (3}
1 R 3

FIGURE 4.8 A composite witlt of an industrial oven,

°C, h = 40 Wim2 - K

P
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propriate element types, assigning attributes. applying boundary conditions, and ob-
taining results.

To solve this problem using ANSYS, we employ the following steps:

Enter the ANSYS program by using the Launcher.

‘Type xansys54 on the command line if you are running ANSYS on a UNIX plat-
form. or consult your system administrator for information on how to run ANSYS
from your computer system’s platform.

Pick Interactive from the Launcher menu.

Tvpe HeatTran (or a file name of your choice) in the Initial Jobname entry field
of the dialog box.

ANSYS 5.4 INTERACTIVE =

Pick Run to start the Graphic User Interface (GUI). A window will open with
some disclatmer information. You will eventually be asked to press the Return
key to start the graphics window and the main menu. Do so in order to proceed.
Create a title for the problem. This title will appear on ANSYS display windows
to provide a simple way of identifying the displays:

utility menu: File — Change Title . .
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iChano Title Efement Types

LINK34

Define the element type and material properties:
main menu: Preprocessor — Element Type — Add/Edit/Delete ...

Element ypes

Assign the cross-sectional area of the wall.

main menu: Preprocessor — Real Constants ...
i Real Constants

NONE DEFINED

LINK32 -
LINK34

*Librawy of Element Types — N
conduction 32
conduction 33

canvection 34
radiation 31

.} Real Constants

Set

* Heal Constants for LINK

tLibraiy of Element Types

Solid
Shell N
Hyperelastic "
sce Solid v iati 1 i

Assign the thermal conductivity values.

main menu: Preprocessor — Material Props — -Constant-Isotropic ...
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< lsotropic Material Properties

ohiopic Matel@l Plop_ellies
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i Isotropic Material Properties _#Isoliopic I{Ialglial ff‘lqpe}lieg»

i Isotropic Matenal Properties

ANSYS Toolbar: SAVE_DB
Set up the graphics area (i.e., workplane, zoom, etc.):

utility menu: Workplane — WP Settings ...
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WP Settings ‘ ﬁ [WP = 0.2,0]
ﬁ IWP = 0.3,0]

Create the node for the convection element:

H [WP = 0.3,0]

OK
You may want to turn off the workplane now and turn on node numbering;

utility menu: Workplane — Display Working plane

.
]
1
]
1
R
3

utility menu: PlotCtrls — Numbering ...

1

:VPlol Numbering Contiols

Toggle on the workplane by the following sequence:
utility menu: Workplane — Display working plane
Bring the workplane to view using the following sequence:
utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Create nodes by picking points on the workplane:

main menu: Preprocessor — -Modeling-Create — Nodes
— On Working Plane +

On the workplane, pick the location of nodes and apply them:

H [WP = 0,0]

rUﬁ [WP = 0.05,0]

You may want to list nodes at this point in order to check your work:

utility menu: List — Nodes ...
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A NLISE Command

LIST ALL SELECTED NODES. DSYS= O
SORT TABLE ON NODE NODE NODE
NODE X Y Z THXY THYZ THZX

1 . 00000 . 00000 .00000 o0 .00 00
2 .S0000E-0L .00600 .00000 00 .00 00
3 .20000 .00060 .00000 00 .00 00
4 .30000 . 00000 .00000 00 .00 00
5 . 30000 . 00000 .0oo00 oo .00 00

Close

ANSYS Toolbar: SAVE_DB

Define elements by picking nodes:

main menu: Preprocessor — -Modeling-Create — Elements

ﬁ [node 1 and then node 2]

— -Auto Numbered-Thru Nodes +

Eﬂ [use the middle button anywhere in the ANSYS graphics window to apply.]

OK

Assign the thermal conductivity of the second layer (element), and then connect
the nodes to define the element:

main menu: Preprocessor — -Modeling-Create — Elements

-> Element Attributes ...
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i Element Attributes

main menu: Preprocessor — -Modeling-Create — Elements
— -Auto Numbered-Thru Nodes +
H [node 2 and then node 3]

ﬁ [anywhere in the ANSYS graphics window]

OK

Assign the thermal conductivity of third layer (element), and then connect the
nodes to define the element:

main menu: Preprocessor — -Modeling-Create — Elements
— Element Attributes ...

: Element Attributes

Straight 1ine

main menu: Preprocessor — -Modeling-Create — Elements
— -Auto Numbered — Thru Nodes +
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< Apply TEMP on Nodes

ﬁ [node 3 and then node 4*}

ﬁ [anywhere in the ANSYS graphics window]

OK
Create the convection link: main menu: Solution — -Loads-Apply — -Thermal-Temperature
main menu: Preprocessor — -Modeling-Create — Elements — OnNodes +

— Element Attributes ... Eﬂ [node 5%]

+ Element Attributes

ﬁ [anywhere in the ANSYS graphics window]

“Apply TEMP on Nodes

i

ANSYS Toolbar: SAVE_DB

main menu: Preprocessor — -Modeling-Create — Elements Solve the problem:

~> -Auto Numbered-Thru Nodes + . .
main menu: Solution — -Solve-Current LS
On the command line type 4 and press the <Return> key. Then type § and

OK
press the <Return> key. Close (the solution is done!) window.
OK Close (the /STAT Command) window.
ANSYS Toolbar: SAVE DB For the postprocessing phase, obtain information such as nodal temperatures:

Apply boundary conditions:

main menu: General Postproc —> List Results — Nodal Solution

main menu: Solution — -Loads-Apply — -Thermal-Temperature

— On Nodes + D 2 Ts»r. eyatupe 1EMP
ﬁ [node 1]

ﬁ [anywhere in the ANSYS graphics window]

*Press the OK key of the Multiple-Entitics window and proceed.

*Press the Next key and then the OK key of the Multiple-Entities window and proceed.
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PRINT TEMP NODAL SOLUTION PER NCDE

**##* POST1 NODAL DEGREE OF FREEDOM LISTING ***#*

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOAD CASE= O
NODE TEMP
1 200.900
2 162.27
3  39.894
4 31.509
5 30.000

MAXIMUM ABSOLUTE VALUES
NODE 1
VALUZ 200.00

Close
Exit ANSYS and save everything.
Toolbar: QUIT

i+ Bt iom ANSYS

4.4 VERIFICATION OF RESULTS

There are various ways to verify your findings. Consider the nodal temperatures of Ex-
ample 4.2, as computed by ANSYS and diplayed in Table 4.3.

In general, for a heat transfer problem under steady state conditions, conserva-
tion of energy applied to a control volume surrounding an arbitrary node must be sat-
isfied. Are the energies flowing into and out of a node balanced out? Let us use Example
4.2 to demonstrate this important concept. The heat loss through each layer of the com-
posite wall must be equal. Furthermore, heat loss from the last layer must equal the heat
removed by the surrounding air. So,

o

R
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TABLE 4.3 Nodal temperatures

Node Temperature
Number (°C)

200

162.3
399
315
30

WA W N =

Q(l) = Q(2) = Q(3) = Q(4)

AT 200 — 1623
(1) — - = == Y e
oY = kA= (0.08)(1)< 003 ) 60 W
1623 — 399
) = T T ) =
Q (0.074)(1)< 015 ) 60 W
Qv = (0.72)(1)<—~39'90_131'5> =60W

and the heat removal by the fluid is given by
0% = hAAT = (40)(1)(31.5 — 30) = 60 W

For thermal elements, ANSYS provides information such as heat flow through each ele-
ment. Therefore, we could have compared those values with the one we calculated above.

Another check on the validity of your results could have come from examining the
slopes of temperatures in each layer. The first layer has a temperature slope of 754°C/m.
For the second layer, the slope of the temperature is 816°C/m. This layer consists of a ma-
terial with relatively low thermal conductivity and, therefore, a relatively large temper-
ature drop. The slope of the temperature in the exterior wall is 84°C/m. Because the
exterior wall is made of a material with relatively high thermal conductivity, we expect
the temperature drop through this layer not to be as significant as the other layers.

Now consider the fin problem in Example 4.1. For this problem, recall that all el-
ements have the same length. We determined the temperature distribution and the heat
loss from each element. Comparing heat loss results, it is important to realize that ele-
ment (1) has the highest value because the greatest thermal potential exists at the base
of the fin, and as the temperature of the fin drops, so does the rate of heat loss for each
element. This outcome is certainly consistent with the results we obtained previously.

Refer now to Example 4.4. One way of checking for the validity of our FEA find-
ings of Example 4.4 is to arbitrarily cut a section through the column and apply the sta-
tic equilibrium conditions. As an example, consider cutting a section through the column
containing element (2), as shown in the accompanying illustration.
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160,000 1b

160,000 1b

The average normal stress in that section of the column is
2) — fintemal _ 160,000

A 39.7
In a similar way, the average stress in element (4) can be checked by:
4) finlemal 603000

(4) - Jimernal — 02
T A 397 1511 Ib/in

o' = 4030 Ib/in’

The stresses computed in this manner are identical to the results obtained earlier using
the energy method. These simple problems illustrate the importance of checking for
equilibrium conditions when verifying results.

SUMMARY

At this point you should:

1. know how to formulate stiffness (conductance or resistance) matrices, and be able
to formulate load matrices for various one-dimensional problems.

2. know how to apply appropriate boundary conditions.

3. have a good understanding of the Galerkin and energy formulations of one-
dimensional problems.

4. know how to verify your results.
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PROBLEMS

1. Aluminum fins, similar to the ones in Example 4.1, with rectangular profiles are used to re-
move heat from a surface whose temperature is 150°C. The temperature of the ambient air
is 20°C. The thermal conductivity of aluminum is 168 W/m « K. The natural convective coef-
ficient associated with the surrounding air is 35 W/m? - K. The fins are 150 mm long, 5 mm wide,
and 1 mm thick. (a) Determine the temperature distribution along a fin using five equally
spaced elements. (b) Approximate the total heat loss for an array of 50 fins.

2. For the aluminum fins in Problem 1, determine the temperature of a point on the fin 45 mm
from the base. Also compute the fraction of the total heat that is lost through this section of
the fin.

3. A pin fin, or spine, is a fin with a circular cross section. An array of aluminum pin fins are
used to remove heat from a surface whose temperature is 120°C. The temperature of the am-
bient air is 25°C. The thermal conductivity of aluminum is 168 W/m - K. The natural con-
vective coefficient associated with the surrounding air is 30 W/m? - K. The fins are 100 mm
long and have respective diameters of 4 mm. (a) Determine the temperature distribution
along a fin using five equally spaced elements. (b) Approximate the total heat loss for an
array of 100 fins.

4. A rectangular aluminum fin is used to remove heat from a surface whose temperature is
80°C. The temperature of the ambient air varies between 18°C and 25°C. The thermal con-
ductivity of aluminum is 168 W/m - K. The natural convective coefficient associated with the
surrounding air is 25 W/m? - K. The fin is 100 mm long, 5 mm wide, and 1 mm thick. (a) De-
termine the temperature distribution along a fin using five equally spaced elements for both
ambient conditions. (b) Approximate the total heat loss for an array of 50 fins for each am-
bient condition. (c) The exact temperature distribution and heat loss for a fin with a negligi-
ble heat loss at its tip is given by

hp
T(x) - T, ) cosh |:\/k;4((1‘ - x)]

T, — T, f
! cosh[ EhAﬂ(L)]
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0= \ﬁ,@{(mnh [\/E’%(L)D(n -T)

Compare your finite element resuits to the exact results.
X

. Evaluate the integral J ,S, hpT; dX for asituation in which the heat transfer coefficient &

Xi
varies linearly over a given element.

. The front window of a car is defogged by supplying warm air at 90°F to its inner surface. The

glass has a thermal conductivity of k = 0.8 W/m - °C with a thickness of approximately 1/4
in. With the supply fan running at moderate speed, the heat transfer coefficient associated with
the air is 50 W/m? - K. The outside air is at a temperature of 20°F with an associated heat
transfer coefficient of 110 W/m? . K. Determine () the temperatures of the inner and outer
surfaces of the glass and (b) the heat loss through the glass if the area of the glass is ap-
proximately 10 ft’.

. A wall of an industrial oven consists of three different materials, as shown in the accompa-
nying figure. The first layer is composed of 10 cm of insulating cement with a thermal con-
ductivity of 0.12 W/m - K. The second layer is made from 20 cm of 8-ply asbestos board with
a thermal conductivity of 0.071 W/m - K. The exterior consists of 12-cm cement mortar with
a thermat conductivity of 0.72 W/m? - K. The inside wall temperature of the oven is 250°C, and
the outside air is at a temperature of 35°C with a convection coefficient of 45 W/m? - K. De-
termine the temperature distribution along the composite wall.

1 2 3 4

. Replace the temperature boundary condition of the inside wall of the oven in Problem 7

with air temperature of 400°C and an associated convection coefficient of 100 W/m? - K. Show
the contribution of this boundary condition to the conductance matrix and the forcing ma-
trix of element (1). Also determine the temperature distribution along the composite wall.

. Determine the deflections of point D and point F and the axial stress in each member of the

system shown in the accompanying figure. (F = 29 X 10%ksi.)
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4 A =08in?

\ " | .
I 10 i 12 |

10. Consider a four-story building with steel columns similar to the one presented in Example

11.

4.4.The column is subjected to the loading shown in the accompanying figure. Assuming axial
loading, (a) determine vertical displacements of the column at various floor-column con-
nection points and (b) determine the stresses in each portion of the column. E = 29 X 10°
Ibfin?, A = 59.1in%

35,000 ib
s |
YT T
3000016 ¥ 15 fi
I
3000016 3 15t
S
30,000 1b]| ) 1511
HI

The equation for the heat diffusion of a one-dimensional system with heat generation in a
Cartesian coordinate system is

o'T

k——+q =0

axt
The rate of thermal energy generation g represents the conversion of energy from electri-
cal, chemical, nuclear, or electromagnetic forms to thermal energy within the volume of a
given system. Derive the contribution of ¢ to the load matrix. Consider a strip of heating el-
ements embedded within the rear glass of a car producing a uniform heat generation at a
rate of approximately 7000 W/m® The glass has a thermal conductivity of k = 0.8 W/m - °C
with a thickness of approximately 6 mm. The heat transfer coefficient associated with the
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20°C air inside the back of the car is approximately 20 W/m?. K. The outside air is at a tem-
perature of —5 °C with an associated heat transfer coefficient of 50 W/m?- K. Determine the
temperatures of the inner and outer surfaces of the glass.
12. Verify the evaluation of the integral given by Eq. (4.17):
€ (X4

X
J 'S(e¥)dX = Ty,
X;

13. Verify the evaluation of the integral given by Eq. (4.20):
xl dS, dv [

—— =—-—(-V¥,+ ¥,

L, C‘( ax dX) X = -7Vt v)

14. The deformation of a simply supported beam under distributed load, shown in the accom-
panying figure, is governed by the equation
ar’y M(Xx)

dx*  EI

where M( X'} is the internal bending moment and is given by:

wX(L - X)
2

M(X) =

Formulate the stiffness matrix and the loading matrix for an arbitrary element using the ap-
proach discussed in this chapter. In Chapter 8, we will discuss the general formulation for beams.

15. Determine the deflection of point D and the axial stress in each member in the system shown
in the accompanying figure. (E = 10.6 ksi.)

b ————— L R

i 12" 9" ! 8 '

16. A 20-ft-tall post is used to support advertisement signs, at various locations along its height,
as shown in the accompanying figure. The post is made of structural steel with a modulus of
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elasticity of £ = 29 x 10 Ib/in’. Not considering wind loading on the signs, (a) determine dis-
placements of the post at the points of load application and (b) determine stresses in the post.

100 Ib

©  A.=075in2
{1501b

1 ‘@ 200 1b

@ A, =215 in?

10ft A, =295in

17. Determine the deflections of point D and point F in the system in the accompanying figure.
Also compute the axial force and stress in each member. (E = 29 X 10° ksi.)

18. Determine the deflections of point D and point Fin the system in the accompanying figure.
Also compute the axial force and stress in each member.
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E =101GPa
A.=2cm?
—

!‘— 50 cm | 40 cm | 50 cm

19. The deformation of an axial element of length £ due to the change in its temperature is given by
3r = afAT,

where 87 is the change in the length of the element, a is the thermal expansion coefficient of
the material, and AT represents the temperature change. Formulate the contribution of ther-
mal strains to the strain energy of an element. Also formulate the stiffness and the load ma-
trices for such an element.

20. You are to size fins of a rectangular cross section to remove a total of 200 W from a 400-cm?
surface whose temperature is to be kept at 80°C. The temperature of the surrounding air is
25°C,and you may assume that the natural convection coefficient value is 25 W/m? « K. Be-
cause of restrictions on the amount of space, the fins cannot be extended more than 100 mm
from the hot surface. You may select from the following materials: aluminum, copper, or steel.
In a brief report, explain how you came up with your final design.

CHAPTER 5

Two-Dimensional Elements

The objective of this chapter is to introduce the concept of two-dimensional shape func-
tions, along with two-dimensional elements and their properties. Natural coordinates
associated with quadrilateral and triangular elements will also be presented. We will
derive the shape functions for rectangular elements, quadratic quadrilateral elements,
and triangular elements. Examples of two-dimensional thermal and structural elements
in ANSYS will also be presented here. The main topics discussed in Chapter 5 include
the following:

5.1 Rectangular Elements

5.2 Quadratic Quadrilateral Elements

5.3 Linear Triangular Elements

5.4 Quadratic Triangular Elements

5.5 Isoparametric Elements

5.6 Two-Dimensional Integrals: Gauss-Legendre Quadrature
5.7 Examples of Two-Dimensional Elements in ANSYS

RECTANGULAR ELEMENTS

In Chapter 4, we studied the analysis of one-dimensional problems. We investigated heat
transfer in a straight fin. We used one-dimensional linear shape functions to approximate
temperature distributions along elements and formulated the conductance matrix and
the thermal load matrix. The resulting systems of equations, once solved, yielded the
nodal temperatures. In this chapter, we will lay the groundwork for the analysis of two-
dimensional problems by first studying two-dimensional shape functions and elements.
To aid us in presenting this material, let us consider the straight fin shown in Figure 5.1.
Here, the dimensions of the fin and thermal boundary conditions are such that we can-
not accurately approximate temperature distribution along the fin by a one-dimensional
function. The temperature varies in both the X-direction and the Y-direction.

At this point, it is important to understand that the one-dimensional solutions are
approximated by line segments, whereas the two-dimensional solutions are represent-
ed by plane segments. This point is illustrated in Figure 5.1. A close-up look at a typical
rectangular element and its nodal values is shown in Figure 5.2.

189
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T
Tll
<>,
T
/ Y
%, . X
f FIGURE 5.1 Using rectangular elements to
describe a two-dimensional temperature
distribution.
T, x, y local coordinate system
r X, Y global coordinate system
T;
Y
S t——

FIGURE 5.2 A typical rectangular element.

It is clear from examining Figure 5.2 that the temperature distribution over the
element is a function of both X- and Y-coordinates. We can approximate the tempera-
ture distribution for an arbitrary rectangular element by

T =by + byx + byy + byxy (5.1)

Note that there are four unknowns in Eq. (5.1), because a rectangular element is de-
fined by four nodes: i, j, m, n. Also note that the function varies linearly along the edges
of the element, and it becomes nonlinear inside the element. Elements with these types
of characteristics are commonly referred to as bilinear elements. The procedure for de-

Section 5.1 Rectangular Elements 191

riving two-dimensional shape functions is essentially the same as that for one-dimen-
sional elements. To obtain b, , b,, by, and b,, we will use the local coordinates x and y. Con-
sidering nodal temperatures, we must satisfy the following conditions:

T=T at x=0 and y=0 (52)
T=T, at x=4 and y=0

T =T, at x=0 and y=w

Applying the nodal conditions given by Eq. (5.2) to Eq. (5.1) and solving for b,, b,, b5,
and b,, we have:

b =T, b= (T~ T)
by= (T, ~T) bi=— (T, ~T +T,-T) (5.3)
3 w n i 4 fw i i m n

Substituting expressions given for by, b,, bs, and b,, into Eq. (5.1) and regrouping para-
meters will result in the temperature distribution for a typical element in terms of shape
functions:

T;
TO =[S, S; S, S, 7 (54)
i J m n Tm
T,
The shape functions in the above expression are
x Y
=|{1-= - = 5.5
= (1-3)(1-3) 69
x y
5=2(1-2)
=X
Sm = fw
=Y(1_*
5,=2(1-2)
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It should be clear that we can use these shape functions to represent the variation of any
unknown variable ¥ over a rectangular region in terms of its nodal values ¥;, v, ¥,
and ¥,. Thus, in general, we can write

YO =[S S S, S (5.6)

3

< &g e

For example, ¥ could represent a solid element displacement field.

Natural Coordinates

As was discussed in Chapter 3, natural coordinates are basically local coordinates in a
dimensionless form. Moreover, most finite element programs perform element numer-
ical integration by Gaussian quadratures. As the limits of integration, they use an in-
terval from —1 to 1. The origin of the local coordinate system x, y used earlier coincides
with the natural coordinates § = —1 and v = —1, as shown in Figure 5.3.

Ifwelett = g(’{ —landm = % — 1, then the shape functions in terms of the

natural coordinates £ and ) are

¥
A n
A
(x=0,y=w) (x=¢€y=w)
E=-1,n=1) E=1,n=1)
u n m
w Loy
©,0) -
i j
— = X
E=-1n=-1) E=1Ln=-1)
(x=0,y=0) (x=£y=0)

[ -
i ¢ —|

FIGURE 5.3 Natural coordinates used to describe a quadrilateral element.
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1

Si=70-50- (57)
1

§=21+801 -
1

Sm=70+ 80 +m)

5= 3-8 +m)

These shape functions have the same general basic properties as their one-dimension-
al counterparts. For example, S; has a value of 1 when evaluated at the coordinates of
node i, but has a value of zero at all other nodes.

5.2 QUADRATIC QUADRILATERAL ELEMENTS

The eight-node quadratic quadrilateral element is basically a higher order version of
the two-dimensional four-node quadrilateral element. This type of element is better
suited for modeling problems with curved boundaries. A typical eight-node quadratic el-
ement is shown in Figure 5.4. When compared to the linear elements, for the same num-
ber of elements, quadratic elements offer better nodal results. In terms of the natural
coordinates £ and v, the eight-node quadratic element has the general form of

W) = by + byt + bym + bytn + bt + ben® + by’ + bekn? (5.8)

To solve for by, by, by, ..., by, we must first apply the nodal conditions and create eight
equations from which we can solve for these coefficients. Instead of using this laborious
and difficult method, we will follow an alternative approach, which is demonstrated next.

n

(-1.1)

,-1) FIGURE 5.4 Eight-node quadratic
j quadrilateral element.
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In general, the shape function associated with each node can be represented in
terms of the product of two functions F; and F;:

S = Fl(gs ’YI)Fz(§’ T]) (59)

For a given node, we select the first function F, such that it will produce a value of zero
when evaluiated along the sides of the element that the given node does not contact.
Moreover, the second function F, is selected such that when multiplied by Fj, it will
produce a value of unity at the given node and a value of zero at other neighboring
nodes. The product of functions F; and F, must also produce linear and nonlinear terms
similar to the ones given by Eq. (5.8). To demonstrate this method, let us consider cor-
ner node m, with natural coordinates £ = 1 and m = 1. First, F; must be selected such
that along the jj-side (q = —1) and in-side (¢ = —1), the function will produce a value
of zero. We select

Fgn) =1+ &)1 +m)
which satisfies the condition. We then select

B(g, M) =c¢ + € + em

The coefficients in F, should be selected such that when multiplied by F,, they will pro-
duce a value of unity at the given node m, and a value of zero at the adjacent neigh-
boring nodes £ and o. Evaluating S,, at node m should give S,, = 1for£ = landm =
1; evaluating S,, at node ¢ should give S,, = Ofor £ = 1 and n = 0;and evaluating S,,
at node o should give S,, = 0 for £ = 0 and n = 1. Applying these conditions to Eq.
(5.9), we obtain

F(& ) F(&m)

1= (i + 1)1+ D{ey + c5(1) + c5(1)) = 4ey + 4, + des
0=(1+1)1+0)(er + cxfl) + e5(0)) = 2¢; + 2c,
0=(1+0)1+ 1)(c; + cx(0) + c5(1)) = 2¢; + 2¢s

whichresultsinc, = —§,¢;, = §,andc; = jwithS,, = (1 + €)1 + 9)(=} + & + In).
The shape functions associated with the other corner nodes are determined in a similar
fashion. The comner node shape functions are:

5= -3 = O~ )1 + £ +m) (510)

1

S;i=70+OT—m)(-1+&~m)

Sw= g+ +m)(=1+E+7)

S, = =5 = O+ )1+ £ m)

Let us turn our attention to the shape functions for the middle nodes. As an ex-
ample, we will develop the shape function associated with node o. First, F; must be se-
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lected such that along the ij-side (v = —1), in-side (¢ = —1), and jm-side (§¢ = 1), the
function will produce a value of zero. We select

AEm) =1 - 1 +m)(1 + &)

Note that the product of the terms given by F, will produce linear and nonlinear terms,
as required by Eq. (5.8). Therefore, the second function F, must be a constant; otherwise,
the product of F; and F, will produce third-order polynomial terms, which we certainly
do not want! So,

B(&m) = ¢
Applying the nodal condition
S, =1forf = 0andm =1
leads to
F(g,m) R&n)
1=(1-0)1+1A+0) ¢ =2¢

resultinginc, = jwith S, = }(1 - £)(1 + m)(1 + &) = S, = 31 + m)(1 — &). Using
a similar procedure, we can obtain the shape functions for the midpoint nodes k, ¢, and
p-Thus the midpoint shape functions are:

So=30-m)(1- ) (s.11)
Se= 30+ - )
$,= 3+ (i - &)

5, =20 - 91 - )

EXAMPLE 5.1

We have used two-dimensional rectangular elements to model the stress distribution in
a thin plate. The nodal stresses for an element belonging to the plate are shown in Fig-
ure 5.5. What is the value of stress at the center of this element?

The stress distribution for the element is

.
d =108 S S, S, U'
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2345 1bfin2

Stress

2220 Ibfin?
1845 1b/in2

—> X FIGURE 5.5 Nodal stresses for Example 5.1.

where g;, 0}, 0,,, and o, are stresses at nodes i, j, m, and n, respectively, and the shape
functions are given by Eq. (5.5):

I P P4 I I _
5= (1 e) (1 w) (1 0.25) <1 0.15)
x y X y
5i=7% (1 w) T 025 (1 015>
5, =X xy

fw  (0.25)(0.15)

NP AN T D A PR
S"_w<1 e) 0.15(l 0.25)

For the given element, the stress distribution in terms of the local coordinates x and y
is given by
S; o; §; g;

]
—— e i e N

o® = (1 - é) (1 - é)(zzzo) + é (1 - 0%) (1925) + (&2;;%(1’;;)

S G

Sn Ty
—— e ——,

y () x
- 0415<1 0.25) (2345)

We can compute the stress at any point within this element from the aforementioned
equation. Here, we are interested in the value of the stress at the midpoint. Substituting
x = 0.125and y = 0.075 into the equation, we have

¢(0.125,0.075) = 555 + 481 + 461 + 586 = 2083 Ib/in?
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Note that we could have solved this problem using natural coordinates. This approach
may be easier because the point of interest is located at the center of the element ¢ =
Oandm = 0.The quadrilateral natural shape functions are given by Eq. (5.7):

1

.=;(1—§)(1*n)=%(1-0)(1—0)=

e

s,:%(1+g)(1 - m) =%(1 +0)1-0) =

S,,,=%(1+§)(1+n) =%(1 +0)(1+0)=

N N N I

S,= 30 =81 +m) = 11 - 0)1 +0) =

(0.125,0.075) = 1

1
7 (2220) + 2.(1925) + %(1845) + %(2345) = 2083 Ib/in

Thus, the stress at the midpoint of the rectangular element is the average of the
nodal stresses.

EXAMPLE 5.2

Confirm the expression given for the quadratic quadrilateral shape function S,,.
Referring to the procedure discussed in Section 5.2, we can represent S, by

Sn = E(gv ﬂ)Fz(g, T])

For the shape function S, F; should be selected such that it will have a value of zero
along the ij-side (q = —1) and the jm-side (£ = 1) So, we choose

FEq) =01-&§1+m)
Furthermore, F, is given by:
B(§m) = + ¢ + om
and the coefficients ¢y, ¢;, and c; are determined by applying the following conditions:
S, =1 for £=-1 and n=1
S, =0 for E£=0 and n =1
$S,=0 for &=-1 and 7 =0
So, we get
1 =4c¢c) — 4cy + 4cy
0=72c +2¢;
0=2¢ — 2
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resulting in ¢; = —%,¢; = ~1, and ¢; = 1, which is identical to the expression previ-
ously given for §,.That is,

Sy= =4 (1= 6)1 + m)1L + £~ m)

5.3 LINEAR TRIANGULAR ELEMENTS

A major disadvantage associated with using bilinear rectangular elements is that they
do not conform to a curved boundary very well. In contrast, triangular elements, shown
describing a two-dimensional temperature distribution in Figure 5.6, are better suited to
approximate curved boundaries. A triangular element is defined by three nodes, as shown
in Figure 5.7. Therefore, we can represent the variation of a dependent variable, such as
temperature, over the triangular region by

TO =g +a,X + a3Y (5.12)

Considering the nodal temperatures as shown in Figure 5.7, we must satisfy the follow-
ing conditions:

T=T, at X=X, and Y =Y, (5.13)
T=T, at X=X and Y =Y,
T=T, at X=X, and Y =Y,

Ty,

FIGURE 5.6 Using triangular elements to
describe a two-dimensional temperature
distribution.
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X, Y)

X FIGURE 5.7 A triangular element.

Substituting nodal values into Eq. (5.12), we have:
T, =a + a X; + a3, (5.14)
T,

]

a + a; X; + a3y
T,=a, + a, X + a3Y,

Solving for a,, a,, and a;, we obtain

1 X

4= 5 (XY = X V)T, + (XY, = XY)T, + (XY, - X;Y)T,] (5:15)
1

@ = (%= KT+ (%~ ¥)T + (% - B)T,)

1
ay = ﬂ[(Xk - X)T + (X — X)T; + (X; - X)T,]

where A is the area of the triangular element and is computed from the equation
24=X(Y, - Yi) + X,(Yi - Y5) + X,(Y, - V) (5.16)

Substituting for a;, a,, and a; into Eq. (5.12) and grouping T}, T;, and T} terms yields

i ]
T;
TO =[S, S; SJ{T; (5.17)
Ty
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where the shape functions §;, §;, and S, are

S = %(a,- +BX +3Y) (5.18)

1
5= a(ai +B;X +3Y)

1
S, = ﬂ(ak + B X + 8, Y)

and
o = XY, — XY, B:=Y, - Y 3 =X, — X
o; = X, Y, - XYy Bi=Y—Y 8 = X; — Xi

o, = X;Y; — X;Y, Br =Y. - Y] o = X; - X

Again, keep in mind that triangular shape functions have some basic properties, like
other shape functions defined previously. For example, S; has a value of unity when eval-
uated at the coordinates of node i and has a value of zero at all other nodes. Or, as an-
other example, the sum of the shape functions has a value of unity. That property is
demonstrated by the equation

S+ S +8=1 (5.19)

Natural (Area) Coordinates for Triangular Elements

Consider point P with coordinates (x, y) inside the triangular region. Connecting this
point to nodes, i,j, and k results in dividing the area of the triangle into three smaller areas
Ay,A,,and A,, as shown in Figure 5.8.

Let us now perform an experiment. We move point P from its inside position to co-
incide with point Q along the kj-edge of the element. In the process, the value of area A4,
becomes zero. Moving point P to coincide with node i stretches A, to fill in the entire area

> X

FIGURE 5.8 Natural (area) coordinates for a triangular element.
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A of the element. Based on the results of our experiment, we can define a natural, or area,
coordinate £ as the ratio of A, to the area A of the element so that its values vary from
0 to 1. Similarly, moving point P from its inside position to coincide with point M, along
the ki-edge, resuitsin A, = 0. Moving point P to coincide with node j stretches A, such
that it fills the entire area of the element; that is, A, = A.We can define another area co-
ordinate v as the ratio of A, to A4, and its magnitude varies from 0 to 1. Formally, for a
triangular element, the natural (area) coordinates £, 7, and \ are defined by

A
A
Az
A

_ 4
A

£= (5.20)

It is important to realize that only two of the natural coordinates are linearly indepen-
dent, because

A A A, A
e - LI
AT ataT g isE

For example, the A-coordinate can be defined in terms of £ and m by
A=1-¢-n (5.21)

We can show that the triangular natural (area) coordinates are exactly identical to the
shape functions §;, S ,and S, . That is,

£=3, (5.22)
n= Sj
A= Sk

We now offer a proof of the above relationships. We can describe all of the trian-
gular areas in terms of the coordinates of their vertexes. As an example, consider &,
which is the ratio of A, to A:

4 l[(X,Yk - X, Y) + X(Y, - Y) + Y(X, - X)]

2

£= =" (5.23)
XY = %) + X (¥ - ¥) + X(Y - ¥)]

Comparison of Eq. (5.23) to Eq. (5.18)* shows that £ and S, are identical.

*Substitute for A;, a;, 8, S;, in terms of nodal coordinates.



202

Chapter 5 Two-Dimensional Elements

5.4 QUADRATIC TRIANGULAR ELEMENTS

The spatial variation of a dependent variable, such as temperature, over a region may
be approximated more accurately by a quadratic function, such as:

TO =g, + a, X + a3Y + a, X2 + as XY + agY? (5.24)
By now, you should understand how to develop shape functions. Therefore, the shape

functions for a quadratic triangular element, shown in Figure 5.9, are given below with-
out proof. The shape functions in terms of natural coordinates are:

Si=¢§26-1) (5.25)
S;=m2n - 1)

Si=NA —1)=1=3(E+m) + 2 + )

Se = 4km

Sy =4n\ =4n(l — § - m)
S, =4t =4E(1 - £ —m)

¢ J

FIGURE 5.9 A quadratic triangular element.

EXAMPLE 5.3

We have used two-dimensional triangular elements to model the temperature distribu-
tion in a fin. The nodal temperatures and their corresponding positions for an element
are shown in Figure 5.10. (a) What is the value of temperature at X = 2.15cmand Y =
1.1 cm? (b) Determine the components of temperature gradients for this element. (c)
Netermine the lacation of 70°C and 75°C isotherms.

77°C

Section 5.4 Quaderatic Triangular Elements

67°C

(2.40, 1.65)

i
(2.25,0.75)

X

FIGURE 5.10 Nodal temperatures and coordinates for the element in Example 5.3.

(a) The temperature distribution inside the element is

TO =[S, S S]{7T;

T,

1

T,

where the shape functions §;, S ;»and Sy are

and

R

Qg

B

8
Y

]

S.

S

1

1
1_‘27(

o + B X +8,Y)

ﬁ(aj + B X +3,Y)

1
S =5(op + B X + 8,Y)

2A

= X;Y = X, Y;=(2.4)(1.0) - (1.5)(L65) = — 0.075
o = X, Y~ XY, = (15)(0.75) - (2.25)(1.0) = - 1.125
= X,Y,~ X, Y, =(2.25)(1.65) — (2.40)(0.75) = 1.9125

=Y, - Y, =165—10 = 065
Bj=Y,~ Y =10-075 =025
By = Y,~Y=075 ~ 1.65 = - 0.9

=X, - X,
= X; — X

150 -240= -09
225 -15=1075

8 =X, — X, =240 — 225 =0.15

203
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and
24 = X(Y, - Y,) + X{(Y, - Y) + X,(Y; - Y))
24 = 2.25(1.65 — 1.0) + 2.40(1.0 — 0.75) + 1.5(0.75 — 1.65) = 0.7125
i 0.075 + 0.65X — 0.9Y
Si= ZA( HBX *8Y) = 07125( )
1
= —{o - i 1.125 + 025X + 0.75Y
S = gale t BX EyY) = 07125( )
1.9125 - 09X + 0.15Y
S = 2A(°‘k+ BkX+8kY) 07125( )
The temperature distribution for the element is
69
= (= - 1.125 + 025X + 0.75Y
T 07125( 0.075 + 0.65X 09Y)+07125( )+

77
125 — 0.9X + 0.15Y
0.7125 07125 +? )
After simplifying, we have
T = 93.632 — 10.808X — 0.421Y

Substituting for coordinates of the point X = 2.15and Y = 1.1 leads to T = 69.93°C.

(b) In general, the gradient components of a dependent variable ¥ are com-

puted from:
ave 9
X = 5‘}[&-‘1’,— + Sl'q,i + Sk‘lfk]
ave g
P 57[5,-\1/,- + SV, + S, ¥,
FR 0 -
Xt —1—[3" By B"] ¥, (5.26)
AV 2418 3 8J|.’
oY Vi

It should be clear from examining Eq. (5.26) that the gradients have constant val.ues. This
property is always true for linear triangular elements. The temperature gradients are
computed from:

aT® €9

ax 1B B B« ; 1 [0465 0.25 —0.9] p ={—10.808}

o1 T 24l 8 8|/ " 07m2sl-09 075 oas]) | - o4
k

%
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Note that differentiation of the simplified temperature equation (T = 93.632 — 10.808X
— 0.421Y) directly, would have resulted in exactly the same values.

(c) The location of 70°C and 75°C isotherms can be determined from the fact that
over a triangular element, temperature varies linearly in both X- and Y- directions. Thus,
we can use linear interpolation to calculate coordinates of isotherms. First, let us focus
on the 70°C constant temperature line. This isotherm will intersect the 77°C~69°C- -edge
according to the relations

77-70 15-X 10-Y

77-69 1.5-225 10-075
which results in the coordinates X = 2.16cm and Y = 0.78 cm. The 70°C isotherm also
intersects the 77°C-67°C-edge:

77-70 15-X 10-Y

77-67 15-24 10-1.65
These relations result in the coordinates X = 2.13cm and Y = 1.45 cm. Similarly, the
location of the 75°C isotherm is determined using the 77°C-69°C-edge:

77-75 15-X 10-Y

77-69 15-225 1.0~ 075

which results in the coordinates X = 1.69 and Y = 0.94. Finally, along the 77°C-67°C-
edge, we have:

77-75 15-X _ 10-Y
77-61 15-24 10— 165

These equations result in the coordinates X = 1.68 and Y = 1.13. The isotherms and
their corresponding locations are shown in Figure 5.11.

67°C

(2.40,1.65)

(2.25,0.75)

» X

FIGURE 5.11 The isotherms of the element in Example 5.3.
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ISOPARAMETRIC ELEMENTS

As we discussed in Chapter 3, when we use a single set of parameters (a set of shape func-
tions) to define the unknown variables u, v, T, and so on, and use the same paran}eters
(the same shape functions) to express the geometry, we are using an isoparqmemc for-
mulation. An element expressed in such a manner is called an isoparametric element.
Let us turn our attention to the quadrilateral element shown in Figure 5.12.Let us also
consider a solid mechanics problem, in which a body undergoes a deformation. Using.a
quadrilateral element, the displacement field within an element belonging to this solid
body can be expressed in terms of its nodal values as:

u=S8U,+ SU,+ S, Upn; + Sy Upx (5.27)
v=S8U,+S8U,+S8,U, + S,U,
We can write the relations given by Eq. (5.27) in matrlx form:
U
Uy
U
{u} _ [s,. 0 S 0S5, 0 S, 0] U, (528)
v 085 058 0 S, 0 S |Un
U"',V
Uns
U

ny
Note that using isoparametric formulation, we can use the same shape functions to de-
scribe the position of any point within the element by the equations

x=8x+8x + Sux, + Spx, (5.29)

y= Siyi + S/yi + Smy"l + Snyn

n
Uy, Uy
I 11) T
-1,1) - - Upne
AL M)
- &
UIW U/}‘
{-1,-1) & Yie : T Uy,

i e

)
(1, "1)

FIGURE 5.12 A quadrilateral element used in formulating plane-stress problems.
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As you will see in Chapter 8, the dxsplacement field is related to the components
of strains (e,, = 3,2,, = 5, and v,, = & + ) and, subsequently, to the nodal dis-
placements using shape functions. In deriving the elemental stiffness matrix from strain
energy, we need to take the derivatives of the components of the displacement field
with respect to the x- and y- coordinates, which in turn means taking the derivatives of
the appropriate shape functions with respect to x and y. At this point, keep in mind that
the shape functions are expressed in terms of £ and n. Thus, in general, it is necessary to
establish relationships that allow the derivatives of a function f(x,y) to be taken with re-
spect to x and y and to express them in terms of derivatives of the function f (x,y) with
respect to £ and m. This point will become clear soon. Using the chain rule, we can write:

of(xy) _ of(xy) ox  3f(xy) oy

13 ox 9¢ dy at (5:30)
0f(xy) _ of(xy) ax  8f(xy) dy
am dx dn dy dn
Expressing Eq. (5.30) in matrix form, we have
91
pr— e
)| [ox ay(of(xy)
9 ¢ ot ax
= 531
ofey) [ " | ax oy |)orey) -31)
m dm  dn dy

where the J matrix is referred to as the Jacobian of the coordinate transformation. The
relationships of Eq. (5.31) can be also presented as

8 (x.y) 8 (x.)
ax R 9€

afey) [ = I arcay) (532)
dy an

For a quadrilateral element, the J matrix can be evaluated using Eq. (5.29) and (5.7). This
evalutation is left as an exercise for you; see Problem 5.24. We will discuss the deriva-
tion of the element stiffness matrix using the isoparametric formulation in Chapter 8.

5.6 TWO-DIMENSIONAL INTEGRALS: GAUSS-LEGENDRE
QUADRATURE

As we discussed in Chapter 3, most finite element programs perform numerical inte-
gration for elements by Gaussian quadratures, and as the limits of integration, they use
an interval from —1 to 1. We now extend the Gauss-Legendre quadrature formulation
to two- dlmenswnal problems as fol]ows

=jﬁ@m&M—j[Zwﬂg ] i

-1-1

Ill
M=
M:

w; w,'f( &, ’flj) (5.33)
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The relationships of Eq. (5.33) should be self-evident. Recall that the weighting factors
and the sampling points are given in Table 3.2.

EXAMPLE 5.4

To demonstrate the steps involved in Gauss-Legendre quadrature computation, let us
consider evaluating the integral

2
J 3y + 2x dxdy
0

S t—

As you know, the given integral can be evaluated analytically as
22 22 2 2

2
1 :I J'(3y2 +2x)dxdy =J J(Byz +2x)dx |dy =J[(3y2x + xz)]ody :J(6y2+4)dy =24
00 olo 0 0
We now evaluate the integral using Gauss-Legendre quadrature. We begin by changing
y- and x- variables into £ and v, using the relationships of Eq. (3.45):

x=1+%& and dx = d§

y=1+m and dy = dn

Thus, the integral I can be expressed by:
22 11

1= [ [y + 20)axay - [ [a+ ap+ 20+ olagan

Using the two-point sampling formula, we have

n

15‘ 2": wfﬁn’],

i=1 j=1

/= ww[3(1 + m)* + 2(1 + &)]

Me
M

i

[]
-

To evaluate the summation, we start withi = 1, while changing j from 1 to 2, and we re-
peat the process with i = 2 while changing j from 1 to 2:

= [(1)(1)[3( + (~0.577350269))* + 2(1 + (—0.577350269))]
+ (D(M)[3(1 + (0.577350269)) + 2(1 + (—0.577350269))]]
+ (M3 + (~0.577350269))2 + 2(1 + (0.577350269))]

+ (1)(1)[3(1 + (0.577350269))2 + 2(1 + (0.577350269))]] = 24.000000000
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5.7 EXAMPLES OF TWO-DIMENSIONAL ELEMENTS IN ANSYS

ANSYS offers many two-dimensional elements that are based on linear and quadratic
quadrilateral and triangular shape functions. We will discuss the formulation of two-di-
mensional thermal- and solid-structural problems in detail in Chapters 7 and 8. For now,
consider some examples of two-dimensional structural-solid and thermal-solid elements.

Plane2

is a six-node triangular structural-solid element. The element has quadratic displace-
ment behavior with two degrees of freedom at each node, translation in the nodal x-
and y-directions. The element input data can include thickness if KEYOPTION 3 (plane
stress with thickness input) is selected. Surface pressure loads may be applied to element
faces. Output data include nodal displacements and element data, such as directional
stresses and principal stresses.

Plane35

is a six-node triangular thermal solid element. The element has one degree of freedom
at each node, the temperature. Convection and heat fluxes may be input as surface loads
at the element faces. The output data for this element include nodal temperatures and
element data, such as thermal gradients and thermal fluxes.

Plane42

is a four-node quadrilateral element used in modeling solid problems. The element is de-
fined by four nodes, with two degrees of freedom at each node, the translation in the x-
and y-directions. The element input data can include thickness if KEYOPTION 3 (plane
stress with thickness input) is selected. Surface pressure loads may be applied to element
faces. Output data include nodal displacements and element data, such as directional
stresses and principal stresses.

Plane55

is a four-node quadrilateral element used in modeling two-dimensional conduction heat
transfer problems. The element has a single degree of freedom, the temperature. Con-
vection or heat fluxes may be input at the element faces. Output data include nodal tem-
peratures and element data, such as thermal gradient and thermal flux components.

Plane?77

is an eight-node quadrilateral element used in modeling two-dimensional heat conduc-
tion problems. It is basically a higher order version of the two-dimensional, four-node
quadrilateral element PLANESS. This element is more capable of modeling problems
with curved boundaries. At each node, the element has a single degree of freedom, the
temperature. Output data include nodal temperatures and element data, such as ther-
mal gradient and thermal flux components.
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Plane82

is an eight-node quadrilateral element used in modeling two-dimensional structural
solid problems. It is a higher order version of two-dimensional, four-node quadrilater-
al element PLANE42. This element offers more accuracy when modeling problems with
curved boundaries. At each node, there are two degrees of freedom, the translation in
the x- and y- directions. The element input data can include thickness if KEYOPTION
3 (plane stress with thickness input) is selected. Surface pressure loads may be applied
to element faces. Output data include nodal displacements and element data, such as di-
rectional stresses and principal stresses.

Finally, it may be worth noting that although you generally achieve better results
and greater accuracy with higher order elements, these elements require more compu-
tational time. This time requirement is because numerical integration of elemental ma-
trices is more involved.

SUMMARY

At this point you should:

1. have a good understanding of the linear two-dimensional rectangular and trian-
gular shape functions and of elements, along with their properties and limitations.

2. have a good understanding of the quadratic two-dimensional triangular and quadri-
lateral elements, as well as shape functions, along with their properties and their
advantages over linear elements.

know why it is important to use natural coordinate systems.

. know what is meant by isoparametric element and formulation.

. know how to use Gauss-Legendre quadrature to evaluate two-dimensional integrals.
know examples of two-dimensional elements in ANSYS.

oo W

b
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PROBLEMS

1. We have used two-dimensional rectangular elements to model temperature distribution in
thin plate. The values of nodal temperatures for an element belonging to such a plate are
given in the accompanying figure. Using local shape functions, what is the temperature at
the center of this element?
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112°F

Temperature

108°F

/4—1—0.2 inA—y/

. Determine the temperature at the center of the element in Problem 1 using natural

shape functions.

. For a rectangular element, derive the x- and y-components of the gradients of a dependent

variable ¥.

Determine the components of temperature gradients at the midpoint of the element in Prob-
lem 1. Knowing that the element has a thermal conductivity of k£ = 92 Btu/hr - ft - °F, com-
pute the x- and y-components of the heat flux.

. Compute the location of the 103°F and 107°F isotherms for the element in Problem 1. Also,

plot these isotherms.

. Two-dimensional triangular elements have been used to determine the stress distribution in

a machine part. The nodal stresses and their corresponding positions for a triangular ele-
ment are shown in the accompanying figure. What is the value of stress at x = 2.15 cm and
y = 11lcm?

Stress

827 GPa

7.58 GPa

(2.40, 1.65)

(2.25,0.75)
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7.

10.

1L

13.

14.

Plot the 8.0 GPa and 7.86 GPa stress contour lines for an element of the machine part
in Problem 6.

For a quadratic quadrilateral element, confirm the expressions given for the shape functions
S,and §;.

For a quadratic quadrilateral element, confirm the expressions given for the shape functions
S, and S;.

For triangular elements, the integral that includes products of area coordinates may be eval-
uated using the factorial relationship shown below:
bsc alb!c!
‘NANdA= ——————D2A
Jg" (@+b+c+2)
A

Using the above relationship, evaluate the integral J(S,2 +5; S, )dA

A
Show that the area A of a triangular element can be computed from the determinant of
I X Y
1 X, Y|=24
1 X, Y,

. In the formulation of two-dimensional heat transfer problems, the need to evaluate the in-

tegral [ [S]” AT d A arises; 4 is the heat transfer coefficient, and T represents the temperature.

A -
Using a linear triangular element, evaluate the aforementioned integral, provided that tem-
perature variation is given by

TO =[S, 8 ST
T
and 4 is a constant. Also, note that for triangular elements, the integral that includes products
of area coordinates may be evaluated using the factorial relationship shown below:
alb!c!
(@+b+c+2)

jgn nb ANdA =
A
In the formulation of two-dimensional heat transfer problems, the need to evaluate the integral

aS) aT
Jk 8] — |dA
X X
A
arises. Using a bilinear rectangular element, evaluate the aforementioned integral, provided
temperature is given by

SN

T

"

and k is the thermal conductivity of the element and is a constant.

Look up the expressions for the nine-node quadratic quadrilateral element (Lagrangian el-
ement). Discuss its properties and compare it to the eight-node quadratic quadrilateral ele-

15.
16.

17.

18.
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ment. What is the basic difference between the Lagrangian clement and its eight-node qua-
dratic quadrilateral counterpart?

For triangular elements, show that the area coordinate m = §,and the area coordinate A = S,.

Verify the results given for natural quadrilateral shape functions in Eq. (5.7) by showing that
(1) a shape function has a value of unity at its corresponding node and a value of zero at the
other nodes and (2) if we sum up the shape functions. we will come up with a value of unity.

Verify the results given for natural quadratic triangular shape functions in Eq. (5.25) by show-
ing that a shape function has a value of unity at its corresponding node and a value of zero
at the other nodes.

For plane stress problems, using triangular elements, we can represent the displacements u
and v using a linear triangular element similar to the one shown in the accompanying figure.

Uyy

The displacement variables, in terms of linear triangular shape functions and the nodal dis-
placements, are

u=S8U. + S U, + S U,
v=SU, + 85U, + 5 U,
Moreover, for plane stress situations, the strain displacement relationships are

du v u " v
&y = T g, = — = —-=
Yo=Y

ax YT ay

xx

Show that for a triangular element, strain components are related to the nodal displacements
according to the relation

U

[

o I I TR I
e, =10 8 0 & 0 ¥ -
2A ! U,

Yiv 5 B, 5, B, 3 B U'
kx
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19.

20.

21

22.

Consider point Q along the kj-side of the triangular element shown in the accompanying fig-
ure. Connecting this point to node i results in dividing the area of the triangle into two small-
er areas A, and A;, as shown.

Along the kj-edge, the natural, or area, coordinate £ has a value of zero. Show that along the
kj-edge, the other natura} (area) coordinates  and A reduce to one-dimensional natural co-
ordinates that can be expressed in terms of the local coordinate s according to the equations

A, s
n="2=1-
A L
A
A= 2= s
A L,

For the element in Problem 19, derive the simplified area coordinates along the ij and ki-
edges using the one-dimensional coordinate s.

As you will see in Chapters 7 and 8, we need to evaluate integrals along the edges of a tri-
angular element to develop the load matrix in terms of surface loads or derivative boundary
conditions. Referring to Problem 19 and making use of the relations

RN\ (01 ()
J(x) 1(1 - x) ldx = fm
0

Tn)=(r-1! and T(m)=(m-1)!

(-3 o) - e
Li,

l(n)a(x)bds = L,fki(l _ Lik)"<L;k>bd(i> = (TJ%T)!L"*

Consider a triangular element subjected to a distributed load along its ki-edge, as shown in
the accompanying figure.

show that

and

23.

24.
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k J k J
Px
Py
i y i

X

Using the minimum total potential-energy method, the differentiation of the work done by
these distributed loads with respect to the nodal displacements gives the load matrix, which
is computed from

(¥ = | ST praa.

where

S 0
0 S
S, 0 D

7= |3 9| ma w- {7
0 Si } Py
S, 0
0 S

Realizing that along the ki-edge, S; = 0,evaluate the load matrix for a situation in which the
load is applied along the ki-edge. Use the results of Problem 21 to help you. Note, in this
problem, A is equal to the product of the element thickness and the edge length.

For the element in Problem 22, evaluate the load matrices for a situation in which the dis-
tributed load is acting along the ij-edge and the jk-edge.

For a quadrilateral element, evaluate the Jacobian matrix J and its inverse J™! using Egs.
(5.29) and (5.7).
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More ANSYS’

The main objective of this chapter is to introduce the essential capabilities and the or-
ganization of the ANSYS program. The basic steps in creating and analyzing a model with
ANSYS are discussed here, along with an example used to demonstrate these steps at
the end of the chapter. The main topics discussed in Chapter 6 include the following:

6.1 ANSYS Program

6.2 ANSYS Database and Files

6.3 Creating a Finite Element Model With ANSYS: Preprocessing

6.4 Applying Boundary Conditions, Loads, and the Solution

6.5 Results of Your Finite Element Model: Postprocessing

6.6 Selection Options

6.7 Graphics Capabilities

6.8 An Example Problem

ANSYS PROGRAM

The ANSYS program has two basic levels: the Begin level and the Processor level. When
you first enter ANSYS, you are at the Begin level. From the Begin level, you can enter
one of the ANSYS processors, as shown in Figure 6.1. A processor is a collection of func-
tions and routines to serve specific purposes. You can clear the database or change a
file assignment from the Begin level.

There are three processors that are used most frequently: (1) the preprocessor
(PREP?7), (2) the processor (SOLUTION), and (3) the general postprocessor (POST1).
The preprocessor (PREP7) contains the commands needed to build a model:

e define element types and options
» define element real constants

o define material properties

» create model geometry

o define meshing controls

« mesh the object created.

"Materials were adapted with permission from ANSYS documents.
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I Begin level —|

IPREP7] |SOLUTIONl LPOSTl] I?osns] [ OPT ] I Etc. I

Processor level

FIGURE 6.1 Organization of ANSYS program.

The solution processor (SOLUTION) has the commands that allow you to apply bound-
ary conditions and loads. For example, for structural problems, you can define dis-
placement boundary conditions and forces, or for heat transfer problems, you can define
boundary temperatures or convective surfaces. Once all the information is made avail-
able to the solution processor (SOLUTION), it solves for the nodal solutions. The gen-
eral postprocessor (POST1) contains the commands that allow you to list and display
results of an analysis:

¢ read results data from results file
* read element results data

¢ plot results

o list results.

There are other processors that allow you to perform additional tasks. For example, the
time-history postprocessor (POST26) contains the commands that allow you to review
results over time in a trarsient analysis at a certain point in the model. The design opti-
mization processor (OPT) allows the user to perform a design optimization analysis.

6.2 ANSYS DATABASE AND FILES

The previous section explained how the ANSYS program is organized. This section dis-
cusses the ANSYS database. ANSYS writes and reads many files during a typical analy-
sis. The information you input when modeling a problem (e.g., element type, material
property, dimensions, geometry, etc.) is stored as input data. During the solution phase,
ANSYS computes various results, such as displacements, temperatures, stresses, etc. This
information is stored as results data. The input data and the results data are stored in the
ANSYS database. The database can be accessed from anywhere in the ANSYS program.
The database resides in the memory until the user saves the database to a database file
Jobname.DB. Jobname is a name that the user specifies upon entering the ANSYS pro-
gram,; this feature will be explained in more detail later. The database can be saved and
resumed at any time. When you issue the RESUME command, the database is read into
the memory from the database file that was saved most recently. In other words, the
database becomes what you saved most recently. When you are uncertain about the
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next step you should take in your analysis, or if you want to test something, you should
issue the SAVE database command before proceeding with your test. That way, if you
are unhappy with the results of your test, you can issue the RESUME database com-
mand, which will allow you to go back to the place in your analysis where you started
testing. The SAVE, RESUME, and EXIT commands are located in the utility menu.
In addition, the “clear” option, located on the utility menu, allows the user to clear the
database. This option is useful when you want to start anew, but do not wish to leave and
reenter ANSYS.

When you are ready to exit the ANSYS program, you will be given four options:
(1) Save all model data; (2) Save all model data and solution data; (3) Save all model
data, solution data, and postprocessing data; or (4) Save nothing.

As previously explatned, ANSYS writes and reads many files during a typical analy-
sis. The files are of the form of Jobname. Ext. Recall that Jobname is a name you speci-
fy when you enter the ANSYS program at the beginning of an analysis. The default
jobname is file. Files are also given unique extensions to identify their content. Typical
files include the following:

¢ The log file (Jobname.LOG): This file is opened when ANSYS is first entered.
Every command you issue in ANSYS is copied to the log file. Jobname.LOG is
closed when you exit ANSYS. Jobname.LOG can be used to recover from a sys-
tem crash or a serious user error by reading in the file with the /INPUT command.

e The error file (Jobname.ERRY): This file is opened when you first enter ANSYS.
Every warning and error message given by ANSYS is captured by this file. If Job-
name.ERR already exists when you begin a new ANSYS session, all new warnings
and error messages will be appended to the bottom of this file.

o The database file (Jobname.DB): This file is one of the most important ANSYS
files because it contains all of your input data and possibly some results. The model
portion of the database is automatically saved when you exit the ANSYS program.

o The output file (Jobname.OUT): This file is opened when you first enter ANSYS.
Jobname.OUT is available if you are using the GUI,; otherwise, your computer
monitor is your output file. Jobname.OUT captures responses given by ANSYS to
every command executed by the user. It also records warning and error messages
and some results. If you change the Jobname while in a given ANSYS session, the
output file name is not changed to the new Jobname.

Other ANSYS files include the structural analysis results file (Jobname.RST); the ther-
mal results file (Jobname.RTH); the magnetic results file (Jobname.RMG); the graphics
file (Jobname.GRPH); and the element matrices file (Jobname.EMAT).

6.3 CREATING A FINITE ELEMENT MODEL WITH ANSYS:

PREPROCESSING

The preprocessor (PREP7) contains the commands needed to create a finite element model:

1. define element types and options
2. define element real constants if required for the chosen element type

Il AN
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define material properties
create model geometry
define meshing controls
mesh the object created.

Define element types and options.

ANSYS provides more than one hundred various elements to be used to analyze
different problems. Selecting the correct element type is a very important part of
the analysis process. A good understanding of finite element theory will benefit you
the most in this respect, helping you choose the correct element for your analysis.
In ANSYS, each element type is identified by a category name followed by a num-
ber. For example, two-dimensional solid elements have the category name PLANE.
Furthermore, PLANE42 is a four-node quadrilateral element used to model struc-
tural solid problems. The element is defined by four nodes having two degrees of
freedom at each node, translation in the x- and y-directions. PLANE 82 is an eight-
node (four corner points and four midside nodes) quadrilateral element used to
model two-dimensional structural solid problems. It is a higher order version of the
two-dimensional, four-node quadrilateral element type, PLANE42. Therefore, the
PLANES?2 element type offers more accuracy when modeling problems with
curved boundaries. At each node, there are two degrees of freedom, translation in
the x- and y-directions. Many of the elements used by ANSYS have options that
allow you to specify additional information for your analysis. These options are
known in ANSYS as keyoptions (KEOPTs). For example, for PLANE 82, with
KEOPT (3) you can choose plane stress, axisymmetric, plane strain, or plane stress
with the thickness analysis option. A complete list of elements used by ANSYS is
shown in Table 6.1 at the end of this chapter. You can define element types and op-
tions by choosing:

main menu: Preprocessor — Element Type — Add/Edit/Delete ...

You will see the Element Type dialog box next, shown in Figure 6.2.

NONE DEFINED

FIGURE 6.2 Element Types dialog box.
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List: A list of currently defined element types will be shown here. If you have not
defined any clements yet, then you need to use the Add button to add an clement.
The Library of Element Types dialog box will appear next (see Figure 6.3). Then
you choose the type of element you desire from the Library.

i Litwary of Element Types

P

2.

Hyyurelasti -
Uisco Solid

FIGURE 6.3 Library of Element Types dialog box.

Action Buttons: The purpose of the Add button is to add an element. as we just
discussed. The Delete button deletes the selected (highlighted) element type. The
Options button opens the element type options dialog box. You can then choose
one of the desired element options for a selected element. For example. if you had
selected the clement PLANE 82 with KEOPT (3) you could choose plane stress,
axisymmetric, plane strain, or plane stress with the thickness analysis option, as
shown in Figure 6.4.

i PLANLES2 element type options =

Tane strs w/ehkds |

No extra output

!

No extra output N
) |

j

H

; i

FIGURE 6.4 The clement type options dialog box.

Define element real constants.

Element real constants are quantities that are specific to a particular element. For
example.a beam element requires cross-sectional area, second moment of arca, and
so on. It is important to rcalize that real constants vary {rom one clement type to
another: furthermore, not all clements require real constants. Real constants can
be defined by the command

main menu: Preprocessor — Real Constants ...
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: Heal Lonstants

NONE DEFINED

FIGURE 6.5 Real Constants dialog box

You will then see the Real Constants dialog box, as shown in Figure 6.5.

List: A list of currently defined real constants will be shown here. If you have not
defined any elements at this point, you need to use the Add button to add real
constants. An example of a dialog box for a PLANE 82 element’s real constants
is shown in Figure 6.6.

: Real Constants for PLANE 82

FIGURE 6.6 An example of the dialog box for a PLANE 82 (with options) element’s
real constants.

Action Buttons: The purpose of the Add button has already been explained. The
Delete Button deletes the selected (highlighted) real constants. The Edit button
opens a new dialog box that allows you to change the values of existing real constants.

. Define material properties.

At this point, you define the physical properties of your maternial. For example,
for solid structural problems, you may need to define the modulus of elasticity,
Poisson’s ratio, or the density of the material, whereas for thermal problems, you
may need to define thermal conductivity, specific heat, or the density of the ma-
terial. You can define material propertics by the command

main menu: Preprocessor — Material Props — -Constant-Isotropic ...

You will then see the Isotropic Material Properties reference dialog box. as shown
in Figure 6.7.
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500 Ib 500 1b

3ft —je— 3ft —n]

Y y

FIGURE 6.7 Isotropic Material Properties
reference dialog box.

e

You can use multiple materials in your model if the object you are analyzing is B Sote sdoto
made of different materials. Specify the material reference number, starting with '

1, and pick OK. The next dialog box allows you to define the appropriate proper- " ® Y ©)

ties for your analysis, as shown in Figure 6.8. You need to scroll down to access all : 4 5
available properties. ;

@ |@ ®)

s Isotiopic Material Properties ) ] (1)
1

FIGURE 6.9 A truss problem: First nodes 1-5 are created, then nodes are connected to
form elements (1)—(6).

4. Create model geometry.

There are two approaches to constructing a finite element model’s geometry: (1)
direct (manual) generation and (2) the solid-modeling approach. Direct genera-
tion, or manual generation, is a simple method by which you specify the location
of nodes and manually define which nodes make up an element. This approach is
generally applied to simple problems that can be modeled with line elements, such
as links, beams, and pipes, or if the object is made of simple geometry, such as rec-
tangles. This approach is illustrated in Figure 6.9. Refer back to the truss problem
of Example 2.1 in Chapter 2 to refresh your memory about the manual approach,
if necessary.

With the solid-modeling approach, you use simple primitives (simple geometric
shapes), such as rectangles, circles, polygons, blocks, cylinders, and spheres, to con-
struct the model. Boolean operations are then used to combine the primitives. Ex-
amples of boolean operations include addition, subtraction, and intersection. You
then specify the desired element size and shape, and ANSYS will automatically
generate all the nodes and the elements. This approach is depicted in Figure 6.10.

=)

FIGURE 6.8 Isotropic material properties
dialog box.

FIGURE 6.10 An example of the solid-
modeling approach.
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N Create i

I— Solid Modeling

:l— Direct Generation

FIGURE 6.11 The Create dialog box.

The construction of the model in ANSYS begins when you choose the Create op-
tion, as shown in Figure 6.11. You choose this option with the command sequence

main menu: Preprocessor — -Modeling-Create

When you create entities such as keypoints, lines, areas, or volumes, they are au-
tomatically numbered by the ANSYS program. You use keypoints to define the
vertices of an object. Lines are used to represent the edges of an object. Areas are
used to represent two-dimensional solid objects. They are also used to define the
surfaces of three-dimensional objects. When using primitives to build a model, you
need to pay special notice to the hierarchy of the entities. Volumes are bounded
by areas, areas are bounded by lines, and lines are bounded by keypoints. There-
fore, volumes are considered to be the highest entity, and the keypoints are the
lowest entity in solid modeling hierarchy. Remembering this concept is particu-
larly important if you need to delete a primitive. For example, when you define one
rectangle, ANSYS automatically creates nine entities: four keypoints, four lines,

and one area. The relationship among keypoints, lines, and areas is depicted in
Figure 6.12.

K4 L3 . K3

FIGURE 6.12 The relationship among the
K1 L1 . K2 keypoints, lines, and areas.
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-— By typing in x, y coordinates  FIGURE 6.13 The Rectangle menu.

Area primitives and volume primitives are grouped under the Areas and Volumes
categories in the Create menu. Now let us consider the Rectangle and the Circle
menus, because they are commonly used to build two-dimensional models. The
Rectangle menu offers three methods for defining a rectangle, as shown in Figure
6.13. The command for accessing the Rectangle menu is

main menu: Preprocessor — -Modeling-Create — Rectangle

The Circle menu offers several methods for defining a solid circle or annulus, as
shown in Figure 6.14.

The Partial Annulus option is limited to circular areas spanning 180° or less. In
order to create a partial circle that spans more than 180°, you need to use the By
Dimension option. An example of creating a partial annulus spanning from § = 45°
to 6 = 315° is shown in Figure 6.15. Note that you can create a solid circle by set-
ting RAD1 = 0.

A Licle

} By picking

-— By typing in radii and angles  FIGURE 6.14 The Circle menu.

A Pant Annutar Cic Avea

RADI1

+8

RAD2

FIGURE 6.15 An example of creating a partial annulus spanning from 8 = 45° to § = 315°.
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The Working Plane (WP)

In ANSYS, you will use a working plane (WP) to create and orient the geometry of the
object you are planning to model. All primitives and other modeling entities are de-
fined with respect to this plane. The working plane is basically an infinite plane with a
two-dimensional coordinate system. The dimensions of the geometric shapes are de-
fined with respect to the WP. By default, the working plane is a Cartesian plane. You can
change the coordinate system to a polar system, if so desired. Other attributes of the
working plane may be set by opening the WP settings dialog submenu, as shown in Fig-
ure 6.16. To access this dialog box, issue the following sequence of commands:

>

P
>

utility menu: Work Plane — WP Settings ...

Coordinate System: Choose the working-plane coordinate system you want to use.
You locate or define points in terms of X- and Y-coordinates when using the Carte-
sian coordinate system. You can also locate or define points with respect to a polar
coordinate system using R- and 0-coordinates.

Display Options: This section is where you turn on the grid or grid and triad. The
triad appears in the center (0,0 coordinates) of your working plane.

Snap Options: These options control the locations of points that are picked. When
activated, these options allow you to pick locations nearest to the snap point. For
example, in a Cartesian working plane, Snap Incr controls the X- and Y-increments

WP Settings T

&

[

S
R
—
—
S
S
—
—

FIGURE 6.16 The WP settings dialog box.
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within the spacing grid. If you have set a spacing of 1.0 and a snap increment of 0.5,

then within the X,Y grid you can pick coordinates with 0.5 increments. For exam-

ple, you cannot pick the coordinates 1.25 or 1.75.

Grid Control

Spacing: This number defines the spacing between the grid lines.

Minimum: This number is the minimum X-location at which you want the grid
to be displayed with respect to the Cartesian coordinate system.

Maximum: This number is the maximum X-location at which you want the grid
to be displayed with respect to the Cartesian coordinate system.

Radius: This number is the outside radius that you want the grid to be displayed
with respect to the polar coordinate system.

Tolerance: This number is the amount that an entity can be off of the current
working plane and still be considered as on the plane.

The working plane is always active and, by default, not displayed. To display the
working plane, you need to issue the following command:

utility menu: WorkPlane — Display Working Plane

You can move the WP origin to a different location on the working plane. This
feature is useful when you are defining primitives at a location other than the glob-
al location. You can move the WP origin by choosing the commands

utility menu: WorkPlane — Offset WP to — XYZ Locations +

You can relocate the working plane by offsetting it from its current location, as
shown in Figure 6.17.To do so, issue the command

utility menu: WorkPlane — Offset WP by Increments ...

Offset buttons: Picking these buttons will cause an immediate offset of your work-
ing plane in the direction shown on the buttons. The amount of offset is controlled
by the Offset slider and the Snap-Incr value on the WP setting dialog box.
Offset Slider: This number controls the amount of offset that occurs with each
pick of the offset buttons. If the slider is set to 1, the offset will be one times the
Snap-Incr value on the WP setting dialog box.
Offset Dialog Input: This feature allows you to input the exact X, Y, and Z offset
values for the working plane. For instance, typing 1,2,2 into this field and pressing
the Apply or OK buttons will move the working plane one unit in the positive X-
direction and two units each in the positive Y- and Z-directions.
Location Status: This section displays the current location of the working plane in
global Cartesian coordinates. This status is updated each time the working plane
is translated.

You can also relocate the working plane by aligning it with specified keypoints,
nodes, coordinate locations, etc., as shown in Figure 6.18. To align the working
plane, issue the command

utility menu: Work Plane — Align WP with
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Cffset WP « Plot Numbering Contiols

FIGURE 6.19 The Plot Numbering Controls dialog box.

utility menu: Plot — Lines
utility menu: Plot — Areas
utility menu: Plot — Volumes
utility menu: Plot — Nodes
utility menu: Plot — Elements

The PlotCtrls menu, shown in Figure 6.19, contains a useful graphics option that
allows you to turn on keypoint numbers, line numbers, area numbers, and so on to
check your model. To access this option, use the command

FIGURE 6.17 The dialog box for offsetting
the WP.

utility menu: PlotCtrls — Numbering ...

You may need to replot to see the effects of the numbering command you issue.
5. Define meshing controls.

The next step in creating a finite element model is dividing the geometry into

nodes and elements. This process is called meshing. The ANSYS program can au-

tomatically generate the nodes and elements, provided that you specify the ele-

FIGURE 6.18 Working plane-relocation ment attributes and the element size:

using the Align command.

1. The element artributes include element type(s), real constants, and material
properties.

2. The element size controls the fineness of the mesh. The smaller the element
size, the finer the mesh. The simplest way to define the element size is by defin-
ing a global element size. For example, if you specify an element edge length
of 0.1 units, then ANSYS will generate a mesh in which no element edge is

; larger than 0.1 units. Another way to control the mesh size is by specifying the

utility menu: Plot — Keypoints number of element divisions along a boundary line. The Global Element Size

Plotting Model Entities

You can plot various entities, such as keypoints, lines, areas, volumes, nodes, and ele-
ments, using the Plot menu. From the utility menu, you can issue one of the following
commands to plot:
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Glotal Llement Sizes

FIGURE 6.20 The Global Element Size dialog box.

dialog box is shown in Figure 6.20. To access this dialog box, issue the follow-
ing commands:
main menu: Preprocessor — -Meshing-Size Cntrls— -Global-Size ...
6. Mesh the object.
You should get into the habit of saving the database before you initiate meshing.
This way, if you are not happy with the mesh generated, you can resume the data-
base and change the element size and remesh the model. To initiate meshing, in-
voke the commands
main menu: Preprocessor — -Meshing-Mesh — -Areas-Free +
Once a picking menu appears, you can pick individual areas or use the Pick All but-
ton to select all areas for meshing. Upon selection of the desired areas, Pick the
Apply or OK buttons to mesh. The meshing process can take some time, depend-
ing on the model complexity and the speed of your computer. During the mesh-
ing process, ANSYS periodically writes a meshing status to the output window.
Therefore, it is useful to bring the output window to the front to see the meshing
status messages.

Free meshing uses either mixed-area element shapes or all-triangular area ele-
ments, whereas the mapped meshing option uses all quadrilateral area elements and
all hexahedral (brick) volume elements. Mapped area mesh requirements include
three or four sides, equal numbers of elements on opposite sides, and even num-
bers of elements for three-sided areas. If you want to mesh an area that is bound-
ed by more than four lines, you can use the concatenate command to combine
some of the lines to reduce the total number of lines. Concatenation is usually the

last step you take before you start meshing the model. To concatenate, issue the fol-
lowing series of commands:

main menu: Preprocessing — -Meshing-Concatenate — Lines or Areas

Modifying Your Meshed Model

If you want to modify your model, you must keep in mind certain rules en-
forced by ANSYS:

1. Meshed lines, areas, or volumes may not be deleted or moved.
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2. Youcan delete the nodes and the elements with the meshing Clear command.

Also, areas contained in volumes may not be deleted or changed. Lines contained
in areas may not be deleted. Lines can be combined or divided into sinaller seg-
ments with line operation commands. Keypoints contained in lines may not be
deleted. You start the clearing process by issuing the commands

main menu: Preprocessor — -Meshing-Clear

The clearing process will delete nodes and elements associated with a selected
model entity. Then you can use deleting operations to remove all entities associ-
ated with an entity. The “... and below” options delete all lower entities associat-
ed with the specified entity, as well as the entity itself For example, deleting “Area
and below” will automatically remove the area, the lines, and the keypoints asso-
ciated with the area.

6.4 APPLYING BOUNDARY CONDITIONS, LOADS, AND THE SOLUTION

The next step of finite element analysis involves applying appropriate boundary condi-
tions and the proper loading. There are two ways to apply the boundary conditions and
loading to your model in ANSYS. You can either apply the conditions to the solid model
(keypoints, lines, and areas), or the conditions can be directly imposed on the nodes and
elements. The first approach may be preferable because should you decide to change the
meshing, you will not need to reapply the boundary conditions and the loads to the new
finite element model. It is important to note that if you decide to apply the conditions
to keypoints, lines, or areas during the solution phase, ANSYS automatically transfers
the information to nodes. The solution processor (SOLUTION) has the commands that
allow you to apply boundary conditions and loads. It includes the following options:

Sfor structural problems: displacements, forces, distributed loads (pressures), tem-
peratures for thermal expansion, gravity

Jor thermal problems: temperatures, heat transfer rates, convection surfaces, in-
ternal heat generation

Sor fluid flow problems: velocities, pressures, temperatures

Jor electrical problems: voltages, currents

Jor magnetic problems: potentials, magnetic flux, current density

Degrees of Freedom (DOF) Constraints

In order to constrain a model with fixed (zero displacements) boundary conditions, you
need to choose the command sequence

main menu: Solution — -Loads-Apply — -Structural-Displacement

You can specify the given condition on the keypoints, lines, areas, or nodes. For exam-
ple, if you choose to constrain certain keypoints, then you need to invoke the commands

main menu: Solution — -Loads-Apply — -Structural-Displacement
— On Keypoints +
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FIGURE 6.21 The dialog box for applying displacements on keypoints.
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FIGURE 6.22 KEXNPND options.

A picking menu will appear. You then pick the keypoints to be constrained and press the
OK button. An example of a dialog box for applying displacement constraints on key-
points is shown in Figure 6.21.

The KEXPND field in the dialog box of Figure 6.21 is used to expand the con-
straint specification to all nodes between the keypoints, as shown in Figure 6.22.

Once you have applicd the constraints. you may want to display the constraint
symbols graphically. To turn on the boundary condition symbols. open the Symbols di-
alog box. as shown in Figurce 6.23, by choosing the commands

utility menu: PletCtrls — Symbols ...

Line or Surface Loads
In order to specify distributed loads on a Iine or surface of a model, vou need to issue
the following commands:

maim menu: Solution --» -Loads-Apply — -Structural-Pressures
— On Lines or On Surfaces
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FIGURE 6.24 The dialog box for applying
pressure foads on lines

A picking menu will appear. You then pick the line(s) or surfaces that require a pressure
load and press the OK button. An example of a dialog box for applying pressure loads
i on line(s) is shown in Figure 6.24,
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100 100
VALI = 100
200
100
VALI = 100
VALI = 200
200
100
VALI =200
VALJ = 100 FIGURE 6.25 An example iliustrating how
to apply uniform and nonuniform loads.

For uniformly distributed loads, you need to specify only VALI For a linear dis-
tribution, you need to specify both VALI and VALJ. as shown in Figure 6.25. It is im-
portant to note that in ANSYS, a positive VALI represents pressure into the surface.

Obtain a Solution

Once you have created the model and have applied the boundary conditions and ap-
propriate loads, then you need to instruct ANSYS to solve the set of equations generat-
ed by your model. But first save the database. To initiate the solution, pick the commands

main menu: Solution — -Solve-Current LS

The next section is about reviewing the results of your analysis.

6.5 RESULTS OF YOUR FINITE ELEMENT MODEL: POSTPROCESSING

There are two postprocessors available for review of your resuits: (1) POST1 and (2)
POST26. The general postprocessor (POST1) contains the commands that allow you to
list and display results of an analysis:

¢ Deformed shape displays and contour displays
o Tabular listings of the results data of the analysis
o Calculations for the results data and path operations

e Error estimations.
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N General Postproc  [% !

FIGURE 6.26 The General Postprocessing
dialog box.

: Plot Deformed Shape

FIGURE 6.27 The Plot Deformed Shape dialog Box.

You can read results data from the results file by using one of the choices from the dia-
log box shown in Figure 6.26. This dialog box may be accessed via the following command:

main menu: General Postproc

For example, if you are interested in viewing the deformed shape of a structure under
a given loading, you choose the Plot Deformed Shape dialog box. as shown in Figure 6.27.
To access this dialog box. issuc the following sequence of commands:

main menu: General Postproc — Plot Results — Deformed Shape ..
You can also use contour displays to sce the distribution of certain variables, such as a
component of stress or temperature over the entire model. For example. issue the fol-
lowing command to access the dialog box shown in Figure 6.28.

main menu: General Postproc - > Plot Results — Nodal Solution
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The time-history postprocessor (POST26) contains the commands that allow you
to review results over time in a transient analysis. These commands will not be discussed
here, but you may consult the ANSYS on-line help for further information about how
to use the time-history postprocessor.

Once you have finished reviewing the results and wish to exit the ANSYS pro-
gram, choose the Quit button from the ANSYS toolbar and pick the option you want.
Press the OK button.

If, for any reason, you need to come back to modify a model, first launch ANSYS,
and then type the file-name in the Initial Jobname entry field of the interactive dialog
box.Then press the Run button. From the file menu, choose Resume Jobname.DB. Now
you have complete access to your model. You can plot keypoints, nodes, elements, and
the like to make certain that you have chosen the right problem.

- Contour Nodal Solution Data

6.6 SELECTION OPTIONS

The ANSYS program uses a database to store all of the data that you define during an
analysis. ANSYS also offers the user the capability to select information about only a por-
tion of the model, such as certain nodes, elements, lines, areas, and volumes for further
processing. You can select functions anywhere within ANSYS. To start selecting, issue the
following command to bring up the dialogue box shown in Figure 6.30.

utility menu: Select — Entities ...

\ Select Entihies [

mri Entity: Nodes, Elements, Volumes, Areas, etc.

By Location i Criterion: By Location, Attached To, etc.

+~— Location Settings:

Select

-— Reselect
Also Select
Unselect

FIGURE 6.29 The List Reaction Solution dialog box.

Invert

As already mentioned, you can list the results in a tabular form as well. For example, to
list the reaction forces, you issue the following command, which gives you a dialog box
similar to the one shown in Figure 6.29:

main menu: General Postproc — List Results — Reaction Solu ...

Select the component(s) of your choice and press the OK button. FIGURE 6.30 The select Entities dialog box.
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The various selection commands and their respective uses are as follows:

Select: To select a subset of active items from the full set.
Reselect: To select again from the currently selected subset.
Also Select:  To add a different subset to the current subset.
Unselect: To deactivate a portion of the current subset.

Select All: To restore the full set.
Select None:  To deactivate the full set (opposite of the Select All command).
Invert: To switch between the active and inactive portions of the set.

The select dialog box can be used to select or unselect entities of your solid or fi-
nite element model. You can make selections based on the location of your entities in
space, Or you can select entities that are attached to other selected entities, such as nodes
that are attached to selected elements. Be aware, however, that you must reactivate all
entities before solving your model. Unselected entities will not be included in a solution.
For example, if you select a subset of nodes on which to apply constraints, you should
reactivate all nodes before solving. ANSYS allows the user to activate all entities with
one simple operation by the command

utility menu: Select — Everything

You can also select a set of related entities in a hierarchical fashion. For example, given
a subset of areas, you can select (a) all lines defining the areas, (b) all keypoints defin-
ing those lines, (c) all elements belonging to the areas, and so on. To select in this fash-
ion, use the command

utility menu: Select — Everything Below
ANSYS also provides the capability to group some selected entities into a com-

ponent. You can group one type of entity-—such as nodes, elements, keypoints, or lines—
into a component to be identified by a user-defined name (up to eight characters long).

6.7 GRAPHICS CAPABILITIES

Good graphics are especially important for visualizing and understanding a problem
being analyzed. The ANSYS program provides numerous features that allow you to en-
hance the visual information presented to you. Some examples of the graphics capabil-
ities of ANSYS include deformed shapes, result contours, sectional views, and animation.
Consult the ANSYS procedure manual for additional information about more than 100
different graphics functions available to the user.

Up to five ANSYS windows can be opened simultaneously within one graphics
window. You can display different information in different windows. ANSYS windows
are defined in screen coordinates (—1 to +1 in the x-direction and —1 to +1 in the y-di-
rection). By default, ANSYS directs all graphics information to one window (window 1).
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FIGURE 6.31 “The Window-layout dialog box.

In order to define additional windows, you need to access the window-layout dialog
box, as shown in Figure 6.31. To do so; issue the following commands:

utility menu: PlotCtrls — Window Controls — Window Layout ...

There are three important concepts that you need to know with respect to window lay-
out: (1) focus point, (2) distance, and (3) viewpoint. The focus point, with coordinates XF,
YF, ZF, is the point on the model that appears at the center of the window. By changing
the coordinates of the focus point, you can make a different point on the model appear
at the center of the window. Distance determines the magnification of an image. As the
distance approaches infinity, the image becomes a point on the screen. As the distance
is decreased, the image size increases until the image fills the window. Viewpoint deter-
mines the direction from which the object is viewed. A vector is established from the
viewpoint to the origin of the display coordinate. The line of sight is parallel to this vec-
tor and is directed at the focus point.

Next, the Pan-Zoom-Rotate dialog box allows you to change viewing directions,
zoom in and out, or rotate your model. You can access this dialog box, shown in Figure
6.32 by the following commands:

utility menu: PlotCtrls — Pan, Zoom, Rotate ...

The various commands within the Pan, Zoom, Rotate dialog box and their respective
functions are:

Zoom: Pick the center and the corner of the zoom rectangle.

Box Zoom:  Pick the two corners of the zoom rectangle.

Win Zoom:  Same as Box Zoom, except the zoom rectangle has the same pro-
portions as the window.

. Zoom out.

[ ] Zoom in.
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Pan-Zoom-Rotate

— Viewing Direction

- Zooming Options

i— Pan/Zoom Buttons

— Rotate Buttons
(screen coordinates)

(— Dynamic Pan-Zoom-Rotate

FIGURE 6.32 The Pan, Zoom, Rotate
dialog box.

Dynamic Mode: Allows you to pan, zoom, and rotate the image dynamically.

ﬁ Pan model in X- and Y-directions.

Move the mouse right and left to rotate the model about the Z-axis of the screen.
ﬁ Move the mouse up and down to zoom in and out.

Move the mouse right and left to rotate the model about the Y-axis of the screen.
% Move the mouse up and down to rotate the model about the X-axis of the screen.

Fit: Changes the graphics specifications such that the image fits the window exactly.

Reset: Resets the graphics specifications to their default values.

In the next section, an example problem will demonstrate the basic steps in cre-
ating and analyzing a model with ANSYS.
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6.8 AN EXAMPLE PROBLEM

Consider one of the many steel brackets (E = 29 X 10° Ib/in%,v = 0.3) used to support
bookshelves. The dimensions of the bracket are shown in Figure 6.33. The bracket is
loaded uniformly along its top surface, and it is fixed along its left edge. Under the given
loading and the constraints, plot the deformed shape; also determine the principal stress-
es and the von Mises stresses in the bracket.

The following steps demonstrate how to solve this problem using ANSYS:

Enter the ANSYS program by using the Launcher.

Type xansys54 on the command line if you are running ANSYS on a UNIX plat-
form, or consult your system administrator for information on how to run ANSYS
from your computer system’s platform.

Pick Interactive from the Launcher menu.

Type Bracket (or a file name of your choice) in the Initial Jobname entry field of
the dialog box.

thickness = 0.125 in.

10 Ib/in.

HERREENREE

FIGURE 6.33 A schematic of the steel bracket in the example problem.
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ANSYS /University Low Uption

ST
.o i

Bracket

-
—

Pick Run to start the Graphic User Interface (GUI). A window will open with
some disclaimer information. You will eventually be asked to press the <Return>
key to start the graphics window and the main menu. Do so in order to proceed.

Create a title for the problem. This title will appear on ANSYS display windows to pro-
vide a simple way of identifying the displays. To create a title, issue the command

utility menu: File — Change Title ...

+ Change Title

Define the element type and material properties:

main menu: Preprocessor — Element Type — Add/Edit/Delete ...

i Library of Element Types

Section 6.8 An Example Problem

Element Types

NONE DEFINED

g&g,ﬁiuus v

AlTriangle 6nede 2
Axi-har 4node 25
8node 83
Brick 8nade
Hyperelastic 3 20node
Uisco Solid »
Contact

PLANE82
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qZ'eIemgn! lypg 'opllonsr i Element 1ype for Real Lonstants

1 PLANES2

PLANES?2

Assign the thickness of the bracket:

main menu: Preprocessor — Real Constants ...

i Reat Constants .
NONE DEFINED =| ! Assign the modulus of elasticity and the Poisson’s-ratio values:
main menu: Preprocessor — Material Props — -Constant-Isotropic ...

otiopic Materi:
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WP Seltings

< Isotiopic Material Properties

4
e

Toggle on the workplane by the command sequence
utility menu: Workplane — Display Working Plane
Bring the workplane to view by the command sequence

utility menu: PlotCtrls — Pan, Zoom, Rotate ...
ANSYS Toolbar: SAVE_DB

Set up the graphics area—that is, the work plane, zoom, and so on:

utility menu: Workplane — Wp Settings ...
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Pan-Zeom-Rotate

Click on the small circle and the arrows until you bring the workplane to view, and
then create the geometry:

main menu: Preprocessor — -Modeling-Create — -Areas-Rectangle
— By 2 Corners +
a) On the workplane, pick the location of the corners of Areas 1 and 2, as shown
in Figure 6.34, and apply:
H [AtWP = 0,12 in the upper left corner of the workplane, press the left button]

A4

FIGURE 6.34 The Areas making up the
bracket.
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[First, expand the rubber band down 2.0 and right 4.0 and, then, press the
left button]

ﬂ (WP = 4,12]

[Expand the rubber band down 2.0 and right 7.0]

OK
b) Create circle A3 by the commands
main menu: Preprocessor — -Modeling-Create — -Areas-Circle

— Solid Circle +
ﬁ [WP = 11,11}

ﬁ [Expand the rubber band to a radius of 1.0]

OK
¢) Create quarter-circle A4 by the command

main menu: Preprocessor — -Modeling-Create — -Areas-Circle
— Partial Annulus +

Type in the following values in the given fields:

[WPX = 0]
[WPY = 10]
[Rad-1 = 0]
[Theta-1 = 0]
[Rad-2 = 4]

[Theta-2 = —90]
OK
d) Before creating the fillet, join the keypoints of Areas 1,2, and 4 by the commands

main menu: Preprocessor — -Modeling-Operate — -Booleans-Glue
— Areas +
Pick Areas 1,2, and 4.

OK
e) Create the fillet by the commands

main menu: Preprocessor — -Modeling-Create — -Lines-Line Fillet +
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MH\ {Pick the bottom edge of rectangular Area 2]

!Uj [Pick the curved edge of quarter-circle Area 4]
| APPLY

{Line Hilet

Then. issue the command

utility menu: PlotCtrls — Pan, Zoom, Rotate ...
Use the Box Zoom button to zoom about the fillet region, and issue the command

utility menu: Plot — Lines
f) Crecate an area for the fillet with the commands

main menu: Preprocessor — -Modeling-Create — -Areas-Arbitrary

— By Lines +

Pick the fillet line and the two intersecting smaller lines.

OK
g) Add the areas together with the commands

main menu: Preprocessor — -Modeling-Operate — Add — Areas +
Click on the Pick All button and issue the command

utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Click on the Fit button and then Close.
h) Create the area of the small hole, but first change the Snap Incr value in the
WP Settings dialog box to 0.25.

OK
Then issue the commands

main menu: Preprocessor — -Modeling-create — -Areas-Circle
— Solid Circle
B WP = 1111j)
o
-

!L,U | Expand the rubber band to a radius of 0.25]
-] oK
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i)  Subtract the arca of the small hole with the commands
main menu: Preprocessor — -Modeling-Operate — -Booleans-Subtract
- Areas +

ﬁ [Pick the bracket area]
ﬁ [anywhere in the ANSYS graphics area, apply|
ﬁ [Pick the small circular area (r = 0.25)]

(8] [anywhere in the ANSYS graphics area, apply]
OK

Now you can toggle off the workplane grids with the command
utility menu: Workplane —> Display Working plane
ANSYS Toolbar: SAVE_DB

You are now ready to mesh the area of the bracket to create elements and nodes.
Issue the commands
main menu: Preprocessor — -Meshing-Size Cntrls
— -Manual Size-Global-Size ...

i Global Element Sizes

ANSYS Toolbar: SAVE_DB

main menu: Preprocessor — -Meshing-Mesh — Areas-Free +
Click on the Pick All button.
Apply boundary conditions:

main menu: Solution — -Loads-Apply — -Structural-Displacement

— On Keypoints

Pick the three keypoints: (1) upper left corner of Area 1,(2) two inches below the
keypoint you just picked (1.c.. the upper left corner of Area 4). and (3) the lower
left corner of Area 4.

OK
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Apply UROT on KPs

main menu: Solution — -Loads-Apply — -Structural-Pressure
— On Lines +
Pick the upper two horizontal lines associated with Area 1 and Area 2 (on the
upper edge of the bracket).
0K

Solve the problem:
main menu: Solution — -Solve-Current LS
OK
Close (the solution is done!) window.
Close (the/STAT Command) window.
For the postprocessing phase, first plot the deformed shape by using the commands
main menu: General Postproc — Plot Results — Deformed Shape ...
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A\ ANSYS Graphics

Plot the von Mises stresses with the commands

main menu: General Postproc — Plot Results
— -Contour Plot-Nodal Solu ...

: Cantour Nodal Solution Data

ergy
Strain-elastic
Strain~thermal
Strajin-plastic HydrostPres HPRE
Strain—creep
Strain-other
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Repeat the previous step and pick the principal stresses to be plotted. Then, exit
ANSYS and save everything:

Toolbar: QUIT

< bxit lrom ANSYS

|
;
I
!
E
I
|

At this point you should know:

L

2.

the basic organization of the ANSYS program. There are three processors that
you will use frequently: (1) the preprocessor (PREP7), (2) the processor (SOLU-
TION), and (3) the general postprocessor (POST1).

the commands the preprocessor (PREP7) contains that you need to use to build
a model:

¢ define element types and options

3.

REFERENCES

Chapter 6 References 255
define element real constants

define material properties

create model geometry

define meshing controls

mesh the object created.

the commands the Solution processor (SOLUTION) has that allow you to apply
boundary conditions and loads. The solution processor also solves for the nodal so-
lutions and calculates other elemental information.

the commands the general postprocessor (POST1) contains that allow you to list
and display results of an analysis:

¢ read results data from results file

e read element results data

e plot results

o list results.

that ANSYS writes and reads many files during a typical analysis.

that ANSYS also offers the user the capability to select information about a por-
tion of the model, such as certain nodes, elements, lines, areas, and volumes, for
further processing.

that the ANSYS program provides numerous features that allow you to enhance
the visual information presented to you. Some examples of the graphics capabili-
ties of ANSYS are deformed shapes, result contours, sectional views, and animation.

ANSYS Manual: Introduction to ANSYS, Vol. I, Swanson Analysis Systems, Inc.
ANSYS User's Manual: Procedures, Vol. 1, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Commands, Vol. II, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Elements, Volume III, Swanson Analysis Systems, Inc.
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Element types offered by ANSYS.

The ANSYS program offers nearly 100 different elements types. For detailed information on a specific element type,
see the Elements volume (Vol. IIT) of the ANSYS User’s Manual.

Structural Point

Structural 2-D Line

Structural 2-D Beam

DOF: UX, UY,UZ

DOF: UX,UY,UZ

DOF: UX,UY,UZ

DOF: UX, UY,UZ,
ROTX, ROTY, ROTZ

Structural Mass Spar Elastic Beam Plastic Beam Offset Tapered
Unsymmetric Beam
MASS21 LINK1 BEAM3 BEAM23 BEAMS4
1 node 3-D space 2 nodes 2-D space 2 nodes 2-D space 2 nodes 2-D space 2 nodes 2-D space
DOF: UX,UY, UZ, DOF: UX, UY DOF: UX, UY, ROTZ DOF: UX, UY, ROTZ DOF: UX, UY,ROTZ
ROTX, ROTY, ROTZ
Structural 3-D Line Structural 3-D Beam
Spar Tension—-Only Spar Linear Actuator Elastic Beam ‘Thin Walled Plastic
Beam
LINKS8 LINK10 LINK11 BEAM4 BEAM24
2 nodes 3-D space 2 nodes 3-D space 2 nodes 3-D space 2 nodes 3-D space 2 nodes 3-D space

DOF: UX, UY, UZ,
ROTX, ROTY,ROTZ

Structural Pipe

Offset Tapered
Unsymmetric Beam

-

BEAM44
2 nodes 3-D space
DOF: UX, UY, UZ,
ROTX, ROTY, ROTZ

Elastic Straight Pipe

<

PIPE16
2 nodes 3-D space
DOF: UX, UY, UZ,
ROTX, ROTY, ROTZ

Elastic Pipe Tee

PIPE17
4 nodes 3-D space
DOF: UX, UY, UZ,
ROTX, ROTY, ROTZ

Curved Pipe (Elbow)

PIPE18
2 nodes 3-D space
DOF: UX, UY,UZ,
ROTX, ROTY,ROTZ

Plastic Straight Pipe

PIPE20

2 nodes 3-D space
DOF: UX, UY, UZ,
ROTX, ROTY, ROTZ

Immersed Pipe

-

PIPES9
2 nodes 3-D space
DOF: UX, UY, UZ,

ROTX,ROTY,ROTZ

Plastic Curved Pipe

PIPE6O
2 nodes 3-D space
DOF: UX, UY, UZ,
ROTX, ROTY, ROTZ

Structural 2-D Solid

Triangular Solid

PLANE2
6 nodes 2-D space
DOF: UX, UY

Axisymmetric
Harmonic Struct. Solid

PLANE25
4 nodes 2-D space
DOF: UX,UY,UZ

Structural Solid

PLANE42
4 nodes 2-D space
DOF: UX, UY

FreE T

paroyy
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The ANSYS program offers nearly 100 different elements types. For detailed information on a specific element type,
see the Elements volume (Vol. III) of the ANSYS User’s Manual.

Structural 3-D Solid

SOLID65
8 nodes 3-D space
DOF: UX,UY,UZ

SOLIDT72
4 nodes 3-D space
DOF: UX, UY, Uz,
ROTX, ROTY,ROTZ

SOLID73

8 nodes 3-D space

DOF: UX, UY,UZ,
ROTX, ROTY, ROTZ

Structurat Solid Axisymmetric Structural Solid Layered Sofid Anisotropic Solid
Harmonic Struct. Solid
PLANES2 PLANES3 SOLID45 SOLID46 SOLID64
8 nodes 2-D space 8 nodes 2-D space 8 nodes 3-D space 8 nodes 3-D space 8 nodes 3-D space
DOF: UX, UY DOF:UX, UY,UZ DOF: UX, UY,UZ DOF: UX,UY,UZ DOF: UX,UY,UZ
Reinforced Solid Solid with Rotations Solid with Rotations Tetrahedral Solid Structural Solid

SOLID92
10 nodes 3-D space
DOF: UX,UY, UZ

SOLIDYS

20 nodes 3-D space
DOF: UX,UY,UZ

Structural 2-D Shell

Structural 3-D Shell

DOF: UX, UY, UZ,
ROTX, ROTY, ROTZ

DOF:UX, UY, UZ,
ROTX, ROTY, ROTZ

DOF: UX, UY, UZ,
ROTX, ROTY,ROTZ

Plastic Axisy ic Axi: ic Shear/Twist Panel Membrane Shell Plastic Shell

Shell with Torsion Harmonic Struct. Shell

SHELLS1 SHELLS61 SHELL28 SHELLAL SHELI143
2 nodes 2-D space 2 nodes 2-D space 4 nodes 3-D space 4 nodes 3-D space 4 nodes 3-D space
DOF: UX, UY, UZ, DOF: UX, UY, UZ, DOF: UX, UY, UZ or DOF: UX, UY,UZ DOF:UX, UY,UZ,

ROTZ ROTZ ROTX, ROTY, ROTZ ROTX, ROTY, ROTZ
Elastic Shell 16-Layer Structural Structural Shell 100-Layer Structural
Shell Shell

SHELL63 SHELL91 SHELL93 SHELL99

4 nodes 3-D space 8 nodes 3-D space 8 nodes 3-D space 8 nodes 3-D space

DOF: UX, UY, UZ,
ROTX, ROTY, ROTZ
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The ANSYS program offers nearly 100 different elements types. For detailed information on a specific element type,

see the Elements volume (Vol. IIT) of the ANSYS User’s Manual.

Hyperelastic Solid

Hyperelastic Mixed
U-P Solid

HYPERS6
4 nodes 2-D space
DOF: UX,UY,UZ

Hyperelastic Mixed
U-P Solid

HYPERS8
8 nodes 3-D space
DOF: UX,UY,UZ

Hyperelastic Mixed
U-P Solid

HYPER74
8 nodes 2-D space
DOF: UX, UY,UzZ

Hyperelastic Solid

HYPERS4
8 nodes 2-D space
DOF: UX, UY, UZ

Hyperelastic Solid

HYPERS6
8 nodes 3-D space
DOF: UX, UY,UZ

Visco Solid
Viscoelastic Solid Viscoelastic Solid Large Strain Solid Large Strain Solid Large Strain Solid
VISCO88 VISCO89 VISCO106 VISCO107 VISCO108
8 nodes 2-D space 20 nodes 3-D space 4 nodes 2-D space 8 nodes 3-D space 8 nodes 2-D space
DOF: UX,UY DOF: UX,UY,UZ DOF: UX,UY,UZ DOF: UX, UY,UZ DOF: UX,UY, UZ
Thermal Point Thermal Line
Thermal Mass Radiation Link Conduction Bar Conduction Bar Convection Link
;P g{o
(]
MASS71 LINK31 LINK32 LINK33 LINK34
1 node 3-D space 2 nodes 3-D space 2 nodes 2-D space 2 nodes 3-D space 2 nodes 3-D space
DOF: TEMP DOF: TEMP DOF: TEMP DOF: TEMP DOF: TEMP
Thermal 2-D Solid
Triangular Thermal Thermal Solid Axisymmetric Thermal Solid Axisymmetric
Solid Harmonic Thermal Harmonic Thermal
Solid Solid
o
LANE35 PLANESS PLANE7S PLANE77 PLANE78
6 nodes 2-D space 4 nodes 2-D space 4 nodes 2-D space 8 nodes 2-D space 8 nodes 2-D space
DOF: TEMP DOF: TEMP DOF: TEMP DOF: TEMP DOF: TEMP

TABLE 6.1 (continued) Element types offered by ANSYS.
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The ANSYS program offers nearly 100 different elements types. For detailed information on a specific element type,
see the Elements volume (Vol. III) of the ANSYS User’s Manual.

DOF: UX, UY,UZ

DOF: VX, VY, VZ, PRES,
TEMP, ENKE, ENDS

DOF: VX, VY, VZ, PRES,
TEMP, ENKE, END§

Thermal 3-D Solid Thermal Shell Fluid
Thermal Solid Tetrahedral Thermal Solid Thermal Shell Acoustic Fluid
Thermal Solid
SOLID70 SOLID87 SOLID90 SHELLS7 FLUID29
8 nodes 3-D space 10 nodes 3-D space 20 nodes 3-D space 4 nodes 3-D space 4 nodes 2-D space
DOF: TEMP DOF: TEMP DOF: TEMP DOF: TEMP DOF: UX, UY, PRES
Acoustic Fluid Dynamic Fluid Thermal-Fluid Pipe Contained Fluid Contained Fluid
Coupling
(o) & B
FLUID30 FLUID38 FLUID66 FLUID79 FLUID80
8 nodes 3-D space 2 nodes 3-D space 2 nodes 3-D space 4 nodes 2-D space 8 nodes 3-D space
DOF: UX, UY, UZ, DOF: UX,UY,UZ DOF: PRES, TEMP DOF: UX, UY DOF: UX,UY,UZ
PRES
Thermal Electric
Axisymmetric FLOTRAN CFD FLOTRAN CFD Thermal-Electric Thermal-Electric
Harmonic Contained Fluid-Thermal Fluid-Thermal Solid Line
Fluid o/o
FLUIDS1 FLUID141 FLUID142 PLANEG7 LINK68
4 nodes 2-D space 4 nodes 2-D space 8 nodes 3-D space 4 nodes 2-D space 2 nodes 3-D space

DOF: TEMP, VOLT

DOF: TEMP, VOLT

Thermal-Electric
Solid

SOLID69
8 nodes 3-D space
DOF: TEMP, VOLT

Magnetic Electric
Current Source Magnetic Solid
SOURC36 PLANES3
3 nodes 3-D space 8 nodes 2-D space
DOF: MAG DOF: VOLT, AZ

SOLIDY%6
8 nodes 3-D space
DOF:MAG

SOLIDY7
8 nodes 3-D space
DOF: VOLT, AX, AY,

AZ
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The ANSYS program offers nearly 100 different elements types. For detailed information on a specific element type,

see the Elements volume (Vol. III) of the ANSYS User’s Manual.

DOF: UX, UY, TEMP

DOF: UX, UY, UZ, TEMP

DOF: UX, UY,UZ

Coupled-field
Magnetic Interface Electrostatic Solid Electrostatic Solid Tetrahedral Coupled-field Solid
Electrostatic Solid
INTERI115 PLANE121 SOLID122 SOLID123 SOLID5
4 nodes 3-D space 8 nodes 2-D space 20 nodes 3-D space 10 nodes 3-D space 8 nodes 3-D space
DOF: AX, AY,AZ, MAG | DOF: VOLT DOF: VOLT DOF: VOLT DOF: UX, UY,UZ,
TEMP, VOLT, MAG
Contact
Coupled-field Solid Coupled-field Solid Tetrahedral Point-to-Point Point-to-Ground
Couple—ficld Solid
o\
T f
PLANE13 SOLID62 SOLID98 CONTACI12 CONTAC26

4 nodes 2-D space 8 nodes 3-D space 10 nodes 3-D space 2 nodes 2-D space 3 nodes 2-D space

DOF: UX, UY, TEMP, DOF: UX, UY, UZ, DOF: UX,UY,UZ, DOF: UX, UY DOF: UX, UY
VOLT, AZ AX,AY,AZ,VOLT TEMP, VOLT, MAG
Combination
Point-to-Surface Point-to-Surface Point—to-Point Revolute Joint Spring-Damper
. [iee} .| e
6/0 z
CONTAC48 CONTAC49 CONTACS2 COMBIN7 COMBIN14

3 nodes 2-D space 5 nodes 3-D space 2 nodes 3-D space 5 nodes 3-D space 2 nodes 3-D space

DOF: UX, UY, UZ,
ROTX, ROTY, ROTZ

DOF: UX,UY, UZ,
ROTX, ROTY, ROTZ
PRES, TEMP

Control

S A

COMBIN37

4 nodes 3-D space

DOF: UX, UY,UZ,
ROTX, ROTY, ROTZ,
PRES, TEMP

Nonlinear Spring

£

COMBIN3%

2 nodes 3-D space

DOF: UX, UY, UZ,
ROTX, ROTY, ROTZ,
PRES, TEMP

Combination

Lo

COMBIN40

2 nodes 3-D space

DOF: UX,UY,UZ,
ROTX, ROTY, ROTZ,
PRES, TEMP

Matrix

Stiffness, Mass or
Damping Matrix

MATRIX27

2 nodes 3-D space

DOF: UX,UY, UZ,
ROTX, ROTY, ROTZ

Superelement

]
(]

° [}

MATRIXS0
2-D or 3-D space
DOF: Any
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The ANSYS program offers nearly 100 different elements types. For detailed information on a specific element type,
see the Elements volume (Vol. III) of the ANSYS User’s Manual.

DOF: UX, UY, UZ,
TEMP

Infinite Surface
Infinite Boundary Infinite Boundary Infinite Boundary Infinite Boundary Surface Effect
INFIN9 INFIN47 INFIN110 INFIN111 SURF19
2 nodes 2-D space 4 nodes 3-D space 4 nodes 2-D space 8 nodes 3-D space 3 nodes 2-D space
DOF: AZ, TEMP DOF: MAG, TEMP DOF: AZ, VOLT, TEMP| DOF:MAG,AX,AY,AZ | DOF:UX, UY, TEMP
VOLT, TEMP
Surface Effect
SURF22
8 nodes 3-D space




CHAPTER 7

Analysis of Two-Dimensional
Heat Transfer Problems

The main objective of this chapter is to introduce you to the analysis of two-dimensional
heat transfer problems. General conduction problems and the treatment of various bound-
ary conditions are discussed here. The main topics of Chapter 7 include the following:

7.1 General Conduction Problems

7.2 Formulation With Rectangular Elements

7.3 Formulation With Triangular Elements

7.4 Conduction Elements Used by ANSYS

7.5 An Example Using ANSYS

7.6 Verification of Results

GENERAL CONDUCTION PROBLEMS

In this chapter, we are concerned with determining how temperatures may vary with po-
sition in a medium as a result of either thermal conditions applied at the boundaries of
the medium or heat generation within the medium. We are also interested in determin-
ing the heat flux at various points in a system, including its boundaries. Knowledge of
temperature and heat flux fields is important in many engineering applications, includ-
ing, for example, the cooling of electronic equipment, the design of thermal-fluid systems,
and material and manufacturing processes. Knowledge of temperature distributions is
also useful in determining thermal stresses and corresponding deflections in machine and
structural elements. There are three modes of heat transfer: conduction, convection, and
radiation. Conduction refers to that mode of heat transfer that occurs when there exists
a temperature gradient in a medium. The energy is transported from the high-temper-
ature region to the low-temperature region by molecular activities. Using a two-
dimensional Cartesian frame of reference, we know that the rate of heat transfer by
conduction is given by Fourier’s Law:

dx = “kA-a—X,- (7.1)
aT
gy = ~kA—g (72)
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gx and gy are the X- and the Y-components of the heat transfer rate, k is the thermal
conductivity of the medium, A is the cross-sectional area of the medium, and % and 3—5-
are the temperature gradients. Fourier’s Law may also be expressed in terms of heat
transfer rates per unit area as

., oT .

gx = —k X (7.3)
oT

gy = —kﬁ (7.4)

where g% = % and ¢} = Z are called heat fluxes in the X-direction and the Y-direc-
tion, respectively. It is important to realize that the direction of the total heat flow is al-
ways perpendicular to the isotherms (constant temperature lines or surfaces). This
relationship is depicted in Figure 7.1.

Convective heat transfer occurs when a fluid in motion comes into contact with a
surface whose temperature differs from the moving fluid. The overall heat transfer rate
between the fluid and the surface is governed by Newton’s Law of Cooling, which is

q=hA(T, - T)) (7.5)

where h is the heat transfer coefficient, T, is the surface temperature, and T; represents
the temperature of the moving fluid. The value of the heat transfer coefficient for a par-
ticular situation is determined from experimental correlations that are available in many
books about heat transfer.

All matters emit thermal radiation. This rule is true as long as the body in ques-
tion is at a finite temperature. Simply stated, the amount of energy emitted by a surface
is given by the equation

q" = eoT? (7.6)

where g” represents the rate of thermal energy per unit area emitted by the suiface; €
is the emissivity of the surface 0 < £ < 1, and o is the Stefan-Boltzman constant
(o =567 x 108 W/m?-K*). It is important to note here that unlike conduction and

q=4qx+4y

ax

FIGURE 7.1 The heat flux vector is always
normal to the isotherms.
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Ts, € \

thermal radiation emitted by a surface

solid surface

Tg> Tf

convective heat transfer from a surface

FIGURE 7.2 Various modes of heat transfer.

convection modes, heat transfer by radiation can occur in a vacuum, and because all ob-
jects emit thermal radiation, it is the net energy exchange among the bodies that is of
interest to us. The three modes of heat transfer are depicted in Figure 7.2.

In Chapter 1, it was explained that engineering problems are mathematical mod-
els of physical situations. Moreover, these mathematical models are differential equations
that are derived by applying the fundamental laws and principles of nature to a system
or a control volume. In heat transfer problems, these governing equations represent the
balance of mass, momentum, and energy for a medium. Chapter 1 stated that when pos-
sible, the exact solutions of the governing differential equations should be sought because
the exact solutions render the detailed behavior of a system. However, for many prac-
tical engineering problems, it is impossible to obtain exact solutions to the governing
equations because either the geometry is too complex or the boundary conditions are
too complicated.

The principle of the conservation of energy plays a significant role in the analysis
of heat transfer problems. Consequently, you need to understand this principle fully in
order to model a physical problem correctly. The principle of the conservation of ener-
gy states the following: The rate at which thermal and/or mechanical energy enters a
system through its boundaries, minus the rate at which the energy leaves the system
through its boundaries, plus the rate of energy generation within the volume of the sys-
tem, must equal the rate at which energy is stored within the volume of the system. This
statement is represented by Figure 7.3 and the equation

Ei.n - Eéul + Eéenem(ion = Es’tcred (77)

E;, and E,, represent the amount of energy crossing into and out of the surfaces of a
system. The thermal energy generation rate E jeperaiion T€Presents the rate of the conver-
sion of energy from electrical, chemical, nuclear, or electromagnetic forms to thermal en-
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Eoul

FIGURE 7.3 The principle of the

Eiq conservation of energy.

ergy within the volume of the system. An example of such conversion is the electric cur-
rent running through a solid conductor. On the other hand, the energy storage term rep-
resents the increase or decrease in the amount of thermal internal energy within the
volume of the system due to transient processes. It is important to understand the con-
tribution of each term to the overall energy balance of a system in order to model an ac-
tual situation properly. A good understanding of the principle of the conservation of
energy will also assist in the verification of the results of a model.

This chapter focuses on the conduction mode of heat transfer with possible con-
vective or radiative boundary conditions. For now, we will focus on steady-state two-di-
mensional conduction problems. Applying the principle of the conservation of energy
to a system represented in a Cartesian coordinate system results in the following heat
diffusion equation:

’T &T
kxﬁ-f-kyﬁ‘f"q':O (78)
The derivation of Eq. (7.8) is shown in Figure 7.4. In Eq. (7.8), g  represents the heat gen-
eration per unit volume, within a volume having a unit depth. There are several bound-
ary conditions that occur in conduction problems:

1. Asituation wherein heat loss or gain through a surface may be neglected. This sit-
uation, shown in Figure 7.5, is commonly referred to as an adiabatic surface or a
perfectly insulated surface. In conduction problems, symmetrical lines also repre-
sent adiabatic lines. This type of boundary condition is represented by

oT
— =0 7.9
0X |(x=0,v) (79)
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qy +dy

qy

First, we begin by applying the principle of the conservation of en-
ergy to a small region (differential volume) in a medium:

Ep—Eut+ Eﬁmﬁm = Eqoed
ax + Gy ~ (gxeax + Qreay) + gdXdY(1) =0

dqx aqy ) .
_— L. — + qgd =
qx+qy (qx+aXdX+qY+3Y‘dY qgdXdy =0

Simplifying, we get

9qx gy .
—_— —— + =
I3 dX 3 dY + gdXdy =0

Making use of Fourier’s Law, we have

oT T
ax - fxdYl m

ax = _k’_‘A ax

aT aT
qy = _kyAﬁ = —ky dY(1) aX

2 aT 3 aT . _
_ a("‘xﬂﬁ)dx - W(—k, ax aX)dY+qudY =0
and simplifying, we obtain
#T #T
i v g =0
ax2 T gy T

FIGURE 7.4 The derivation of the equation of heat conduction under steady-state conditions.

2. A situation for which a constant heat flux is applied at a surface. This boundary con-
dition, shown in Figure 7.6, is represented by the equation

—k— = qg (7.10)
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Perfectly
insulated surface

FIGURE 7.5 An adiabatic, or perfectly
insulated, surface.

FIGURE 7.6 A costant heat flux applied at
a surface.

FIGURE 7.7 Convection processes causing
cooling or heating to take place at a surface.

3. Asituation for which cooling or heating is taking place at a surface due to convec-
tion processes. This situation, shown in Figure 7.7, is represented by the equation

= H[T(0,y) - T;] (7.11)
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conditions occur due to phase change of a
fluid in contact with a solid surface.

4. A situation wherein heating or cooling is taking place at a surface due to net ra-
diation exchange with the surroundings. The expression for this condition will de-
pend on the view factors and the emissivity of the surfaces involved.

5. A situation in which conditions 3 and 4 both exist simultaneously.
6. Constant surface-temperature conditions occur when a fluid in contact with a
solid surface experiences phase change, as shown in Figure 7.8. Examples include

condensation or evaporation of a fluid at constant pressure. This condition is rep-
resented by

T(0,Y) =T, (712) (,

The modeling of actual situations with these boundary conditions will be discussed and
illustrated with examples after we consider finite element formulations of two-dimen-
sional heat conduction problems.

7.2 FORMULATION WITH RECTANGULAR ELEMENTS

Two-dimensional bilinear rectangular elements were covered in detail in Chapter 5. /33
Recall that for problems with straight boundaries, linear rectangular shape functions
offer simple means to approximate the spatial variation of a dependent variable, such g

as temperature. For convenience, the expression for a rectangular element in terms of
its nodal temperatures and shape functions is repeated here (also see Figure 7.9). The
expression is

TO =[S, S; S S (7.13)

R T e B

FIGURE 7.8 Constant surface-temperature
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X FIGURE79 A typical rectangular element.

where the shape functions §;, S;, S,,, and S, are given by:

S = (1 - %)(1 - %) (1.14)

x y

Xy
fw

_Y[{_Zx
5= 2 (1 : )
‘We now apply the Galerkin approach to the heat diffusion equation, Eq. (7.8) expressed
in local coordinates x, y, yielding four residual equations:

m

*T 3T )
S,‘ kx_ + k,—+gq = .
L ( ax? 7 ay? q)dA=0 (715)

*T *T
[S](k +ky5;2-+q')dA=0

* ax?
*T
ky6_)12+q)dA=0

*T
k,— +q |dA =
e ‘1) 0

(

We can rewrite the four equations given by (7.15) in a compact matrix form as

*T ’T
I[S]T(k,T + k},a—y2 + q') dA =0 (7.16)
A

A

2
jsm(kxg +
A ax

2
IS,, kxa 7; +
.y a
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where the transpose of the shape functions is given by the following matrix:

(S =(7 (7.17)

Equation (7.16) consists of three main integrals:
*T
I [S]T<k,—2> dA + J [S]T(k ﬂ) dA + J [STgdA=0  (7.18)
A ox A 7 ay? A

Let C; = k., C, = k,,and C; = g’ so that we can later apply the results of the forth-
coming derivation to other types of problems with similar forms of governing differen-
tial equations. As will be demonstrated later in Chapters 8 and 9, we will use the general
findings of this chapter to analyze the torsion of solid members and ideal fluid flow
problems. So making respective substitutions, we have
2 2
f [S]T(C1 9——2) dA + J [s]’(c2 %) dA + [ [S]TC;dA=0 (7.19)
A ox A ay 4

Evaluation of the integrals given by Eq. (7.19) will result in the elemental formulation.
As was discussed in Chapter 4, the second derivative of a linear function assumed for
temperature is equal to zero; therefore, we need to manipulate the second-order terms
into first-order terms by using the chain rule in the following manner:

Kl T\ _ & T SV T
ax<[s]r ax> =81 ax? * ax ax (7.20)

Rearranging Eq. (7.20), we have

FT_ (ool _ S o '
(ST axt ax<[S]T ax> T T ax ax (7.21)

Applying the results given by Eq. (7.21) to the first and the second terms in Eq.
(7.19), we obtain

[r(efs)aa= [ai(sri)ea- [e(TL8)aa

ax ax dx dx

T o[ST”
J[S]’<Cz——a 2>dA = chi([S]T£> dA — ch (Lﬁ) dA  (1.3)
A dy AR AN L O\ ay gy _

Using Green'’s Theorem, we can write the terms

Lc1 :—x<[sr %g) dA

st}

and
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in terms of integrals around the element boundary. We will come back to these terms
later. For now, let us consider the

term in Eq. (7.22). This term can easily be evaluated. Evaluating the derivatives for a rec-
tangular element, we obtain

0y T,
aT 3 T; 1 T;
w8 S Sl lewr ) w-y oy Sl 029
T, T,
T
Also evaluating 5 Ve have
S,' —-w + y
aAsy s )s; 1 Jw-—y
ax  ax |S.[  ew y (7.25)
Sa -y
Substituting the results of Eqs. (7.24) and (7.25) into the term
8[S)”
fa (1)
M ax dx
we have
—w+y
a[S)” aT -
R ax dax |, (fw) y
-y
T;
T
[Cw+y) -y vy —y]{/1da (126)
T,
Integrating yields
—wty T
1 w-—y T;
—Cj——— —w + - - /
)y [(Cw+y) w-y) y -y] T (44
-y T,
2 -2 -1 1 T;
_ Cwj-2 2 1 -1 T;
Tt -1 1 2 2|1, (7.27)
1 -1 -2 2 T,
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In the same manner, we can evaluate the term

(55 e

in Eq. (7.23) in the y-direction:

T, T,
ar o T; 1 T;
—_—— . . = —f— —_— _— 7'
% ay[s, S; Sm i) I = elCerx) —x x (E=x) 0 028
T, T,
_o[S]
And evaluating 3 we have
S" —-€+ x
T -—
AV _ 2 ist_ Ly (7.29)
ax ay | Sn, fw x
A £ —x
Substituting the results of Egs. (7.28) and (7.29) into the term
aSI”
- (BET) a4
A ay Iy
we have:
£+ x
3[S)F oT 1 _
[o( )|
s\ 9y 9y J(ew) |
€ —x
T
T
[(¢+x) -x x (£-x)] T' dA  (7.30)
T,
Evaluation of the integral yields
—{+x T
1 —Xx T;
~C| ~£+x) —x x (£~x IYdA =
ZJ'A(e,w)z X [( ) ( )] T,
£—x T,
2 1 -1 =2 T;
Gl 1 2 -2 -1 T;
- 31
6wl -1 -2 2 1 T,,,(7)‘“
-2 -1 1 2 T,
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Next, we will evaluate the thermal load term J [ST Cyda:

A
S; 1
S; GA 1
J [S]7CydA = C3J sl dA = ’T . (7.32)
A A mn
S, 1

‘We now return to the terms

jcl %([S]T%> dA

A

[o(or)n

As mentioned earlier, we can use Green’s Theorem to rewrite these area integrals in
terms of line integrals around the element boundary:

and

aT
ICI i<[S]T_) dA = JCI[S]Tgcosed'r (7.33)
, 9x ax A ox
T
jcz ..a_([s]T 6_) dA = jCZ[S]TESin 0dt (7.34)
3y dy 2 dy

7 represents the element boundary, and 6 measures the angle to the unit normal. Equa-
tions (7.33) and (7.34) contribute to the derivative boundary conditions. To understand
what is meant by derivative boundary conditions, consider an element with a convection
boundary condition, as shown in Figure 7.10.

1

Gconvection

¢ v FIGURE 7.10 A rectangular element with a
! J convective boundary condition.
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Neglecting radiation, the application of the conservation of energy in the x-direc-
tion to the jm edge requires that the energy that reaches the jm edge through conduc-
tion must be equal to the energy being convected away (by the fluid adjacent to the jm
edge). So,

aT
—k—-= KT — T) (7.35)
Substituting the right-hand side of Eq. (7.35) into Eq. (7.33), we get
aT T
J AL =5 cosbdT = J k[STT ‘;—x cos 0dt = — f H[S](T — T;) cosbdr  (7.36)

T

The integral given by Eq. (7.36) has two terms:

- Jh[S]T(T - T;) cos 8dr = —-Jh[S]TT cos 0dT + Jh[S]TT, cos 0dt (7.37)

T T

The terms J A[S]"T cos 8dt and jh[S]TT sin 8dt, for convective boundary conditions

: .
along different edges of the rectar;gular element, contribute to conductance matrix:

2100 0000
he;11 2 0 0 he |0 2 1 0
€ = — 4 © = _J
K] 00 0 0 (7.38) K] < lo 120 (7.39)
0000 0000
0 00O 2 001
W | 0 0 0 0 he| 0 0 0 0
() = ZZmn . () = % 41
(K] 00 2 1 (7.40) (K] 6 {0 000 (7.41)
001 2 100 2

Referring to Figure 7.9, note that in the above matrices, €; = ¢,, = € and

& = £, = w. The terms Jh[S}TTf cos 8dt and Jh[S]TT, sin 8dt contribute to the

J

elemental thermal load matrix. Evaluating these inTtegrals along the edges of the rec-
tangular element, we obtain

1 0
KT8 )1 hT;8im |1
F9=—"14,1 09 fo=—"10 0 08)
0 " lo
0 1
T |0 hT; €, |0
B9 =——11 (4 {FY9 = ——1, (7.45)
1 1
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Let us summarize what we have done so far. The conductance matrix for a bilinear rec-
tangular element is given by:
2 -2 -1 1 2 1 -1 2
kwl-2 2 1 -1| k&1 2 -2 -1
6 -1 1 2 -2 6w| -1 -2 2 1
1 -1 -2 2 -2 -1 1 2

[K](‘) =

Note that the elemental conductance matrix is composed of: (1) a conduction compo-
nent in the x-direction; (2) a conduction component in the y-direction; and (3) a possi-
ble heat loss term by convection around the edge of a given element, as given by Eqgs.
(7.38)—(7.41). The load matrix for an element could have two components: (1) a com-
ponent due to possible heat generation within a given element, and (2) a component
due to possible convection heat loss along an element’s edge(s), as given by Egs.
(7.42)—(7.45). The contribution of the heat generation to the element’s thermal-load ma-
trix is given by:

1
‘A1
{F}‘e) 44
1
1
It is worth noting here that in situations in which constant heat-flux boundary conditions

occur along the edges of a rectangular element, the elemental load matrix is given by (see
Problem 5):

1 0
¢ |1 2lm |1

(& = =2 7 € — 217
{F} 2 0 {F} 2 1
0 0
0 1
qgemn 0 qg em 0

Flo = 2omn Flio) = 227
{F} 2 11 {F} 2 Vo
1 1

The next step involves assembling elemental matrices to form the global matrices
and solving the set of equations [K]{T} = {F} to obtain the nodal temperatures. We
will demonstrate this step in Example 7.1. For now, let us turn our attention to the de-
rivation of the elemental conductance and load matrices for a triangular element.

7.3 FORMULATION WITH TRIANGULAR ELEMENTS

As we discussed in Chapter 5, a major disadvantage associated with using rectangular
elements is that they do not conform to curved boundaries. In contrast, triangular ele-
ments are better suited to approximate curved boundaries. For the sake of convenience,
a triangular element is shown in Figure 7.11.
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X;.Y))

(X, Y)

X FIGURE 7.11 A triangular element.

Recall that a triangular element is defined by three nodes and that we represent
the variation of a dependent variable, such as temperature, over a triangular region using
shape functions and the corresponding nodal temperatures by the equation

T;
TO =[S, §; ST, (7.46)
Ty

where the shape functions S;, §;, and S, are

) +
§i= (e B X +8Y)
Si=L(a+pX+5Y

i =94 (o + BX +8Y)

1
A (ak + B X + SkY)

Sk =
A is the area of the element and is computed from the equation
24 = X(Y;, - %) + X(¥ ~ ¥) + X(¥ - ¥)
Also,
o = XY, - X, Y, B:=Y,-Y 5 =X — X; (7.47)
4=XY-XY, B=Y-Y &=X-X
o = XY, ~ XY, Be =Y.~ Y] =X~ X
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Employing the Galerkin approach, the three residual equations for a triangular ele-
ment, in matrix form, are given by

*T aZT .
I[S] (kx X7 + ky—= P +gq )dA =0 (7.48)
A
where
S
SI" =15
S

We now will proceed with steps similar to the ones we followed to formulate the
conductance and thermal load matrices for rectangular elements. First, we rewrite the
second-derivative expressions in terms of the first-derivative expressions using the chain

rule. Evaluating the integral
a[sI” aT)
—_ C —
J’ ., ‘( ox ax )%

for a triangular element, we obtain

S; B;
a[s]T K] : 1 fl
x5 ( =245 (7.49)
X ax |/ 24 |77
St Bk
T T,
aT d ! 1 i
X Sax S S ST =58 8 BT (7.50)
T, T,

Substituting for the derivatives, we get

B T;
oS oT 1 i
—jc( (EX], ::X)dA———le i Bit[B: B Bu{T;pdA (7.51)
4 Bk Tk

and integrating, we are left with

L T, c | BBl BB (T
—G J T (BB B B]{Trda=—12| B8, BE BB |{Tp (752)
B L BB BB B | (T

In the same manner, we can evaluate the term

. ch ("’Ef;] o) aa
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as
S; 8
a[s]T F) i 1 i
=—{8Y=—15. 7.53
3y aY Si 2A b (7.53)
k 8
T; T;
aTr d ! 1 :
7o ap S S ST =8 8 8T (7.54)
T, Tx
Substituting for the derivatives and integrating, we have
L[ T, 8 8 88 | (T
_CZJE 5 1[5 8 83T dA=—ﬁ 88, 8 8,8 |{T;} (159
A 3 Ty 88, 98, o T

For a triangular element, the thermal load matrix due to the heat generation term
C3 is

S, 1

i C; A
J [STCsdA = C3J S;{dA = ; 1 (7.56)
A A 18, 1

Evaluating the terms Jh[S]TT cos 8dT and jh[S]T T sin 0d- for a convective boundary

T T
condition along the edges of the triangular element results in the equations

210 00 0
© - M @ = P

[KJ9=—2|1 2 0| (757 [KJO=—=10 2 1| (758)
000 01 2
2 01

he,;

K9=~210 0 0] (759

102

Note that in the above matrices, {;;, £;, and £,; represent the respective lengths of the

ij>
three sides of the triangular element. The terms Jh[S]T T; cos 8dt and Jh[S]T T; sin 6dt
contribute to the elemental thermal loads. Evaluating these integrals along the edges of
the triangular element yields

1
hT; €, hT; €,
{F}@:% 17 (7.60) {F}(ﬂ):% 1y (7.61)
0 1
1
KT, €,
(F}©) = ;" 0 (7.62)
1
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Let us summarize the triangular formulation. The conductance matrix for a tri-
angular element is
B7 BB Bibs % 83 8
K1© = _If{ 2’ _kl 2J
(KJ9 = 5| BB B} BB [+ ool B8 8 83
BiBx BjBc Bi 88 88 8
Note once again that the elemental conductance matrix for a triangular element is com-
posed of: (1) a conduction component in the X-direction; (2) a conduction component
in the Y-direction; and (3) a possible heat loss term by convection from the edge(s) of
a given element, as given by Eq. (7.57)—(7.59). The thermal load matrix for a triangular
element could have two components: (1) a component resulting from a possible heat-
generation term within a given element, and (2) a component due to possible convec-
tion heat loss from the element’s edge(s), as given by Eq. (7.60)-(7.62). The contribution
of the heat generation to the element’s load matrix is

1

‘A
{F}® = ﬂ?_ 1
1

The development of constant heat flux boundary conditions for triangular elements is
left as an exercise. (See Problem 6.)

Next, we use an example to demonstrate how to assemble the elemental infor-
mation to obtain the global conductance matrix and the global load matrix.

EXAMPLE 7.1

Consider a small industrial chimney constructed from concrete with a thermal conduc-
tivity value of k = 1.4 W/m . K, as shown in Figure 7.12. The inside surface temperature
of the chimney is assumed to be uniform at 100°C. The exterior surface is exposed to the
surrounding air, which is at 30°C, with a corresponding natural convection heat trans-
fer coefficient of 2 = 20 W/m? . K. Determine the temperature distribution within the
concrete under steady-state conditions.

We can make use of the symmetry of the problem, as shown in Figure 7.12, and only
analyze a section of chimney containing 1/8 of the area. The selected section of the chim-
ney is divided into nine nodes with five elements. Elements (1), (2), and (3) are squares,
while elements (4) and (5) are triangular elements. Consult Table 7.1 while following the
solution.

TABLE 7.1 The relationship between the
elements and their corresponding nodes

Element i j mork n
) 1 2 4 3
2 3 4 7 6
3) 4 5 8 7
4) 2 5 4
(5) 5 9 8
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Ty = 30°C
h=20Wim?-K

X

1 2
FIGURE 7.12 A schematic of the chimney in Example 7.1.

The conductance matrix due to conduction in a rectangular element is given by:
2 -2 -1 1 2 1 -1 =2
kw|l-2 2 1 -1 kK| 1 2 -2 -1
() = ~ = + —
(K] 66 |1-1 1 2 =2 6w| -1 -2 2 1
1 -1 =2 2 -2 -1 1 2
Elements (1), (2), and (3) all have the same dimensions; therefore,
2 -2 -1 1
ason|-2 2 1 -1
0 = [K]® = [K1® = ~2 7/
(K] (K] (K] 601) (-1 1 2 =2
1 -1 -2 2
2 1 -1 -2
@4or| 1 2 -2 -1
6(0.1) -1 -2 2 1
-2 -1 1 2
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To help with assembly of the elements later, the corresponding node numbers for
each element are shown on the top and the side of each matrix:

1(4) 2(j)  4(m) 3(n)
(0933 0233 —0466 —0.233]
-0233 0933 —0233 —0.466
-0466 —0233 0933 -0233
| 0233 -0466 —0233 0933 |

3 4G)  T(m)  6(n)

KW =

W AN =

[ 0933 0233 -0466 —0233]3

K]? = —0233 0933 —0233 —0466 |4
-0.466 —0.233 0933 -0233 |7

| —0233 —0466 —0233 0933 |6

4(i) 5()  8(m) 7(n)

[ 0933 0233 —0466 —0233 |4

K]® = ~0.233 0933 —0233 —0466 |5
~0466 -0233 0933 -0233 |8

| —0.233 -0466 —0233 0933 |7

For triangular elements (4) and (5), the conductance matrix is

k Bf BB Bib« X 8 88 83
(K]© = 24| BB CH T 24| %% 8 38
BiB« B;jB: Bk 88, ;8 &

where the - and d-terms are given by the relations of Eq. (7.47). Because the B-
and 3-terms are calculated from the difference of the coordinates of the involved
nodes, it does not matter where we place the origin of the coordinate system X, Y.
Evaluating the coefficients for element (4), we have
B;i=Y,-Y,=01-01=0 5 =X~ X;=0-01=-01
Bj=Y -Y=01-0=01 $;=X,-X,=0-0=0
Be=Y—-Y,=0-01=-01 }py=X;-X;=01-0=01
Evaluating the coefficients for element (5) renders the same results because the
difference between the coordinates of its nodes is identical to that of element (4).
Therefore, elements (4) and (5) will both have the following conductance matrix:
0 0 0
0 (0.1)? (0.1)(-0.1)
0 (0.1)(-0.1) (-01)?

(K] = (KI¥ = 20655

(-01)* 0 (-0.1)(0.1)
0 0

(—01)(0.1) 0  (0.1)

L 14
4(0.005)
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Showing the corresponding node numbers on the top and the side of each re-

spective conductance matrix for elements (4) and (5), we obtain

2(i)

07
K®=1| o

-07

0
0.7

K9 =| o
-0.7

As explained earlier, the convective boundary condition contributes to both
the conductance matrix and the load matrix. The convective boundary condition
contributes to the conductance matrices of elements (2) and (3) according to the

relationship

0 00 O0]i
h¢ 0 00O0]j

() = —mn
(K] 002 1|m
001 2]n
00
(20)(0 njo o

@ = [K)® =
[KP® = [K] o o
00

Including the nodal information, the conductance matrices for elements (2) and (3) are:

3 4
(0 0
00

KI® =

(K] 00
0 0
45
[0 0
00

K1® =

K] 00
L0 0

5()
0
0.7
-0.7

9(j)
0
0.7
-0.7

- N OO
M= OO

7

0

0
0.666
0.333

0.666
0.333

4(k)

-0.7 ]2
-07 |5
14 4

8(k)

-0.7]s
-0.7 [9
14 |8

0
0
0
0

[T == B e I ]

6
0
0
0.333
0.666 |

|
AN AW

L
-~ 00 L

0 0

0 0
0.666 0.333
0.333  0.666
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Heat loss by convection also occurs along jk edge of element (5); thus,

0 0 0}i
he;
[K](e)z__i’f 02 11j
0 1 2]k
000 0 0 0
o _ 20)0.1) _
[K] =T 0 2 1[=]0 0666 0333
012 0 0.333 0.666
5 9 8
0 O 0 5
[K®=]0 0666 0333 |9
0 0333 0.666_|8
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The convective boundary condition contributes to the thermal load matrices for

elements (2) and (3) along their mn edge according to the relationship

0 0 0
{F}@:”Tffm" o| _eoyeoe.) ol _Jo
2 |1 2 1 30

1 1 30

Including the nodal information, we have

0
0
30
30

{F}® =

AN N3 AW

0
0
30
30

{F}® =

~ 00 L o

The convective boundary condition contributes to the load matrix for element (5)

along its jk edge according to the matrix

0 0) (o

KT €, 20)(30)(0.1

(R0 = —25 1 - Qe 2)( L PR )
1 1) {30
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[K](G)=

[K](G)z

Again, including the nodal information, we have

015

{F}® = {3079

30)8
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Next, we need to assemble all of the elemental matrices. Using the nodal in-
formation presented next to each element, the global conductance matrix becomes:

1 2

0 0 0
0 0 —0.233
0 0 —0.466
0 0 0
0 0 0

3

[ 0933 -0233 -0.233
-0233 1633 —0.466
—-0233 -0.466 1.866
-0466 —0.933 —0466 4.199

4
—0.466
—-0.933
—0.466

—0.933

~0.466

—0.466

—0.466
0

5 6

0 0

0 0

0 -0.233
-0.933 —0.466

2.333 0

0 1.599
—0466 0.1
—0.933 0

0 0

7 8 9
0 0 0 ]
0 0 0
-0466 0 0
—0.466 ~0466 0
—0466 —-0933 0
0.1 0 0
3198 0.1 0
01 3665 -0367
0 -0367 1366 |

O 00~ NN AW N

Applying the constant temperature boundary condition at nodes 1 and 2 results in

the global matrix

1 0
0 1

0 0 0

0 0 -0.233
0 0

0 0 0

0 0 0

0
0

-0.233 —0466 1.866
-0.466 -—0.933 -—0.466

—0.466

0

0
—0.466

4.199

—0.933
—0.466
—0.466
—0.466

0

0 0

0 0

0 -0.233
—0.933 -0.466

2.333 0

0 1.599
-0466 0.1
-0.933 0

0 0

Assembling the thermal load matrix, we have

{F}© =

(0

[ =R e B -]

30 + 30
30 + 30
30

0 0 0
0 0 0
0466 0 0
-0.466 —0466 0
-0466 —0933 0
0.1 0 0
3198 01 0
01 3665 —0367
0 —0367 1366 |
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and applying the constant temperature boundary condition at nodes 1 and 2 leads
to the following final form of the thermal load matrix:

100
100
0
0
{F©=1¢ 0
30
60
60
{ 30
The final set of nodal equations is given by:
1 0 0 0 0 0 0 0 0 ]
0 1 0 0 0 0 0 0 0
-0.233 -0466 1.866 ~—0.466 0 -0.233 -0.466 0 0
-0.466 —0933 —0466 4199 -0.933 —-0466 —0.466 —0.466 0
0 0 0 —-0933 2333 0 -0.466 -0.933 0
0 0 —0.233 —0.466 0 1.599 0.1 0 0
0 0 —0.466 —0466 -0466 0.1 3.198 0.1 0
0 0 0 —0.466 —0.933 0 0.1 3.665 —0.367
0 0 0 0 0 0 0 -0.367 1.366 |
T 100
T, 100
T; 0
T, 0
X{Ts0 =40
T; 30
T; 60
Tg 60
T 30

Solving the set of linear equations simultaneously leads to the following nodal solution:
[T]F =[100 100 70.83 67.02 51.56 45.838 43.67 40.10 32.73]°C

To check for the accuracy of the results, first note that nodal temperatures are
within the imposed boundary temperatures. Moreover, all temperatures at the
outer edge are slightly above 30°C, with node 9 having the smallest value. This
condition makes physical sense because node 9 is the outermost cornerpoint. As
another check on the validity of the results, we can make sure that the conserva-
tion of energy, as applied to a control volume surrounding an arbitrary node, is
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Tg=45.88

4 Ty=67.02

FIGURE 7.13  Applying the principle of
energy balance to node 3 to check the
validity of our results.

satisfied. Are the energies flowing into and out of a node balanced out? As an ex-
ample, let us consider node 3. Figure 7.13 shows the control volume surrounding
node 3 used to apply the conservation of energy principle.

We start with the equation

249=0
and using Fourier’s Law we have

67.02 — T 4588 — T 100 - T:
k(OJ)(———YiT——3> +»k(005)(———zrf——3> + ka105)<——7537~3> =0

Solving for T3, we find that T, = 69.98°C. This value is reasonably close to the
value of 70.83°C, particularly considering the coarseness of the element sizes. We
will discuss the verification of results further with another example problem solved
using ANSYS.

7.4 CONDUCTION ELEMENTS USED BY ANSYS

ANSYS offers many two-dimensional thermal-solid elements that are based on linear
and quadratic quadrilateral and triangular shape functions:

PLANE3S is a six-node triangular thermal-solid element. The element has one
degree of freedom at each node—namely, temperature. Convection and heat flux-
es may be input as surface loads at the element’s faces. The output data for this el-
ement include nodal temperatures and other data, such as thermal gradients and
thermal fluxes. This element is compatible with the eight-node PLANE77 element.
PLANES5 is a four-node quadrilateral element used in modeling two-dimen-
sional conduction heat transfer problems. The element has a single degree of free-
dom, which is temperature. Convection or heat fluxes may be input at the element’s
faces. Output data include nodal temperatures and element data, such as thermal
gradient and thermal flux components.
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PLANET77 is an eight-node quadrilateral element used in modeling two-dimen-
sional heat conduction problems. It is basically a higher order version of the two-
dimensional four-node quadrilateral PLANESS element. This element is better ca-
pable of modeling problems with curved boundaries. At each node, the element has
a single degree of freedom, which is temperature. Output data include nodal tem-
peratures and element data, such as thermal gradient and thermal flux components.

Keep in mind that although you generally achieve more accuracy of results with high-
er order elements, they require more computational time because numerical integra-
tion of elemental matrices is more involved.

7.5 AN EXAMPLE USING ANSYS

Consider a small chimney constructed from two different materials. The inner layer is
constructed from concrete with a thermal conductivity k¥ = 0.07 Btu/hr - in - °F. The
outer layer of the chimney is constructed from bricks with a thermal conductivity value
k = 0.04 Btu/hr . in - °F The temperature of the hot gases on the inside surface of the
chimney is assumed to be 140°F, with a convection heat transfer coefficient of 0.037
Btu/hr - in? . °F. The outside surface is exposed to the surrounding air, which is at 10°F,
with a corresponding convection heat transfer coefficient # = 0.012 Btu/hr - in. °F. The
dimensions of the chimney are shown in Figure 7.14. Determine the temperature dis-
tribution within the concrete and within the brick layers under steady-state conditions.
Also, plot the heat fluxes through each layer.
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FIGURE 7.14 A schematic of the chimney
26 in. in the example problem of section 7.5.

The following steps demonstrate how to choose the appropriate element type, cre-
ate the geometry of the problem, apply boundary conditions, and obtain nodal results
for this problem using ANSYS.

Enter the ANSYS program by using the Launcher.

Type xansys54 on the command line if you are running ANSYS on a UNIX plat-
form, or consult your system administrator for information on how to run ANSYS
on your computer system’s platform.
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Pick Interactive {rom the Launcher menu.

Type Chimney (or a file namc of your choice) in the Initial Jobname entry ficld of
the dialog box.

ANSYS 5.4 INTERACTIVE

NSYS AUriversity Low Uption

Pick Run to start the Graphic User Interface (GUI). A window will open with
some disclaimer information. You will eventually be asked to press the <Return>
key to start the graphics window and the main menu. Do so in order to proceed.

Create a title for the problem. This title will appear on ANSYS display windows
to provide a simple way of identifying the displays. To create a title, issue the fol-
lowing command:

utility menu:  File — Change Title ...

- Change Tille

* Library of EIemanl Types
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Define the element type and materal properties with the commands
main menu:  Preprocessor — Element Type — Add/Edit/Delete ...

Element Types

'NONE DEFINED

From the Library of Element Types. under Thermal Mass, choose Solid, then choose
Quad 4node 55:

Hypeslastxc ’ P3| Quad dnode
Visco Solid
Axi-har 4node
8node

Brick 8node
28node

S
ANSYS Pluid

PLANESS
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Assign the thermal conductivity values for concrete and brick. First, assign the
value for concrete with the commands

main menu: Preprocessor — Material Props — -Constant-Isotropic ...

i isatropic Material Properties

pic Material Properties

Section 7.5 An Example Using ANSYS 291

1 Isotiopic Material Properti

ANSYS Toolhar: SAVE DB
Setup the graphics wea (i the workplane. zoom, ete.) with the commands:

utility menu: Workplane -»> WP Settings .
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WP Setungs

To create the brick area of the chimney, subtract the two areas you have created
with the commands:

main menu: Preprocessor — -Modeling-Operate — -Booleans-Subtract

— Areas +
H [Pick area 1]

ﬁ [Use the middle button anywhere in the ANSYS graphics window to apply]

ﬁ [Pick area 2]

[anywhere in the ANSYS graphics window]
OK
Next, create the area of concrete by issuing the following commands:

main menu: Preprocessor — -Modeling-Create — -Areas-Rectangles
— By 2 Corners +

On the workplane, pick the respective locations of the corners of areas and apply:

E [WP = 6,6]

E [Expand the rubber band up 14.0 and right 14.0]

Toggle on the workplane by the issuing the command
utility menu: Workplane — Display working plane
Bring the workplane to view with the command

This is our area number 4.

E (WP = 17,7]

E [Expand the rubber band up 12.0 and right 12.0]

utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Click on the small circle until you bring the workplane to view. Then create the
brick section of the chimney by issuing the commands:

main menu: Preprocessor — Modeling-Create —> Areas-Rectangles
— By 2 Corners +

On the workplane, pick the respective locations of the corners of areas and apply:
E [WP = 0,0 lower left corner of the workplane]

This is our area number 5.

OK
[Expand the rubber band up 26.0 and right 26.0]

E [WP = 6,6]

Next, subtract the two inside areas with commands:
main menu: Preprocessor — -Modeling-Operate — -Booleans-Subtract
— Areas +
[Expand the rubber band up 14.0 and right 14.0]
OK

E} [Pick the area number 4]
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E!L [ Use the middie button anywhere in the ANSYS graphics window to apply}]

[ﬂ[ [Pick the area number S}

E [anywhere in the ANSYS graphics window)

OK

To check your work thus far, plot the areas. First, toggle off the workplane and
turn on area numbering by the commands

utility menu: Workplane — Display Working plane

utility menu: PlotCtrls — Numbering ...

i Plot Numbering Contiols

utility menu: Plot — Areas
ANSYS Toolbar: SAVE_DB

We now want to mesh the arcas to create elements and nodes. But first, we need
to specify the element sizes. So issue the commands

main menu: Preprocessor — -Meshing-SizeCntrls — -Global-Size ...

Section 7.5 An Example Using ANSYS 295

i Global Element Sizes

Next, glue areas to merge keypoints with the commands
main menu: Preprocessor — -Modeling-Operate — -Boolean-Glue
— Areas +

Select Pick Al to glue the areas. We also need to specify material attributes for the
concrete and the brick areas before we proceed with meshing. So, issue the com-
mands

main menu: Preprocessor — -Attributes-Define — Picked Areas +

ﬁ [Pick the concrete area}
ﬁ [anywhere in the ANSYS graphics window to apply]

o. _

i Area Attnibutes

main menu: Preprocessor — -Attributes-Define — Picked Areas +

ED% [Pick the brick area)

E% [anywhere in the ANSYS graphics window to apply]
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ANSYS Toolbar: SAVE_DB

We can proceed with meshing now. So.issuc the following commands:
main menu: Preprocessor — -Meshing-Mesh — -Areas-Free +
Setect Pick Al and proceed. Then issue the command

utility menu: PlotCtrls — Numbering ...

i Plot Numbesing Contiols

e Ren

MHColors & numbers #

Applv houndary conditions using the

command
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main menu: Solution - -Loads-Apply — -Thermal-Convection
— Onlines

Pick the convective lines of the concrete, and press the OK button (o specify the
convection cocfficient and the temperature:

: A“pplyMCONV on Lines

main menu: Solution — -Loads-Apply — -Thermal-Convection
— Onlines +

Pick the exterior lines of the brick layer, and press the OK button to specifv the
convection coefficient and the temperature:

i Apply CONV on Lines

To see the applied convective boundary conditions. issue the conmmand

utility menu: PlotCtrls — Symbols
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i Symbols

DOF colution
Flux & gradient

o
.
»
’
.
2
o
n.

Convect FilmCoef »|%

DAL SCLUTINE
EP=1

utility menu: Plot — Lines

ANSYS Toolbar: SAVE_DB

Now. solve the problem with the following commands:
main menu: Solution — Solve-Current LS

OK

Close (the solution 1s done!) window. )
FIGURE 7.15 Temperature contour plot

Close (the/STAT Command) window.

Begin the postprocessing phase. First obtain mformation. such as nodal tempera- . . . .
£ ; Now use the following command to plot of the heat flow vectors (the plotis shown

tures and heat fluxes with the command o
i Figure 7.16):

main menu: General Postproce -» Plot Results

» -Contour Plot-Nodal Solu . main menuw: General Postproe > Plot Results - -Vector Plot-Predefined
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Nextuissue the following commands:

: Vector Plot of Plggglhzd Vectors

P .
Tharnal grad TG i utility menu: Plot — Areas

main menu: General Postproc — Path Operations — Define Path
— On Working Planc +

Pick the two points along the line marked as A-A. as shown in Figure 7.17, and
press the OK button.

A

Undeformed Mesh

FIGURE 7.17  Dclining the path tor path
operation.

N\ ANSYS Graphics

Visayediatiaeane
i, I

; Then, issue the commands

FIGURE 7.16  Plot of the heat flow vectons main menu: General Postproc — Path Operations > Map onto Path ..
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+Wap Aesul Items onto Path ] ] ] main menu: General Postproc - Path Operations
, ’ e . : — -Plot Path Item-On Graph

i Plot of Path Items on G

ADOT Solution JThermal flux ITX
Flux & gradient TFY
Elom tahlec item

; TFZ
1 TFSUM
Thermal grad TGX

FIGURE 7.18 The variation of temperature gradients along path A-A.
Finally. exit ANSYS and save evervihing:
ANSYS Toolbar: Quit

Exit from ANSYS

Flux & gradient
Elem table item
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\ANSYS Graphics

FIGURE 7.19 The variation of temperature gradients along path B-B.

7.6 VERIFICATION OF RESULTS

First, let us discuss some simple, yet powerful, ways to verify your results visually. For sym-
metrical problems, you should always identify lines of symmetry created by geometri-
cal and thermal conditions. Lines of symmetry are always adiabatic lines, meaning that
no heat flows in the directions perpendicular to these lines. Because no heat flows in the
directions perpendicular to lines of symmetry, they constitute heat flow lines. In other
words, heat flows parallel to these lines. Consider the variation of the temperature gra-
dients £ and 2 and their vector sum along path A-A, as shown in Figure 7.18. Note that
path A-A (in Figure 7.17) is a line of symmetry and, therefore, constitutes an adiabatic
line. Because of this fact, the magnitude of &% is zero along path A-A and
¢T equals vector sum as shown in Figure 7.18. Comparing the variation of the tempera-
ture gradients £ and 9% and their vector sum along path B-B as shown in Figure 7.19
renders the conclusion that the magnitude of &5 is now zero and 2y equals vector sum.

Anpother important visual inspection of the resuits requires that the isotherms
(lines of constant temperatures) aiways be perpendicular to the adiabatic lines, or lines
of symmetry. You can see this orthogonal relationship in the temperature contour plot
of the chimney, as shown in Figure 7.15.

We can also perform a quantitative check on the validity of the results. For exam-
ple, the conservation of energy applied to a control volume surrounding an arbitrary
node must be satisfied. Are the energies flowing into and out of a node balanced out?
This approach was demonstrated earlier with Example 7.1.

SUMMARY

At this point you should:

1. understand the fundamental concepts of the three modes of heat transfer. You
should also know the various types of boundary conditions that could occur in 2

mrvem s atine mvahloam
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2. know how the conductance matrices and the load matrices for two-dimensional

conduction problems were obtained. The conductance matrix for a bilinear rec-
tangular element is:

2 -2 -1 1 2 1 -1 =2
kwi-2 2 1 -1 kel 2 2 -1
6¢|-1 1 2 2| " ew|-1 -2 2 1
1 -1 -2 2 -2 -1 1 2

[K](e) =

H_eat loss by convection around the edge of a rectangular element can also con-
tribute to the conductance matrix:

2100 0000
h¢;; he;
[K](,)=?, 1200 (K]© = bm{0 210

0000 6 |01 20
0000 0000
0000 2001

h .
(K]0 = é;m 0000 [K](e)zg,ﬂoooo
0021 6 (0000
0012 1002

The load vector for a rectangular element could have many components. It could
have a component due to a possible heat generation term within a given element:

1
o =944 11
1

1

It could also have a possible convection heat loss term(s) along the edge(s):

1 0

T, 6 |1 KT, ¢,
G AL @ = 2stim |1
{F} 2 0 {F} 2 1
0 0
0 1
T,e,, |o T, 6, |o

e = () = 170
{F} 7 11 {F} 7 Yo
1 1

The conductance matrix for a triangular element is

k, B BiB; BB« k 8 8;8; 38,
[K](‘)=—A B:B; [312 BB« +—= 8:9; 8,2 8; 8,

4
RR AR n2 44 R R8RS 82
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Heat loss by convection around the edge of a triangular element can also con-
tribute to the conductance matrix according to the equations

210 00 0
(epﬂ © = ht
K9=—1 2 0 [K9=—=10 21

0 00 01 2
2 01
heé,;
Kf9=—%10 0 0
1 0 2

The load matrix for a triangular element could have many components. It could
have a component due to a possible heat generation term within a given element:

1

A
{F}(‘) = qT 1
1

Also, it could have a possible convection heat loss term(s) along the edge(s):

1 0

KT, €, KT},
{F) = ALY ) (F}© = it ATl Y
2 2 1

(F}¥) = ——

—_ O = D

3. understand the contribution of convective boundary conditions to the conduc-
tance matrix and the forcing matrix.

4. always find ways to verify your results.
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PROBLEMS

1. Construct the conductance matrices for the elements shown in the accompanying figure.
Also, assemble the elements to obtain the global conductance matrix. The properties and the
boundary conditions for each element are shown in the figure.
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insulated

2. Construct the load matrix for each element in Problem 1. Also, assemble the elemental load
matrices to construct the global Joad matrix.

3. Construct the conductance matrices shown in the accompanying figure. Also, assemble the

glements to obtain the global conductance matrix. The properties and the boundary condi-
tions for each element are shown in the figure.

| 175 cm |

insulated

Ty=15°

4. Construct the load matrix for each element in Problem 3. Also, assemble the elemental load
matrices to construct the global load matrix.



308 Chapter?7 Analysis of Two-Dimensional Heat Transfer Problems

5. Show that for a constant heat flux boundary condition ¢, evaluation of the terms
I[S]Tq,’; cos 8dt and J[S]Tq; sin 0d7 along the edges of the rectangular element results in

T
tfle elemental load matrices

1 0
q.¢5 11 qgejm 1

(&) = 27 &) = 217
Fo =40 F) X
0 0
0 1
golmn |0 Golni | O

() — 12 m7 () = 22
{F} 2 1 {F} 2 |0
1 1

6. Evaluate the constant heat flux boundary condition in Problem 5 for a triangular element.

7. Using the results of Problem 5, construct the load matrix for each element shown in the ac-
companying figure. Also, assemble the elemental matrices to construct the global load ma-
trix. The boundary conditions are shown in the figure.

insulated surface

gq"= 100 W/cm p——e——p

—1.5 cm_,l insulated surface
8. In the Galerkin formulation of two-dimensional fins, the convection heat loss from the periph-

ery of the extended surface gives rise to the term J [S1" hT d A.The term contributes to the el-

A . .
emental conductance matrix. Show that for a bilinear rectangular element, the integral yields:

T; 4 2120 (T1
; T; hA |2 4 2 1 T,
T — 7 j _na §
L[S] hTdA L[s} h[S, S, S, S T v I T
T, 21 2 4 T,
9. Evaluate the integral in Problem 8 for a triangular element. Show that
T; [
T . _hA
(S hTdA = | (S R[S, S, S{T; dA="3511 2 11T,
A A T 1 21T
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10. Consider a small rectangular aluminum plate with dimensions of 20 cm X 10 ¢m and a ther-
mal conductivity value of k = 168 W/m - K, as shown in the accompanying figure. The plate
is exposed to the boundary conditions shown in the figure. Using manual calculations, deter-
mine the temperature distribution within the plate, under steady-state conditions. (Hint: Be-
cause of the existence of two axes of symmetry, you should model only a quarter of the plate.)

T, = 80°C

11. Aluminum fins with triangular profiles, shown in the accompanying figure, are used to remove
heat from a surface whose temperature is 150°C. The temperature of the surrounding air is
20°C. The natural heat transfer coefficient associated with the surrounding air is 30 W/m - K.
The thermal conductivity of aluminum is k = 168 W/m - K. Using manual calculations, de-
termine the temperature distribution along a fin. Approximate the heat loss for one such fin.

12. For the fin in Problem 11, use ANSYS to determine the temperature distribution within the
fin. What is the overall heat loss through the fin? Compare these results to the results of your
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13.

14.

Aluminum fins with parabolic profiles, shown in the accompanying figure, are used to remove
heat from a surface whose temperature is 120°C. The temperature of the surrounding air is
20°C. The natural heat transfer coefficient associated with the surrounding air is 25 W/m - K.
The thermal conductivity of aluminum is k = 168 W/m - K. Using ANSYS, determine the
temperature distribution along a fin. Approximate the heat loss for one such fin.

S mm 7; “ 80 minr -

Using ANSYS, determine the temperature distribution in the window assembly shown in the
accompanying figure. During the winter months, the inside air temperature is kept at 68°F,
with a corresponding heat transfer coefficient of & = 1.46 Btu/hr - ft? - °F. Assume an outside
air temperature of 10°F and a corresponding heat transfer coefficient of h = 6 Btu/hr- ft2- °F.
What is the overall heat loss through the window assembly?

1in.

i

3/4in. —»‘ |<—- f

aluminum

Ty=68°F, 36 in.

~—11.75 in,—>|

15.

16.

17.
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Aluminum fins (k = 170 W/m - K) are commonly used to dissipate heat from electronic de-
vices. An example of such a fin is shown in the accompanying figure. Using ANSYS, deter-
mine the temperature distribution within the fin. The base of the fin experiences a constant
flux of ¢’ = 1000 W/m. A fan forces air over the surfaces of the fin. The temperature of the
surrounding air is 20°C with a corresponding heat transfer coefficient of h = 40 W/m?. K.

0=

1 mm Lr ‘ i i
1mm & fig s >
i 1 mm
i
q' = 1000 W/m
Hot water flows through pipes that are embedded in a concrete slab. A section of the slab is

shown in the accompanying figure. The temperature of the water inside the pipe is 50°C, with
a corresponding heat transfer coefficient of 200 W/m - K. With the conditions shown at the
surface, use ANSYS to determine the temperature of the surface. Assuming that the heat
transfer coefficient associated with the hot-water flow remains constant, find the water tem-
perature at which the surface freezes. Neglect the thermal resistance through the pipe walls.

assume to be perfectly insulated ‘

‘ 1.5m

Consider the heat transfer through a basement wall with the dimensions given in the accom-
panying figure. The wall is constructed from concrete and has a thermal concuctivity of k =
1.0 Btu/hr - ft - °F. The nearby ground has an average thermal conductivity of k = 0.85
Btu/hr - ft « °F. Using ANSYS, determine the temperature distribution within the wall and the
heat loss from the wall. The inside air is kept at 68°F with a corresponding heat transfer coef-
ficient of & = 1.46 Btu/hr - ft? - °F. Assume an outside air temperature of 15°F, and a corre-
sponding heat transfer coefficient of & = 6 Btu/hr - fi?- °F. Assume that at about four feet away
from the wall. the horizontal component of the heat transfer in the soil becomes negligible.
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3ft

6 in.—b! '-— 4 ft ————

18. We would like to include the heat transfer rates through an uninsulated basement floor in our
model in Problem 17. Considering the heat transfer model shown in the accompanying fig-
ure, determine the temperature distributions in the wall, the floor, and the soil and the heat

loss from the floor and the wall. As shown in the figure, assume that at about four feet away

from the wall and the floor, the horizontal and the vertical components of the heat transfer
in the soil become negligible.

S

I
ne o

6? concrete wall
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19. In order to enhance heat transfer rates, the inside surface of a tube is extended to form lon-
gitudinal fins, as shown in the accompanying figure. Determine the temperature distribution
inside the tube wall, given the following data:

rn=2in k =400 W/m-K
ry,=2%in Tinsize = 80°C

t =2in Bingige = 150 W/m?-K
H =iin Toussige = 15°C

Houside = 30 W/m2 ‘K

20. Consider the concentric-tube heat exchanger shown in the accompanying figure. A mixture
of aqueous ethylene glycol solution arriving from a solar collector is passing through the
inner tube. Water flows through the annulus as shown in the figure. The average temperature
of the water at the section shown is 15°C, with a corresponding heat transfer coefficient of
h = 200 W/m? - K. The average temperature of the ethylene glycol mixture is 48°C, with an
associated heat transfer coefficient of & = 150 W/m?- K. In order to enhance the heat trans-
fer rates between the fluids, the outside surface of the inner tube is extended to form longi-
tudinal fins, as shown in the figure. Determine the temperature distribution inside the heat
exchanger’s walls, assuming that the outside of the heat exchanger is perfectly insulated. Also,
determine the heat transfer rate between the fluids.
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insulation

ethylene
glycol solution

In 50 mm ;l

21. Design Problem At some ski resorts, in order to keep ice from forming on the surface of up-
hill roads leading to condominiums, hot water is pumped through pipes that are embedded
beneath the surface of the road. You are to design a hydronic system to perform such a task.
Choose your favorite ski resort and look up its design conditions, such as the ambient air
temperature, soil temperature, etc. The system that you construct may consist of a series of
tubes, pumps, a hot-water heater, valves, fittings, etc. Basic information sought includes: the
type of pipes, their sizes, the spacing between the tubes, the configuration of the piping sys-
tem, and the distance below the surface the pipes should be embedded. If time allows, you
may also size the pump and the hot-water heater.

CHAPTER 8

Analysis of Two-Dimensional
Solid Mechanics Problems

The objective of this chapter is to introduce you to the analysis of two-dimensional solid
mechanics problems. Structural members and machine components are generally sub-
ject to a push-pull, bending, or twisting type of loading. The components of common
structures and machines normally include beams, columns, plates, and other members
that can be modeled using two-dimensional approximations. The main topics discussed
in Chapter 8 include the following:

8.1 Torsion of Members With Arbitrary Cross-Section Shape
8.2 Beams and Frames

8.3 Plane-Stress Formulation

8.4 Basic Failure Theory

8.5 Examples Using ANSYS

8.6 Verification of Results

8.1 TORSION OF MEMBERS WITH ARBITRARY CROSS-SECTION SHAPE

There are still many practicing engineers who generate finite element models for prob-
lems for which there exist simple analytical solutions. You should not be too quick to
use the finite element method to solve simple torsional problems. This type of problem
includes torsion of members with circular or rectangular cross sections. Let us briefly
review the analytical solutions that are available for torsional problems. When study-
ing the mechanics of materials, you were introduced to the torsion of long, straight
members with circular cross sections. A problem is considered to be a torsional prob-
lem when the applied moment or torque twists the member about its longitudinal axis,
as shown in Figure 8.1.
Over the elastic limit, the shear stress distribution within a member with a circu-
lar cross section, such as a shaft or a tube, is given by the equation
Tr
TS 8.1)
where T is the applied torque,  is the radial distance measured from the center of the shaft
to a desired point in the cross section, and J represents the polar moment of inertia of

315
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T FIGURE 8.1 Torsion of a shaft.

the cross-sectional area. It should be clear from examination of Eq. (8.1) that the maxi-
mum shear stress occurs at the outer surface of the shaft, where r is equal to the radius
of the shaft. Also, recall that the angle of twist caused by the applied torque can be de-
termined from the equation

_TL
JG

in which L is the length of the member and G is the shear modulus (modulus of rigid-
ity) of the material. Furthermore, there are analytical solutions that can be applied to
torsion of members with rectangular cross-sectional areas.* When a torque is applied
to a straight bar with a rectangular cross-sectional area, within the elastic region of the
material, the maximum shearing stress and an angle of twist caused by the torque are
given by:

8 (82)

T
Tmax = o whz (83)
TL
8 = W 8.4)

L is the length of the bar and w and 4 are the larger and smaller sides of the cross-sec-
tion, respectively. (See Figure 8.2.) The values of coefficients ¢; and ¢, (given in Table 8.1)
are dependent on the aspect ratio of the cross section. As the aspect ratio approaches

FIGURE 8.2 A straight rectangular bar in
torsion.

*See Timoshenko and Goadier (1970) for more detail.
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large numbers (W/h — o0), ¢; = ¢, = 0.3333. This relationship is demonstrated in
Table 8.1.

TABLE 8.1 ¢, and ¢, values for a
bar with a rectangular cross section

w/h [ [
1.0 0.208 0.141
12 0219 0.166
15 0.231 0.196
20 0.246 0.229
25 0.258 0.249
30 0.267 0.263
40 0.282 0.281
5.0 0291 0.291

10.0 0312 0.312
o0 0.333 0.333

The maximum shear stress and the angle of twist for cross-sectional geometries with
high aspect ratios (w/h > 10) are given by:

T

S - 8.5

Tmax = 0 33300k 835)
TL

f=—0 8.6

0.333Gwh’ 86)

These types of members are commonly referred to as thin-wall members. Examples of
some thin-wall members are shown in Figure 8.3.

Therefore, if you come across a problem that fits these categories, solve it using the
torsional formulae. Do not spend a great deal of time generating a finite element model.

FIGURE 8.3 Examples of thin-wall
members.
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Finite Element Formulation of Torsional Problems

Fung (1965) discusses the elastic torsional behavior of noncircular shafts in detail. There
are two basic theories: (1) St. Venant’s formulation and (2) the Prandt! formulation.
Here, we will use the Prandtl formulation. The governing differential equation for the
elastic torsion of a shaft in terms of the stress function ¢ is

Fod o
— t=—+ =0 .
"oy 2Go X))

where G is the shear modulus of elasticity of the bar and § represents the angle of twist
per unit length. The shear stress components are related to the stress function ¢ ac-
cording to the equations

_ %%

Ty = 3y (8.8)
a

Ty = (—3 8.9)

Note that with Prandt!’s formulation, the applied torque does not directly appear in the
governing equation. Instead, the applied torque is related to the stress function and is

T=2 J bdA (8.10)
A

In Eq. (8.10), A represents the cross-sectional area of the shaft. Comparing the differ-
ential equation governing the torsional behavior of a member, Eq. (8.7), to the heat dif-
fusion equation, Eq. (7.8), we note that both of these equations have the same form.
Therefore, we can apply the results of Section 7.2 and Section 7.3 to torsional problems.
However, when comparing the differential equations for torsional problems, we let ¢; =
land ¢, = 1,¢; = 2G6.The stiffness matrix for a rectangular element then becomes

2 -2 -1 1 2 1 -1 -2
w2 2 1 -1| ¢f1 2 -2 -1
661-1 1 2 —2| 6wl-1 -2 2 1

1 -1 -2 2 -2 -1 1 2

(K] (8.11)

where w and ¢ are the length and the width, respectively, of the rectangular element, as
shown in Figure 8.4. The load matrix for an element is

1

2G6A |1
4 1

1

(F}© = (8.12)
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¢’l

FIGURE 8.4 Nodal values of the stress

X  function for a rectangular element.

and for triangular elements, shown in Figure 8.5, the stiffness and load matrices are

Y

1 B}  BiB; BiB« 8 9 ?,' 89
(K])® = A B:B; B BB |+ A 8:8; B ;9 (8.13)
BB« B;B: Bi 58 ;% 8
1
{F}9 = ZGTQA 1 (8.14)
1
L

Xio Y

'¢,~

X, Y)

(Xi» Yl)

FIGURE 8.5 Nodal values of the stress
function for a triangular element.
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where the area A of the triangular element and the a, B, and 8-terms are given by:
24 = X(Y, - Yi) + X(Y - ¥)) + X(Y, - Y))
a; = X;Y, — X, Y; B:.=Y,-Y; 5i=Xk_Xj
G =X.Y,- XY, Bi=Y-Y 5=X-X
a = XiY; - XjY, Be =Y.~ Y =X -X,

Next, we will consider the finite element formulation of beams and frames.

8.2 BEAMS AND FRAMES

Beams play significant roles in many engineering applications, including buildings,
bridges, automobiles, and airplanes structures. A beam is defined as a structural mem-
ber whose cross-sectional dimensions are relatively smaller than its length. Beams are
commonly subjected to transverse loading, which is a type of loading that creates bend-
ing in the beam. A beam subjected to a distributed load is shown in Figure 8.6.

The deflection of the neutral axis at any location x is represented by the variable
v. For small deflections, the relationship between the normal stress o at a section, the
bending moment at that section M, and the second moment of area I is given by the
flexure formula. The flexure formula is the equation

My

I
where y locates a point in the cross section of the beam and represents the lateral dis-
tance from the neutral axis to that point. The deflection of the neutral axis v is also re-

lated to the internal bending moment M(x), the transverse shear V(x), and the load
w(x) according to the equations

o=

(8.15)

d*v
EIi—i? = M(x) (8.16)
d*v _ dM(x)
Bl = =V (817)
d'v _dV(x)
1 it dr w(x) (8.18)

load

y

\% neutral axis

FIGURE 8.6 A beam subjected to a distributed load.
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Note that the standard beam sign convention is assumed in the previous equations; for
example, the external load is assumed to be positive when it pushes upward on the beam.
For your reference, the deflections and slopes of beams under some typical loads for
simply supported and cantilevered supports are summarized in Table 8.2. Again, if you
come across problems that can be analyzed using equations (8.16)-(8.18) and Table 8.2,
solve them as such.

Finite Element Formulation

In the following derivation, we will neglect the contribution of shear stresses to the strain
energy. The strain energy for an arbitrary beam element (e) then becomes:

Eg? E dv\?
A© = I Lav = J —dV=—J(— ——) dv 8.19
2 L2 2 I\ (8.19)

E d*v\? E IL<d2v)2 J

== (-y=—] dV = — -— 2 !
Al ) L( ydx2> d 2 ) i dx Ay dA (8.20)
Recognizing the integral J y? dA as the second moment of the area I, we have:
A
EI L(dzv)z

@ == —ld 821
A= L axt) * ®21)

Before we proceed with integrating Eq. (8.21), we should define what we mean by a
beam element. A simple beam element consists of two nodes. At each node, there are
two degrees of freedom, a vertical displacement, and a rotation angle (stope), as shown
in Figure 8.7.

Uy U
y
Y - Uy <
Ul'l 2
X
X i \ y b
I j
L

FIGURE 8.7 A beam element.

There are four nodal values associated with a beam element. Therefore, we will use
a third-order polynomial with four unknown coefficients to represent the displacement
field. Moreover, we want the first derivatives of the shape functions to be continuous.
The resulting shape functions are commonly referred to as Hermite shape functions. As
you will see, they differ in some ways from the linear shape functions you have already
studied in Chapters 3 and 5. We start with the third-order polynomial

V=cp F X+ c3x° + o)’ (8.22)
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The element’s end conditions are given by the following nodal values:
For node i: The vertical displacementat x =0 v =¢, = Uy,
dv

Fornodei: Theslopeat x =0 — =c¢=U,
dx|,.,
For node j: The vertical displacementat x =L v=o¢ + ;L + ¢;L? + ¢, L = Uy
d
Fornodej: Theslopeat x =L -ﬁ =c2+203L+3c4L2=U,2
x=L

We now have four equations with four unknowns. Solving for c;, c;, 5, and ¢, ; substituting
into Eq. (8.22); and regrouping the U;, U;,Uj;, U, -terms results in the equation

v =SqUy + SpUs + S;Uy + SpUp (8.23)

where the shape functions are given by

3x2 2x°
Sa=1- F + F (824)
232 X3
S'z:x_—L-+P (825)
3x2 2x°
"= T (8.26)
X
Sﬂ = - 'E + F (827)
It is clear that if we evaluate the shape functions, as given in Eqs. (8.24)—(8.27), at node
iatx = 0,wefind that Sy = 1and S, = i1 = Sp = 0. Also, if we evaluate the slopes
dSy 4 dS; dS
of the shape functions at x = 0, we find that —= = 1 and — 45y ==L -2 _0.1fwe
dx dx _ dx  dx

evaluate the shape functions at node j at x = L we find that S, 1 =1 and
Sy = Sz = Sp = 0, and if we evaluate the slopes of the shape functions at x = L, we
dSp dSy _dS, dSp
; — —qapnd A L B2 _ T
determine that I an dx I e
the Hermite third-order polynomials.
Now, we need to go back to Eq. (8.21) and substitute for the displacement field vin

= 0.These values are the properties of

terms of the shape functions and the nodal values. Let us begin by evaluating the equation

Uy

v d? U,

W=W[S“ Sa S sz] U: (8.28)
i
Un
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To simplify the next few steps of derivation and to avoid unnecessary mathematical op-
erations, let us make use of matrix notations. First, let the second derivatives of the shape
functions be defined in terms of the following relationships:

2
Dy = ddxszd
_ LS,
27 dx?
d2s,-,
1= a2
2
b= 3F

Then, Eq. (8.28) takes on the compact-matrix form of
d2

o = DY} (529)

2,,\2
The (d_12)> term can be represented in terms of the {U} and [D] matrices as
x

d2
(22 - wrormyy 6:30)
x*
Thus, the strain energy for an arbitrary beam element is
EI 1p
po== (Y DTID)U} ax (831)

Recall that the total potential energy IT for a body is the difference between the total
strain energy and the work done by the external forces:

I =3A® - 3FU (832)

Also recall that the minimum total potential energy principle states that for a stable
system, the displacement at the equilibrium position occurs such that the value of the
system’s total potential energy is a minimum. Thus, for a beam element, we have

a1l a

—————EA(‘)———ZFU—O fork = 1,2,3,4 8.33

U, Uy aU, or (833)
where U, takes on the values of the nodal degrees of freedom Uy, U,,Ujy,and U, . We
begin minimizing the strain energy with respect toU;;, Uy, Uy, and U, to obtain the stiff-
ness matrix. Starting with the strain energy part of the total potential energy, we get

IA®
U,

= EI JL[D]T[D] dx (U} (8.34)
0
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Evaluating Eq. (8.34) leads to the expression

12 6L -12 6L Uy
EI|l 6L 4L —6L 2I* ||U,
L} -12 -6L 12 -6L | |U;,
6L 2L —6L 417 U,
The stiffness matrix for a beam element with two degrees of freedom at each node—the
vertical displacement and rotation—is

12 6L -12 6L
(ko = EL| 6L 4L 6L 21’
L’|-12 -6L 12 -6L

6L 2L —6L 4L*

IA@
oU,

L
EI J [D][D]dx {U} =
0

(8.35)

Load Matrix

There are two ways in which we can formulate the nodal load matrices: (1) by mini-
mizing the work done by the load, and (2) by computing the beam’s reaction forces.
Consider a uniformly distributed load acting on a beam of length L, as shown in Figure
8.8.The reaction forces and moments at the endpoints are also shown in the figure.

Using the first approach, we can compute the work done by this type of loading
from [, wv dx. The next step involves substituting for the displacement function in terms
of the shape functions and nodal values, and then integrating and differentiating the
work term with respect to the nodal displacements. This approach will be demonstrat-
ed in detail when we formulate the load matrix for a plane stress situation. Let us de-
velop the load matrix using the alternate approach, starting with Eq. (8.18):

dv dV(x)
El— = =

dx* dx w(x)

For a uniformly distributed load, w(x) is constant. Integrating this equation, we get
d*v
EI e ~wx + ¢ (8.36)
w
| 5 |
| 7l
M, M,
<l ‘J>
. FIGURE 8.8 A beam element subjected to

R Ry a uniform distributed load.
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d3

Applying the boundary condition EI E—g—l = Ry, we find that ¢; = R,. Substituting
X7 lx=0

for the value of ¢; and integrating again, we obtain

d*v wx?
EId—xz' = "'T + Rix+¢ (8.37)
) .. d*v ) .
Applying the boundary condition E[ e = —M,, we find that ¢, = —M,. Substi-
x=0
tuting for the value of ¢, and integrating, we obtain
dv wx® R x?
—_—= - + 8.38
El dx 6 ) Mix + ¢ (8.38)

Applying the boundary condition 42|,., = 0, we find that ¢, = 0. Integrating one last
time, we have

wx* N R X? 3 M, x*
24 6 2

Elv = — — (8.39)

Applying the boundary condition v(0) = 0, we determine that ¢, = 0. To obtain the
values of R, and M, we can apply two additional boundary conditions to this problem:

2,-.. = 0and v(L) = 0. Applying these conditions, we get

dv wl? R L?
2 =ty - M,L=0 8.40
dx|._, 6 2 ! (8.40)
wlL* RL* ML?
= + - =0 8.41
uL) = 6 2 @41)

. w. L2
Solving these equations simultaneously, we get R, = %= and M, = BT From the sym-

metry of the problem—that is, applying the statics equilibrium conditions—we find that
2
w
the reactions at the other end of the beam are R, = % and M, = BTl All of the re-
actions are shown in Figure 8.9.

If we reverse the signs of the reactions at the endpoints, we can now represent the
effect of a uniformly distributed load in terms of its equivalent nodal loads. Similarly, we

L2 wl?
M= S5 M=
(= =)
L
Ri= 1 Ry=

FIGURE 8.9 Reaction results for a beam subjected to a uniformly distributed load.
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TABLE 8.3 Equivalent nodal loading of beams

Loading Equivalent Nodal Loading
wl wl
T T 1117 2 |
' L ' wl? wl?
12 12
w 3wl TwL
20 20
wl? wl?
L | 30" 20
P P P
7 )
L L (/ \_>
2 ' 2 ' _PL _PL
M=% M=g

can obtain the nodal load matrices for other loading situations. The relationships be-
tween the actual load and its equivalent nodal loads for some typical loading situations
are summarized in Table 8.3.

EXAMPLE 8.1

The beam shown in Figure 8.10 is a wide-flange W310 X 52 with a cross-sectional area
of 6650 mm? and depth of 317 mm. The second moment of the area is 118.6 X 10 mm*.
The beam is subjected to a uniformly distributed load of 25,000 N/m. The modulus of

25,000 N/m

i S5m { 2.5m i

FIGURE 8.10 A schematic of the beam in Example 8.1.
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elasticity of the beam is E = 200 GPa. Determine the vertical displacement at node 3

and the rotations at nodes 2 and 3. Also, compute the reaction forces and moment at
nodes 1 and 2.

Note that this problem is statically indeterminate. We will use two elements to rep-
resent this problem. The stiffness matrices of the elements are computed from Eq. (8.35):
12 6L -12 6L
I 2 _ 2
[K]© = E_j 6 4L 6L 2L
L’ -12 -6L 12 -6L
6L 2L —6L 412

Substituting appropriate values for element (1), we have
12 6(5) -12 6(5)
200 X 10° X 1.186 X 107* | 6(5) 4(5)2 —6(5) 2(5)2
5 -12 -6(5) 12 —6(5)
6(5) 205 -6(5) 4(5)
For convenience, the nodal degrees of freedom are shown alongside the stiffness ma-
trices. For element (1), we have
2277120 5692800 —2277120 5692800 | U,
(K]0 = 5692800 18976000 -—5692800 9488000 | U,
=2277120 —-5692800 2277120 —5692800 | Uy
5692800 9488000 —5692800 18976000 | Uy,
Computing the stiffness matrix for element (2), we have

12 625) -12 6(25)
(K] = 200X 10° X 1186 X 10| 6(25) 425 —6(2.5) 2(2.5)
(2.5)° -12 -6(25) 12 —6(2.5)

6(2.5) 225 —6(25) 4(2.5)

Showing the nodal degrees of freedom alongside the stiffness matrix for element ),
we have

[K]® =

18216960 22771200 —18216960 22771200 | Uy
(K)® = 22771200 37952000 —22771200 18976000 | U,
—18216960 —22771200 18216960 —22771200 | Uy,
22771200 18976000 —22771200 37952000 | Uy,
Assembling [K]® and [K]® to obtain the global stiffness matrix yields
2277120 5692800 —2277120 5692800 0 0
5692800 18976000 —5692800 9488000 0 0
(K] = —2277120 —5692800 20494080 17078400 —18216960 22771200
5692800 9488000 17078400 56928000 —22771200 18976000
0 0 —18216960 —22771200 18216960 —22771200
0 0 22771200 18976000 —22771200 37952000
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Referring to Table 8.3, we can compute the load matrix for elements (1) and (2). The re-
spective load matrices are:

_wL) 25X 10° X 5 )
2 2
_wL2 25 X 10° X §* —62500
(F)O = 12 - 12 _ ] —52083
_wL 25X 10° X5 ~62500
2 2 52083
wL? 25 X 10° X 5 '
12 ) 12
wL) [ 25X 10°X25
2 2
wl? 25 X 10° x 2.5 —-31250
(F) = 12 { _ 12 _ ]—13021
wL 25 X 10° X 2.5 -31250
2 2 13021
wl? 25 X 10° x 2.5
12 12
Combining the two load matrices to obtain the global load matrix, we obtain
—62500 ~62500
-52083 —52083
(F)© = —62500 — 31250{ _ ]-93750
52083 —~ 13021 39062
~31250 —-31250
13021 13021

Applying the boundary conditions U, = U, = 0 at node 1 and the boundary condi-
tion Uy = 0 atnode 2, we have:

1 0 0 0 0 0 Uy, 0
0 1 0 0 0 0 Uy, 0
0 0 1 0 0 0 Ul J o

5692800 9488000 17078400 56928000 —22771200 18976000 | | Uy, [ ) 39062
0 0 —18216960 —22771200 18216960 —22771200 | | Uy, | |-31250
0 0 22771200 18976000 ~—22771200 37952000 | \U,) | 13021

Considering the applied boundary conditions, we reduce the global stiffness matrix and
the load matrix to:

‘56928000 —22771200 18976000 Uy 39062

~22771200 18216960 —22771200 | {Us } = {—31250
18976000 —22771200 37952000 Uz, 13021

R,
M,
R,
M,
Rs
M,
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Solving the three equations simultaneously results in the unknown nodal values. The
displacement result is

[UF =[0 0 0 -0.0013723(rad) ~—0.0085772(m) ~0.004117(rad)|
We can compute the nodal reaction forces and moments from the relationship
{R} = [K}{U} - {F} (842)

where {R} is the reaction matrix. Substituting for the appropriate values in Eq.
(8.42), we have

2277120 5692800 —2277120 5692800 0 0

5692800 18976000 —5692800 9488000 0 0

—2277120 —5692800 20494080 17078400 —18216960 22771200

5692800 9488000 17078400 56928000 —22771200 18976000

0 0 —18216960 —22771200 18216960 ~22771200
0 0 22771200 18976000 -—22771200 37952000

0 ~62500

0 ~52083

0 _]-93750

-0.0013723 39062

-0.0085772|  |-31250

~0.0041170 13021

Performing the matrix operation resuits in the following reaction forces and moments
at each node:

R, 54687(N)
M, 39062(N -m)
Ry _ | 132814(N)
M| 0

R, 0

M, 0

Note that by calculating the reaction matrix using the nodal displacement matrix, we can
check the validity of our results. There is a reaction force and a reaction moment at node
1; there is a reaction force at node 2; there is no reaction moment at node 2, as expect-
ed; and there are no reaction forces or moments at node 3, as expected. The accuracy of
the results is discussed further in Section 8.6.

Frames

Frames represent structural members that may be rigidly connected with welded joints
or bolted joints. For such structures, in addition to rotation and lateral displacement,
we also need to be concerned about axial deformations. Here, we will focus on plane
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FIGURE 8.11 A frame element.

frames. The frame element, shown in Figure 8.11, consists of two nodes. At each node,
there are three degrees of freedom: a longitudinal displacement, a lateral displacement,
and a rotation.

Referring to Figure 8.11, note that u;, represents the longitudinal displacement and
u;; and u;; represent the lateral displacement and the rotation at node i, respectively. In
the same manner, u;, >, and uj; represent the longitudinal displacement, the lateral dis-
placement, and the rotation at node j, respectively. In general, two frames of reference
will be required to describe frame elements: a global coordinate system and a local
frame of reference. We choose a fixed global coordinate system (X, Y') for several uses:
(1) to represent the location of each joint (node) and to keep track of the orientation
of each element using angles such as 8; (2) to apply the constraints and the applied
loads in terms of their respective global components; and (3) to represent the solution.
‘We will also need a local, or elemental, coordinate system to describe the axial-load be-
havior of an element. The relationship between the local coordinate system
(x, y) and the global coordinate system (X, Y) is shown in Figure 8.11. Because there
are three degrees of freedom associated with each node, the stiffness matrix for the
frame element will be a 6 X 6 matrix. The local degrees of freedom are related to the
global degrees of freedom through the transformation matrix, according to the rela-
tionship

[u] = [T][U] (843)
where the transformation matrix is

cos® sin® O 0 0 0
—sin® cos§ O 0 0 0
0 0 1 0 0 0

= .44

(T] 0 0 0 cos® sin® O (8.44)
0 0 0 —sin® cos® O
0 0 0 0 0 1
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In the previous section, we developed the stiffness matrix attributed to bending

for a beam element. This matrix accounts for lateral displacements and rotations at each
node and is

Uy Up Uz Uy UuUp U

0 0 0 0 0 0 Uy
0 12 6L 0 -12 6L |u,
EI|0 6L 41> 0 -6L 2I? U
(K] =— ' (845)
Llo 0 0 0 0 0 |y
0 12 —6L 0 12 —6L |up
0 6L 2L* 0 —6L 4L fup

To represent the contribution of each term to nodal degrees of freedom, the degrees of
freedom are shown above and alongside the stiffness matrix in Eq. (8.45). In Chapter 4,
we derived the stiffness matrix for members under axial loading as

Uy  Up U Up Up Up
[ AE AE ]
3 00 7 0 0 [uy
0 00 0 0 0luy
0 00 0 00O
(K] = (8.46)
AE AE
I 0 0 7 0 0 {up
0 00 0 O 0]|u
L 0 00 0O O 0jus
Adding Eqgs. (8.45) and (8.46) results in the stiffness matrix for a frame element:
[ AE AE |
L 0 0 I 0 0
12EI  6EI 12EI 6EI
0 3 2 0 ——F -7
L L L L
6EI AEI 6EI 2EI
°* = T ° & T
(K19 = (8.47)
_AE o AE 0
L L
12EI  6EI 12E1 6E]
"o ¢ Tr
o SEL 2Bl _6EL 4EI
L? L L? L
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Note that we need to represent Eq. (8.47) with respect to the global coordinate system.
To perform this task, we must substitute for the local displacements in terms of the glob-
al displacements in the strain energy equation, using the transformation matrix and per-
forming the minimization. (See Problem 8.12.) These steps result in the relationship
(K)® = [T]'[K],,[T] (8.48)

Next, we will demonstrate finite element modeling of frames with another example.

EXAMPLE 8.2

Consider the overhang frame shown in Figure 8.12. The frame is made of steel, with
E = 30 X 10°1b/in®. The cross-sectional areas and the second moment of areas for the
two members are shown in Figure 8.12. The frame is fixed as shown in the figure, and
we are interested in determining the deformation of the frame under the given distrib-
uted load.

We will model the problem using two elements. For element (1), the relationship
between the local and the global coordinate systems is shown in Figure 8.13.

800 Ib/ft

10ft |

FIGURE 8.12 An overhang frame supporting a distributed load.

L) Un
y
Y
] ]
43 . g_;x uyy 1 \ uy
X }
17 %) 2/

FIGURE 8.13 The configuration of element (1).
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@

Us3

3 ﬁ—»“sz
~

Y U3t FIGURE 8.14 The configuration of element (2).

Similarly, the relationship between the coordinate systems for element (2) is shown
in Figure 8.14.

Note that for this problem, the boundary conditions are Uy, = Uy, = Uy3 =
U, = Us, = Uj; = 0.For element (1), the local and the global frames of reference are
aligned in the same direction; therefore, the stiffness matrix for element (1) can be com-
puted from Eq. (8.47), resulting in:

19125 0 0 —1912.5 0 0
0 425 2550 0 —42.5 2550
0 2550 204000 0 —2550 102000
) =
(K] 10° -19125 0 0 1912.5 0 0
0 —-42.5 -2550 0 425 —2550
0 2550 102000 0 —2550 204000

For element (2), the stiffness matrix represented with respect to the local coordinate sys-
tem is: )

2125 0 0 ~2125 0 0
0 58299 3148148 0  —58299  3148.148
KIS = 10° 0  3148.148 226666 0 -3148.148 113333
xy -2125 0 0 2125 0 0

0 ~58299 —3148.148 0 58299  —3148.148
0 3148.148 113333 0 —3148.148 226666
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For element (2), the transformation matrix is and performing the matrix operation, we obtain

58.299 0 3148.148  —58.299 0 3148.148

~sin(270) cos(270) 0 O 6 0 KO = 17| 3148148 0 226666 3148148 0 113333
(1] = 0 ¢ 1 0 o0 (KIP=10) 58200 0 3148148 56299 0 —3148.1480
0 0 0 cos(270) sin(270) O 0 —2125 0 0 2125 0
0 0 0 —sin270) cos(270) 0 3148148 0 113333 -3148148 0 226666
L0 0 0 0 0 ! Constructing the global stiffness matrix by assembling [K]® and [K]®, we have
[0 -1 00 0 0 19125 0 0 ~1912.5 0 0
1 000 00 0 425 2550 0 -425 2550
m=]9 ¢ 1000 0 2550 204000 0 ~2550 102000
00 00 -10 ~19125 0 0 19125 + 58299 0 0 + 3148.148
00 01 00 K]@ = 1¢? 0  -425 -2550 0 42.5 + 2125 -2550
[0 0 00 0 1 0 2550 102000 O + 3148.148 —2550 204000 + 226666
0 0 0 ~58.299 0 -3148.148
The transpose of the transformation matrix is: 0 0 0 0 —2125 0
0 0 0 3148.148 0 113333
0100 00 - -
~100 0 00 0 0 0
ap=| 0 01 000 0 0 0
000 0 10 0 0 0
0 00 -1 0 0 -58299 0 3148148
0 000 01 0 -ax% 0
-3148148 0 113333
Substituting for [T, [K]?, and [T] into Eq. (8.48), we have: 58:299 0 —3148.1480
0 2125 0
010000 [2125 0 0 2125 0 0 -3148.148 0 226666 |
daonooll e v o e -
(KIP=10"1 60 0 10||-2125 0 0 2125 0 0 o) 0 ]
000-100 0 —58299 -3148148 0 58299 —3148.148 _wL _800 x 10
000001 0 3148148 113333 0 —3148.148 226666 2 2 0
wL? 800 X 102 X 12 ~4000
0 -1 00 0 0 wo={ 2\_ 12 — | 80000
1 0 00 00 0 0 0
0 01000 _wL _800 X 10 —4000
0 0 00 -10 2 2 80000
00 01 00 wL? 800 X 107 X 12
0 0 00 0 1 12 12
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In the load matrix, the force terms have the units of 1b, whereas the moment terms
have the units of Ib - in. Application of the boundary conditions (Uy; = Uy, = Uy = Uy, =
Us, = Us; = 0) reduces the 9 X 9 global stiffness matrix to the following 3 X 3 matrix:

1970.799 0 3148.148 | |Uy 0
10° 0 21675 —2550 Uyt = {—4000
3148.148 —2550 430666 Uy 80000

Solving these equations simultaneously results in the following displacement matrix:
[UF ={0 0 0 -0.0002845(in) —0.0016359(in) 0.00017815(rad) 0 0 0]
This problem will be revisited later in the chapter and solved with ANSYS.

We begin by reviewing some of the fundamental concepts dealing with the elastic be-
havior of materials. Consider an infinitesimally small cube volume surrounding a point
within a material. An enlarged version of this volume is shown in Figure 8.15. The faces
of the cube are oriented in the directions of (X, Y, Z) coordinate system.* The appli-
cation of external forces creates internal forces and, subsequently, stresses within the
material. The state of stress at a point can be defined in terms of the nine components
on the positive faces and their counterparts on the negative surfaces, as shown in the fig-
ure. However, recall that because of equilibrium requirements, only six independent
stress components are needed to characterize the general state of stress at a point. Thus
the general state of stress at a point is defined by:

T _
[a]" = [0' xx Oyy Ozz Txy Tyz sz] (849)
where oy x, Oyy, and 077 are the normal stresses and 1yy, Ty, and 757 are the shear

stress components, and they provide a measure of the intensity of the internal forces
acting over areas of the cube faces. In many practical problems, we come across situa-

FIGURE 8.15 The components of stress at a
point. '

"Note that throughout this section X, Y, Z and x, y, z coordinate systems are aligned.
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FIGURE 8.16 Plane state of stress.

tions where there are no forces acting in the Z-direction and, consequently, no internal
forces acting on the Z- faces. This situation is commonly referred to as a plane stress sit-
uation, as shown in Figure 8.16.

For a plane stress situation, the state of stress reduces to three components:

[o]" = [oxx oyy Txv) (8.50)
‘We have just considered how an applied force can create stresses within a body. As you
know, the applied force will also cause a body to undergo deformation, or change in its
shape. We can use a displacement vector to measure the > changes that occur in the posi-
tion of a point within a body. The displacement vector & can be written in terms of its
Cartesian components as
8= u(x, 5, 2)0 + v(x, 3, 2] + wlx,y, )k

where the i,j, and k components of the displacement vector represent the difference in
the coordinates of the displacement of the point from its original position (x, y, z) to a
new position (x', y', z') caused by loading, as given by the equations

u(x,y,z) =x — x
’U(xvyyz) =y -y
w(x,y,2) =2 —z
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To better measure the size and shape changes that occur locally within the mate-
rial, we define normal and shear strains. The state of strain at a point is, therefore, char-
acterized by six independent components:

[E]T=[8XX ey,v szz 'ny ‘sz 'sz] (851)

€4y, €,y,and €, are the normal strains, and v, v,,, and v,, are the shear-strain compo-
nents. These components provide information about the size and shape changes that
occur locally in a given material due to loading. The situation in which no displacements
occur in the z-direction is known as a plane strain situation. As you may recall from your
study of the mechanics of materials, there exists a relationship between the strain and
the displacement. These relationships are:

ou v qw
€ = o & = %y = (852)
L w  _w w o ow
Yo Ty Tax T Ty =T a7 T ax

Over the elastic region of a material, there also exists a relationship between the state
of stresses and strains, according to the generalized Hooke’s Law. These relationships are:

1
Exx = E [oxx - v(Uyy + UZZ)] (853)

1
gy = E [o'yy - v(cr,, + (ru)]

1
€2 T E [czz - v(uxx + ny)]

1 1 1
Yxy = ETxy Yyz = ETyz Yox = Esz

where E is the modulus of elasticity (Young’s modulus), v is Poisson’s ratio, and G is
the shear modulus of elasticity (modulus of rigidity). For a plane stress situation, the
generalized Hooke’s Law reduces to

Ty E 1 v 0 €1y
Oy = T2 1 0 £y (8.54)
Ty 0 0 1-v Yxy
2
or, in a compact matrix form,
{o} = [v}{e} (8.55)
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where

E 1 v 0
[v]= siv 1 0
1—-v 1 -
0 0 Y
2
SXX
[e] = {2y
Yxy

For a plane strain situation, the generalized Hooke’s Law becomes:

Oxx 1—-v v 0 Eyx

E
:’yy = m v 1-v 0 £,y (8.56)

Xy O 0 % -y 'YXy

Furthermore, for plane stress situations, the strain-displacement relationship becomes:

TR CRNN VI

We have discussed throughout this text that the minimum total potential energy
approach is very commonly used to generate finite element models in solid mechanics.
External loads applied to a body will cause the body to deform. During the deformation,
the work done by the external forces is stored in the material in the form of elastic en-
ergy, which is called strain energy. For a solid material under biaxial loading, the strain
energy A is

1
Al = EJ (0,, £t 0,8, + 'r,yyxy) dv (8.58)
v

Or, in a compact matrix form,
A® = % f (o]{e} dV (8.59)
v
Substituting for stresses in terms of strains using Hooke’s Law, Eq.(8.59) can be written as
AP = -;— J {ef[»){e} aV (8.60)
v

We are now ready to look at finite element formulation of plane stress problems
using triangular elements. We can represent the displacements u and v using a linear
triangular element similar to the one shown in Figure 8.17.
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Uy

y

U, FHGURES8.17 A triangular element used in
formulating plane stress problems.

The displacement variable, in terms of linear triangular shape functions and the
nodal displacements, is

u= Sil]ix + Sjl]jx + Skka (861)
v = S,‘l]‘-y + S]l]», + SkUky
We can write the relations given by Eq. (8.61) in a matrix form:

U
U
o

8.62
U, (8.62)
ka
Uky

——
e =
S
I
=
o
o L
o
o
o
| E—

The next step involves relating the strains to the displacement field and, subsequently,
relating the strains to the nodal displacements using shape functions. Referring to the
strain-displacement relations as given by Eq. (8.57), we need to take the derivatives of
the components of the displacement field with respect to the x and y coordinates, which,
in turn, means taking the derivatives of the appropriate shape functions with respect to
x and y. Performing these operations results in the following relations:

u ] 1

Exx = 3; = -6—; (Si(]ix + Sjljix + Skka) = K[B,U.x + le]ix + Bkka] (863)
v J 1

Sy = oy T E(S,-U,-y + §;Ujy + S,Us,) = ﬂ[siny +8;Uyy + 8, Uy

_ib_t_ av

1
Yoy = dy ox ﬂ[SiUix + Bily + 8Up + B;U; + 8 Upe + B"U“y]
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Representing the relations of Eq. (8.63) in a matrix form, we have

U
ew) o[B80 8 0 B 0|k
ey =52 0 3 0 3 0 3 U’ (8.64)
Yxy 8i Bl’ 8] B/ 8k Bk Ul
kx
Uy,
and in a compact matrix form, Eq. (8.64) becomes
{e} = [B){U} (8.65)
where
U
(B 08 08 0 o
{e}={ey( Bl=5,10 & 0 8 0 & | {Uh=1{r"
Vxy & B 5;‘ B;‘ S B Uly
kx
kay

Substituting into the strain energy equation for the strain components in terms of the
displacements, we obtain

1 1
K= [Erpterav =3 [rmBrmBIOIay @)
14 L4
Differentiating with respect to the nodal displacements, we obtain
A9

9 (1 TR’ ) =
U, W, (2 L[U] [B]'[v][B][U])dV | fork =1,2,...,6 (8.67)
Evaluation of Eq. (8.67) results in the expression [K]‘){U}. The expression for the stiff-
ness matrix is thus

(KI° = | (BY[vI[B) 4V = VB 3][B] 3.68)
v
Here, V is the volume of the element and is the product of the area of the element and
its thickness.

Load Matrix

To obtain the load matrix for a two-dimensional plane stress element, we must first com-
pute the work done by the external forces, such as distributed loads or point loads. The
work done by a concentrated load Q is the product of the load component and the cor-
responding displacement component. We can represent the work done by concentrat-
ed loads in a compact matrix form as

we = {(UY{Q} (8.69)
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A distributed load with p, and p, components does work according to the relationship
we = J (up, + vp,) dA (8.70)
A

where u and v are the displacements in the x and y directions, respectively, and A rep-
resents the surface over which the distributed load components are acting. The magni-
tude of the surface A is the product of the element thickness ¢ and the length of the edge
over which the distributed load is applied. Using triangular elements to represent the dis-
placements, we find that the work done by distributed loads becomes

we = L{U}T[S]T{p} dA 8mn)

where

_ 1P
{p} { p,}
The next step in evaluating the load matrix involves the minimization process. In the case

of the concentrated load, differentiation of Eq. (8.69) with respect to nodal displace-
ments yields the components of the loads:

Qix
Qi y
{F}9 = gf‘ (8.72)
1y
Qkx
Qky

The differentiation of the work done by the distributed load with respect to the nodal
displacements gives the load matrix

) = | [s7tp) da 679§
A
where
S; 0
0 S
S, 0
T .| 9
sT={ g s
S 0O
0 S

Consider an element subjected to a distributed load along its ki-edge, as shown in
Figure 8.18. :
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k i k j
Px
g Py
i y !
X

FIGURE 8.18 A distributed load acting over the ki-edge of a triangular element.

Evaluating Eq. (8.73) along the ki-edge and realizing that along the ki-edge,
§; = 0, we have:

S,* 0 Si 0 Px
0 S,' 0 Si py
S; 0 DPx J 0 0 Dx tL,‘k 0
© = J = = thik 74
{F} L 0 s {p,} dA =1 o o {p, de == 1 (874)
Sk 0 Sk 0 Px
0 Sk 0 sk Py

Note that the effect of the distributed load in Figure 8.18 along the ki-edge is repre-
sented by two equal nodal forces at i and &, with each force having x and y components.
In a similar fashion, we can formulate the load matrix for a distributed load acting along
other sides of the triangular element. Evaluation of the integral in Eq. (8.73) along the
ij-edge and the jk-edge results in:

Dx 0
Dy 0
tL; tL;
@ = i ) Px @ = ik P 8.75
{F} 2 \p, {F} 2 \», (8.75)
0 Px
0 Py

It is worth noting that, generally speaking, linear triangular elements do not offer as ac-
curate results as do the higher order elements. The purpose of the above derivation was
to demonstrate the general steps involved in obtaining the elemental stiffness and load
matrices. Next, we will derive the stiffness matrix for a quadrilateral element using
isoparametric formulation.
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n
U,
i Upy
L -Un 1,1 T
(—1, 1) n m mx
*AE )
&
Ul[" v Uy
L) & Uie T Us

i )
(lv _1)

FIGURE 5.12 A quadrilateral element used in formulating plane stress problems.

Isoparametric Formulation: Using a Quadrilateral Element

As we discussed in Chapters 3 and 5, when we use a single set of parameters (a set of
shape functions) to define the unknown variables u, v, T, and so on, as well as to express
the position of any point within the element, we are using isoparametric formulation. An
element expressed in such manner is called an isoparametric element. We will now turn
our attention to the quadrilateral element previously shown as Figure 5.12 (repeated here
for convenience). Using a quadrilateral element, we can express the displacement field
within an element by Eq. (5.27):

u = SUy + S;Uy + SpUps + S,Up (5.27)
v = S;Uy + ;U + SyUp, + S,Up,
We can write the relations given by Eq. (5.27) in matrix form, given previously in Eq. (5.28):

——
e &
—_—
Il
o W
o
[= 3]
o
o
“ o
o =W
“ o
I
RS
~~
(9
8

3

Note that using isoparametric formulation, we can use the same shape functions to de- '
scribe the position of any point within the element by the relationships in Eq. (5.29):

x=8x;+ 8;x; + Spx, + S, x, (5.29)
y= Sz.Yc + Siyj + Smym + Snyn 3
The displacement field is related to the components of strains (e, = 2, ¢ vy = 3—',’, and
Yay = g—; + 2) and, subsequently, to the nodal displacements through shape functions.

[
’ [
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In Chapter 5, we also showed that using the Jacobian of the coordinate transformation,
we can write the following, previously presented as Eq. (5.31):

[3]

Fxy)) [ ox oy’ (/%)
i3 _ | 9 ok ax

fy) | ox dy | |3t y) (531)
m o an ay

The relationship of Eq. (5.31) was also presented as the following, previously shown as
Eq. (5.32):

fx.y) LAC))
ax . a€
= (I 532
o) [ =W ot y) (5.32)
ay an
For a quadrilateral element, the J matrix can be evaluated using Eqgs. (5.29) and (5.7):
d 3
ox 9y i[S,~,\:,-+S,Jc,-+S,,,J\¢,,,+S,,x,,] —[Siy,»+S,~y]~+S,,,y,,,+S,,y,,]
9 ot at a¢
ax ay || s 9 (876)
x
R E E[S,»x,-+S,xj+S,,,x,,,+S,,x,,] E[sm+s,y,+smym+s,,y,‘]

_1 [[-(1 —m)x + (1= )x; + (1 + 9)x, — (1 + m)x,]
4

Q- &xi— (1 +&x+ A+ Ex, + (1 = E)x,]

[_(1 —m)yt A -—my+Q+m)y, -1+ ﬂ))’n]:l - |:Ju ]12:| 8.77)
[ - &y - A+ &y + 1+ E)ym + (1 - Ex] I o
Also recall that the inverse of a two-dimensional square matrix is given by:

. 1 In _sz] 1 |:]22 ']12]
J 1= [ = 8.78
O = T = Tadn L—dn Ju |~ detd |-k Iy .78)

We can now proceed with the formulation of the stiffness matrix. The strain ener-
gy of an element is

ro=1 jv{e}f[v]{e} av = 2(1) L{e}’[v]{e} dA ®79)

where ¢, is the thickness of the element. Recall the strain—displacement relationships in
matrix form:

?ﬁ
ax
£
XX av
= = — 8.80
{e} = { &y o (8:80)
Yay du  ov
__.+_
dy ox
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Evaluating the derivatives, we obtain

u u
ax - 1 -122 _112 ag
QE detJ _121 J]] 6_u
ay am
and
L v
ax - 1 ]22 _.112 BE
92 detJ '_121 ]11 av
ay am
Combining Eqs. (8.80), (8.81), and (8.82) into a single relationship, we have
'4 3
ou
e [A] %
9
N b ~Jy 0 0 o
= & Y=L 1o o -1 I on
ay detJ noom v
a_u 92 =Jn Ju Jn  ~Jp 5‘5"
dy dx v
)

(8.81)

(8.82)

(8.83)

Note how we defined the [ A] matrix, to be used later. Using Eq. (5.27), we can perform

the following evaluation:

SES

~

S8

<

du
% [D]
du -l-m) 0 (@=-m) 0 (Il+m) 0 -—(1+m) O
ml _1|-1-¢ o0 -(1+¢ 0 1+¢& o0 (1-¢¥) 0
v 4 6 —(1-m) O (1-m) 0 (1T+m) 0 -1 +m)
13 0 —-(1-¢& 0 -(1+¢& 0 (d+¢ o0 1-¢
av )
an {U}

Us

Uy

U,

y (8.84)
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We can express the relationship in Eq. (8.84) in a compact matrix form as
{e} = [A][D]{U} (8.85)
Next, we need to transform the dA term (dA = dxdy) in the strain energy integral into
a product of natural coordinates. This transformation is achieved in the following manner:
dA

A9 = 2(2) L{e}’[w]{e} da=2() j | ¥ )} detdagdn (836

Substituting for the strain matrix [¢] and the properties of the material matrix [v] into
Eq. (8.86) and differentiating the strain energy of the element with respect to its nodal
displacements, we find that the expression for the element stiffness matrix becomes:

i1
(K)O = z,J f [[A)DI] [v)(A)[D] det Jdtdn (8:87)

191
Note that the resulting stiffness matrix is an 8 X 8 matrix. Furthermore, as discussed in

Chapter 5, the integral of Eq. (8.87) is to be evaluated numerically, using the Gauss-Le-
gendre formula.

EXAMPLE 8.3

A two-dimensional triangular plane stress element made of steel, with modulus of elas-
ticity E = 200 GPa and Poisson’s ratio v = 0.32, is shown in Figure 8.19. The element
is 3 mm thick, and the coordinates of nodes i, j, and k are given in centimeters in Figure
8.19. Determine the stiffness and load matrices under the given conditions.

The element stiffness matrix is

(K} = V[B]"[v][B]

P=500N

X

FIGURE 8.19 The loading and nodal coordinates for the element in Example 8.3.
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where
V=tA
L8 08 0 e o0
[B]=a 0 5 0 5 0 B8
8 B:i 8 B; ¥ B
1 v 0
[v]= 1 1 0
00 1-v
Thus,
B:=Y, - Y, =165~-10=065 & =X,~X;=150~240=-09
Bi=Y,—Y,=10-0.75=025 =X, - X, =225~-15=10.75
Be =Y, - Y, =075 - 165 =—-09 8 =X;— X; =240 — 225 =015
and
24 = X(¥, - ¥) + XY ~ ¥) + X(¥, - ¥)
24 =2.25(1.65 — 1.0) + 2.40(1.0 — 0.75) + 1.5(0.75 — 1.65) = 0.7125
Substituting appropriate values into the above matrices, we have
065 0 025 0 -09 0
[B]=—1—— 0 -09 0 075 0 015
0.7125 : ’ :
-09 065 075 025 0.15 -09

065 0 —09
0 -09 065

1 1025 0 075
T07125] 0 075 025
-09 ‘0 015

0 015 —09

N
200x10°0—[ 1 032 0

[v]=TW 032 1 0
o o L1-0
: 2

22281640 7130125 0
=] 7130125 22281640 0
32 0 0 7575758
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Carrying out the matrix operations results in the element stiffness matrix:
065 0 -09
(0.3)(0—'722—5-) 0(;5 —2,9 8,6,: 22281640 7130125 O
[K¥=—2—— ’ 7130125 22281640 0
(0.7125) 0 075 025 0 0 7575758
-09 0 015
0 015 -09
065 0 025 0 -—-09 O
0 -09 0 075 0 015
-09 065 075 025 015 -09
Simplifying, we obtain
3273759 —1811146 —314288 372924 —2959471 1438221
—1811146 4473449 439769 —2907167 1371376 —1566282
—314288 439769 1190309 580495  —876020 —1020265
[K]® = (N/cm)
372924 2907167 580495 2738296 —953420 168871
—2959471 1371376 —876020 953420 3835491 —417957
1438221 —1566282 -1020265 168871  —417957 1397411
The load matrix due to the distributed load is
Dx 1200 142
Py 0 0
(O = thy JO{ _ 03)V(225 - 1.5¢ + (075 - 107 ] 0 [ _} 0
2 |0 2 0 0
Dx 1200 142
Dy 0 0
The load matrix due to the concentrated load is
0 0 0
0 0 0
{ FJ9 = Qi _ )—500 Cf)s SO\ _ —321
Qi —500 sin (50) —383
0 0 0
0 0 0
The complete load matrix for the element is
142
0
5 )—321
{FY9 =0 331 @
142

0
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8.4 BASIC FAILURE THEORIES

One of the goals of most structural solid analyses is to check for failure. The prediction
of failure is quite complex in nature; consequently, many investigators have been study-
ing this topic. This section presents a brief overview of some failure theories. For an in-
depth review of failure theories, you are encouraged to study a good text on the
mechanics of materials or on machine design. (For a good example of such a text, see
Shigley and Mischke (1989)).

Using ANSYS, you can calculate the distribution of the stress components o,,0,,
and 7,,, as well as the principal stresses ¢, and o, within the material. But how would
you decide whether or not the solid part you are analyzing will permanently deform or
fail under the applied loading? You may recall from your previous study of the me-
chanics of materials that to compensate for what we do not know about the exact be-
havior of a material and/or to account for future loading for which we may have not

accounted, but to which someone may subject the part, we introduce a Factor of Safety
(ES.), which is defined as

Pmax

P, allowabie

FS. = (8.88)

where P, is the load that can cause failure. For certain situations, it is also customary
to define the factor of safety in terms of the ratio of maximum stress that causes failure
to the allowable stresses if the applied loads are linearly related to the stresses. But how
do we apply the knowledge of stress distributions in a material to predict failure? Let
us begin by reviewing how the principal stresses and maximum shear stresses are com-
puted. The in-plane principal stresses at a point are determined from the values of ¢
g,,,and 7, at that point using the equation

xx»

o, +a, o, — 0,)\?2
G2 = 2 + ( > > + 1%, (8.89)

The maximum in-plane shear stress at the point is determined from the relationship

Tmax = (o.x _ UY>2 + ’1'2 (8 90)
2 xy ‘

There are a number of failure criteria, including the maximum-normal-stress theory,
the maximum-shear-stress theory, and the distortion-energy theory. The distortion-energy
theory, often called the von Mises-Hencky theory, is one of the most commonly used cri-
.teria to predict failure of ductile materials. This theory is used to define the start of yield-
mg. For design purposes, the von Mises stress o, is calculated according to the equation

g, = V U% - 00, + U% (891)
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A safe design is one that keeps the von Mises stresses in the material below the yield
strength of the material. The relationship among the von Mises stress, the yield strength,
and the factor of safety is

Sy
0, = T4

= (8.92)

where Sy is the yield strength of the material, obtained from a tension test. Most brittle
materials have a tendency to fail abruptly without any yielding. For a brittle material
under plane stress conditions, the maximum-normal-stress theory states that the mate-
rial will fail if any point within the material experiences principal stresses exceeding the
ultimate normal strength of the material. This idea is represented by the equations

|0-1l = Sultimate IO-ZI = Sultimate (893)

where S, imat 1S the ultimate strength of the material, obtained from a tension test. The
maximum-normal-stress theory may not produce reasonable predictions for materials
with different tension and compression properties; in such structures, consider using the
Mohr failure criteria instead.

8.5 EXAMPLES USING ANSYS

ANSYS offers a number of elements that can be used to model two-dimensional solid-
structural problems. Some of these elements were introduced in Chapter 5. The two-di-
mensional solid-structural elements in ANSYS include: BEAM3, PLANE?2, PLANE42,
and PLANES2.

BEAMS3 is a uniaxial element with tension, compression, and bending capabili-
ties. The element has three degrees of freedom at each node: translation in the x and
y-directions and rotation about the z-axis. The element input data include node locations,
the cross-sectional area, the second moment of area, the height, and the material prop-
erties. Output data include nodal displacements and additional elemental output. Ex-
amples of elemental output include axial stress, bending stress at the top or bottom of
the beam’s cross section, maximum (axial + bending), and minimum{(axial — bend-
ing). BEAM4 is a three-dimensional version of BEAM3.

PLANE2 is asix-node triangular structural-solid element. The element has qua-
dratic displacement behavior, with two degrees of freedom at each node: translation in
the nodal x and y-directions. The element input data can include thickness if the KEY-
OPTION 3 (plane stress with thickness input) is selected. Surface-pressure loads may
be applied to element faces. Output data include nodal displacements and elemental
data, such as directional stresses and principal stresses.

PLANE42 is a four-node quadrilateral element used to model solid problems.
The element is defined by four nodes, with two degrees of freedom at each node: trans-
lation in the x and y-directions. The element input data can include thickness if the
KEYOPTION 3 (plane stress with thickness input) is selected. Surface-pressure loads
may be applied to element faces. Output data include nodal displacements and ele-
mental data, such as directional stresses and principal stresses.
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PLANES2 is an eight-node quadrilateral element used to model two-dimen- Type Frame2D (or a file name of your choice) in the Initial Jobname entry ficld
sional structural-solid problems. It is a higher order version of the two-dimensional, of the dialog box.
four-node quadrilateral PLANE42 clement. This element offers more accuracy when
modeling problems with curved boundaries. At each node, there are two degrees of free-
dom: translation in the x and y-directions. The element input data can include thickness
if the KEYOPTION 3 (plane stress with thickness input) is selected. Surface-pressure
loads may be applicd to element faces. Output data include nodal displacements and el-
emental data. such as directional stresses and principal stresses.

EXAMPLE 8.2 (REVISITED)

Let us consider the overhang frame again. in order to solve this problem using ANSYS.
Recall that the frame is made of steel with £ = 30 x 10" Ib/in. The respective cross-
sectional areas and the second moments of areas for the two members are shown in Fig-
ure 8.12 (repeated here for your convenience). The members have a depth of 12.22 in.
The frame is fixed as shown in the figure. We are interested in determining the deflec-
tions and the rotation of the frame under the given distributed load.

Enter the ANSYS program by using the Launcher. Type xansys54 on the com-
mand line, or consult your system administrator for the appropriate command
name to launch ANSYS from your computer system.

Pick Interactive from the Launcher menu.

800 tb/ft
;152?);?':4“; Pick Run to start the Graphic User Interface (GUI). A window will open with
some disclaimer information. You will eventually be asked to press the Return
key to start the graphics window and the main menu. Do so in order to proceced.
91t Create a title for the problem. This title will appear on ANSYS display windows to pro-
A =7.65in i vide a simple way to identify the displays. So. use the following command sequences:
=7.651n- | 3 )
1= 204 in? .
utility menu: File — Change Title ..
e e [0 e

FIGURE 8.12  An averhang frame supporting o distributed foad X main menu: Preprocessor — Element Type — Add/Edit/Delete



356 Chapter 8 Analysis of Two-Dimensionat Solid Mechanics Problems Section 8.5 Examples Using ANSYS 357

Element 1ypes main menu: Preprocessor — Material Props — -Constant-Isotropic ..

{solropic Matenal Propetties

B

|
i
i
:
o
i Isoltopic Malen P(p g[t:es )

: Library of Element Types

Structural Mass
Link

Solid £

Shell tapered
Hypere lastic .
Uisco Solid
Contact

Assign the modulus of elasticity by using the following commands: main menu: Preprocessor — Real Constants ..
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i Real Constants

NONE DEFINED

] i Element Type for Reat Constants

BEAM3

7_27F_|_eal Constants for BLAM3
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ANSYS Toolbar: SAVE_DB
Set up the graphics area (i.c., work plane, zoom, etc.) with the following commands:
utility menu: Workplane — Wp Settings ...

P
Insr A0y

1
—
S
—
—
— 1

utility menu: Workplane — Display Working Plane
Bring the workplane to view by the command
utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Click on the smali circle until you bring the workplane to view. Then create the
nodes and elements:

main menu: Preprocessor — -Modeling-Create — Nodes

— On Working Plane+
ﬁ {WP = (,108]

ﬁ [WP = 120,108]
[Iﬂ% [WP = 120,0]

OK

main menu: Preprocessor — -Modeling-Create — Elements
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I\J Ipick node 1}
lL_ | pick node 2]
j:_rllU [apply anywhere in the ANSYS graphics window|
B[ [pick node 2]
iDb [pick node 3]

(i lanywhere in the ANSYS graphics window]

OK
utility menu: Plot — Elements

Toolbar: SAVE_DB
Apply boundary conditions with the following commands:

main menu: Solution — -Loads-Apply — -Structural-Displacements
— On Nodes +
- |pick node 1]

| pick node 3]

[; lanywhere in the ANSYS graphics window]

i Apply U,Rp[gp dies

main menu: Solution — -Loads-Apply — -Structural-Pressure
-> On Beams +

I [pick element 1]
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]J![J'- |anywhere in the ANSYS graphics window|
B
_

T Apply PRLS on Beams

To see the applied distributed load and boundary conditions, use the follow-
ing commands:

utility menu: PlotCtrls — Symbols ...

i Symbols )
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utility menu: Plot — Elements
ANSYS Toolbar: SAVE_DB
Solve the problem:
main menu: Solution — -Solve-Current LS
OK
Close (the solution is done!) window.
Close (the/STAT Command) window.

Begin the postprocessing phase and plot the deformed shape with the following
commands:

main menu: General Postproc — Plot Results — Deformed Shape ...

+ Plot Detormed Shape
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List the nodal displacements with the following commands:

main menu: General Postproc — List Results — Nodal Solution ...

t Nudal Sulution

l—/—\ PHNSUL  Command

PRINT DOF NODAL SOLUTIOE PER NODE
s*w+% POST1 NODAL DEGREE OF FREEDOM LISTING *#*www

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL CGORDINATES

NODE Ux Uy ROTZ
1 . 00000 . 00000 .00000
2 -.2B459E-03 -.163S59E-02 .17816E-03
3 . 00000 .00000 .00000

MAXIMUM ABSOLUTE VALUES
NODE 2 2 2
VALUE  -.28459E-03 -.16359E-02 .17816E-03

List the reactions with the following commands:

main menu: General Postproc — List Results — Reaction Solution ...

List Reactisn Solution
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' PRRSOL Command

FRINT REACTION SOLUTIONS PER NODE
*#A3s PAST1 TOTAL REACTION SOLUTION LISTING *s#ss

LOAL STEP= 1 SIRETEP= 1
TIME= 1.0000 LOAD CASE= Q

THE FOLLOWING ¥,%¥,Z SCLUTIONS ARE IN GLOBAL CCORDINATES

NOLE FX FY nz
1 544.29 4524.0 + 10Z35E+0¢€
% -544.29 476.4 19296,

TOTAL VALUES
VALUE . 00000 &con. 4 -12164E+06

Exit ANSYS and save everything:
ANSYS Toolbar: QUIT

: EHAII tiom ANSYS

EXAMPLE 8.4

The bicycle wrench shown in Figure 8.20 is made of steel with a modulus of elasticity
E = 200 GPa and a Poisson’s ratio v = 0.32, The wrench is 3 mm thick. Determine the
von Mises stresses under the given distributed load and boundary conditions.

The following steps demonstrate how to (1) create the geometry of the problem,
(2) choose the appropriate element type, (3) apply boundary conditions, and (4) obtain
nodal results:

Enter the ANSYS program by using the Launcher. Type xansys54 on the com-

mand line, or consult your system administrator for the appropriate command

name to launch ANSYS from your computer system.

Pick Interactive from the Launcher menu.

Tvpe Bikewh (or a file name of vour choice) in the Initial Jobname eniry field of
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K=125cm

g The sides of the middle
hexagon are Y mm long.
|<——3cm—>

\

Y

\
\

—— —w\ .
| i i The sides of the corner
— lom |—— ——=|1cm e hexagons are 7 mm long.
88 N/cm
e v o \\
7 /,,;, Y
/ . :
& /'/\ !
Ny

s

——

Fixed all the way around
this hexagon.

FIGURE 8.20 A schematic for the bicycle wrench in Example 8 4.

365
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Pick Run to start the Graphic User Interface (GUI). A window will open with
some disclaimer information. You will eventually be asked to press the Return
key to start the graphics window and the main menu. Do so in order 1o proceed.

Element Typgs

PLANES2
Create a title for the problem. This title will appear on ANSYS display windows

to provide a simple way to identify the displays. So. issue the command

utility menu: File — Change Title . ..

- Change Title

Define the element type and material properties with the following commands:

main menu: Preprocessor — Element Type — Add/Edit/Delete ...  PLANESZ efement type options

Element Types Plane strs w/thkig

No extra output i}
No extra output i

NONE _DEFINED

PLANE82

i Library of Element Types

Hyperelastic
Uisco Solid
Contact

Assign the thickness of the wrench with the following commands:

main menu: Preprocessor — Real Constants ..
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Real Constanls

NONE DEFINED

{ Element 1ype tos Real Constants

1 PLANES2

< Real Constants for PLANEGZ .

Real Constants

14

Assign the modulus of elasticity and Poisson’s ratio valucs by using the follow-

mg commands:
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main menu: Preprocessor — Material Props — -Constant-Isotropic ..

i Isolropic Materiat Propenties

+ Isotiopic Maternal Pioperties

ANSYS Toolbar: SAVE_DB
Setup the graphics area (i.¢.. workplane, zoom, cte.) with the following commands:

utlity menu: Workplane — Wp Settings ...
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Create the circles with the following commands:

main menu: Preprocessor — -Modeling-Create — -Areas-Circle
— Solid Circle +
E [WP = 1.25,1.25]
E [Expand the rubber band to a radius of 1.25]
E [WP = 6.25,1.25]

[Expand the rubber band to a radius of 1.25]

[Expand the rubber band to a radius of 1.25]

E [WP = 11.25,1.25]

OK

Add the areas together with the commands:

—
— 1
—
—
I
—
—
=

11

main menu: Preprocessor — -Modeling-Operate — -Booleans-Add

— Areas +
Toggle on the workplane by using the command Click on the Pick All button, and then create the hexagons. First, change the Snap
utility menu: Workplane — Display Working Plane Incr in the WP Settings dialog box to 0.1 with the command
Bring the workplane to view by using the command WP Settings

utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Click on the small circle until you bring the work plane to view. Then, create the
geometry with the following commands:

main menu: Preprocessor — -Modeling-Create — -Areas-Rectangles
— By 2 Corners +
On the workplane, create the two rectangles:

Use the mouse buttons as shown below, or type the values in the appropriate fields.
’ml WP = 2.25,0.5]

L
FL [Expand the rubber band up 1.5 and right 3.0}

L WP = 725.05]

!DL [Expand the rubber band up 1.5 and right 3.0}
!

—
—
|
—
S
-
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utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Click on the Box Zoom, and put a box zoom around the left circle, then using the
following commands create the hexagon:

main menu: Preprocessor — -Modeling-Create — -Areas-Polygon
— Hexagon +

Use the mouse buttons as shown below, or type the values in the appropriate fields:

ﬁ [1.25,1.25]

Eﬂ [Expand the hexagon to WP Rad = 0.7, Ang = 120]

A\ Hexagonal Area

o ”

Then, issue the command
utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Click on the Fit button. Then, click on the Box Zoom, and put a box zoom around
the center circle. Use the mouse buttons as shown below, or type the values in the
appropriate fields:

[6.25,1.25]

H [Expand the hexagon to WP Rad = 0.9, Ang = 120]
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j N Hexagonal Area

utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Click on the Fit button. Then, Click on the Box Zoom, and put a box zoom around
the right-end circle. Use the mouse buttons as shown below, or type the values in
appropriate fields:

ﬁ [11.25, 1.25]

[Expand the hexagon to WP Rad = 0.7, Ang = 120}
Hexagonal Aea [ 2
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ANSYS Toolbar: SAVE_DB ANSYS Toolbar: SAVE_DB
Subtract the areas of the hexagons to create the driver holes: main menu: Preprocessor — -Meshing-Mesh — -Areas-Free +
main menu: Preprocessor — -Modeling-Operate Click on the Pick All button.

— -Booleans-Subtract — Areas + OK

Eﬂ [Pick the solid area of the wrench] Apply the boundary conditions and the load:

main menu: Selution — -Loads-Apply — -Structural-Displacements

E [Apply anywhere in the ANSYS graphics area} — On Keypoints +

Pick the six corner keypoints of the left hexagon:

OK

< Apply U.KU 1 on KPs

ﬁ |pick the left hexagon area

E [pick the center hexagon area]

E [pick the right hexagon area]

E [Apply anywhere in the ANSYS graphics area)

OK

Now you can toggle off the workplane grids with the following command: )
main menu: Solution — -Loads-Apply — -Structural-Pressure

utility menu: Workplane — Display Working Plane — On Lines +

ANSYS Toolbar: SAVE_DB Pick the appropriate horizontal line, as shown in the problem statement:

You are now ready to mesh the area of the bracket to create elements and nodes. OK
So, issue the following commands:

: . . . + Apply PRES on Lines
main menu: Preprocessor — -Meshing-Size Cntrls — -Manual Size ’

-Global-Size ...

: Globat Element Size:

Solve the problem:
main menu: Solution — -Solve-Current LS

OK

Close (the solution is done!) window.
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Close (the/STAT Command) window.

Begin the postprocessing phase and plot the deformed shape with the following
commands:

main menu: General Postproc — Plot Results — Deformed Shape ...

i Plot Deformed Shape

N ANSYS Graphics .

i
|
i
i
!

Plot the von Mises stresses with the following commands:

main menu: General Postproc — Plot Results

— -Contour Plot-Nodal Solu ...

+ Contous Nodal Solution Data

Strain-creep
Strain—other

Exit ANSYS and save everything:
ANSYS Toolbar: QUIT

Section 8.5

Examples Using ANSYS
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800 Ib/ft
544261b
—_—
k J 102,340 1b - in
4523.81b
9 ft
) N
8.6 VERIFICATION OF RESULTS
It is always necessary to compute the reaction forces and moments for beam and frame 544.26 Ib _—
problems. The nodal reaction forces and moments can be computed from the relationship . 19.2951b - in
* 1

{R} = [K]{U} - {F} 10t |
We computed the reaction matrix for Example 8.1, repeated here: 3476.21b

R 54687(N) FIGURE 8.22 The free body diagram for Example 8.2.

M, 39062(N-m)

Ry { _ ) 132814(N)

M.

R2 g SF =0 132814 + 54,687 — (25,000)(7.5) = -1~ 0

3
M3 0 and

SMopis = 0 39,062 — 54,687(5) + (25,000)(7.5)(125) = 2 ~ 0

Similarly, in reference to Example 8.2, we find that the reaction results generated using
ANSYS are shown in Figure 8.22. Checking for static equilibrium, we find that

SFx =0 54426 — 54426 = 0
SF, =0 45238 + 34762 — (800)(10) = 0

SMysy =0 102,340 + 19295 + 3476.2(10)(12) — (544.26)(9)(12)
— (800)(10)(5)(12) = —1.08 = 0

Now we turn our attention to Example 8.4. There are a number of ways you can
check the validity of the results of this problem. You can print the reaction forces and
check the value of their sum against the applied force. Are statics equilibrium condi-
tions satisfied? Using the path operations of ANSYS, you can also cut an arbitrary sec-
tion through the wrench and visually assess the x and y-components of the local stresses
and shear stresses along the section. You can integrate the stress information along the
path to obtain the internal forces and compare their values to the applied force. Are
statics equilibrium conditions satisfied? These questions are left to you to confirm.

Earlier, we discussed how to check the validity of results qualitatively. It was mentioned
that the results indicated that there is a reaction force and a reaction moment at node
1; there is a reaction force at node 2; there is no reaction moment at node 2, as expect-
ed; and there are no reaction forces or moments at node 3, as expected for the given prob-
lem. Let us also perform a quantitative check on the accuracy of the results. We can use
the computed reaction forces and moments against the external loading to check for
static equilibrium (see Figure 8.21):

25,000 N/m

U /A 39062 N -m
S5m 1 2.5m

54,687 N 132,814 N
FIGURE 8.21 The free body diagram for Example 8.1.
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SUMMARY
At this point you should:

1. know that it is wise to use simple analytical solutions, rather than finite element
modeling, for a simple problem whenever appropriate. Use finite element model-
ing only when it is necessary to do so. Simple analytical solutions are particularly
appropriate when you are solving basic torsional or beam problems.

2. know that the stiffness matrix for torsional problems is similar to the conductance
matrix obtained for two-dimensional conduction problems. The stiffness matrix
and the load matrix using a rectangular element are:

2 -2 -1 1 2 1 -1 =2
-2 2 1 -1 €11 2 -2 1
K0 = ¥ 2
[]68—112—2 6bw| -1 -2 2 1
1 -1 -2 2 -2 -1 1 2
1
(pye = 2094 )1
1
1
For triangular elements, the stiffness and load matrices are, respectively:
B! BiB; BiB« 8 88 83
(K] =1 B:B; B} Big’k toal %Y ¥ 8%,
BiBe B;Bx Bk 58 88, 8
2GHA 1
o = =22
3 1

3. know that the stiffness matrix for a beam element with two degrees of freedom at
each node (the vertical displacement and rotation) is

12 6L -12 6L
ko = EL| 6L 412 -6L 2L’
| -12 —6L 12 —-6L

6L 21* —6L 4I°

4. know how to compute the load matrix for a beam element by consulting
Table 8.3 for equivalent nodal forces.
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5. know that the stiffness matrix for a frame element (with local and global coordi-
nate systems aligned) consisting of two nodes with three degrees of freedom at
each node (axial displacement, lateral displacement and rotation) is

[ AE
AL—E o 0 -7 0o 0
12E1 6E] 12EI 6EI
' T 7 ° T T
o SEI 4EI  6EI 2EI
L? L 12 L
[K]© = (8.47)
_AE o, AE
L L
12E1 6ET 12E1I 6EI
A R
6EI  2EI . _6EI 4El
i L? L 12 L

Note that for members that are not horizontal, the local degrees of freedom are
related to the global degrees of freedom through the transformation matrix, ac-
cording to the relationship

{u} = [TH{U}
where the transformation matrix is:

cosf sin6 O 0 0 0

—sinf® cos8 O 0 0 0

0 0 1 0 0 0

(1] = 0 0 O cosf6 sin® O

0 0 O —sin® cos® O

0 0 0 0 0 1

6. know how to compute the stiffness matrix for a frame element with an arbitrary
orientation with respect to the global coordinate system using the relationship

[K]® = [T]"[K],,[T]

7. know how to compute the load matrix for a frame element by consulting Table
8.3 for equivalent nodal forces.

8. know that the stiffness matrix for a plane stress triangular element is

(K} = V[B]'[v][B]
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where
V=tA
1 Bl 0 B/ 0 Bk 0 E 1 v 0
[B]=ﬁ 0 8% 0 8 0 3 [v]=1 sl v 1 0
- v
81 Bl 8] Bi 8Ic Bk 0 0 1~v
2
and

B:=Y - Y, % =X, — Xj
Bj=Yk_Y; 5j=Xi_Xk

Be=Y. Y 8 =X,- X,

A=X(Y; - Y) + X(%, - Y) + X(¥: - V)

J

9. know that the load matrix due to a distributed load along the element’s edges is

Px 0 Dx

t b tL 0 L by

o _ Hi ) p, ik ) p tL; 0
(F)0 = =2 FYo = —* ) Px Fl© = ik

> {F} 2 \p, {F} 2 1o

0 Dx Px

0 py Py

10. understand how an element’s stiffness matrix is obtained through the isopara- -v ¢
metric formulation. .
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PROBLEMS

1. The beam shown in the accompanying figure is a wide-flange W 18 X 35, with a cross-sec-
tional area of 10.3 in? and a depth of 17.7 in. The second moment of area is 510 in*. The beam
is subjected to a uniformly distributed load of 2000 Ib/ft. The modulus of elasticity of the
beamis E = 29 X 10°Ib/in% Using manual calculations, determine the vertical displacement
at node 3 and the rotations at nodes 2 and 3. Also, compute the reaction forces at nodes 1 and
2 and reaction moment at node 1.

2,000 Ib/ft

%-7 14 ft % 7 ft I

2. The beam shown in the accompanying figure is a wide-flange W 16 X 31 with a cross-sectional
area of 9.12 in? and a depth of 15.88 in. The second moment of area is 375 in‘. The beam is
subjected to a uniformly distributed load of 1000 Ib/ft and a point load of 500 Ib. The modu-
lus of elasticity of the beamis E = 29 X 10° Ib/in’. Using manual calculations, determine the
vertical displacement at node 3 and the rotations at nodes 2 and 3. Also, compute the reac-
tion forces at nodes 1 and 2 and reaction moment at node 1.

1,000 ib/ft

500 1b

3. The lamp frame shown in the accompanying figure has hollow square cross sections and is
made of steel, with E = 29 X 10° Ib/in®. Using hand calculations, determine the endpoint
deflection of the cross member where the lamp is attached.
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Main cross member
1/4 in thick 3/16 in thick

4. A park picnic-table top is supported by two identical metal frames; one such frame is shown

in the accompanying figure. The frames are embedded in the ground and have hollow circu-
lar cross-sectional areas. The table top is designed to support a distributed load of 250 1b/ft%,
Using ANSYS, size the cross section of the frame to support the load safely.

|
) 4ft >
et

28 in.

-
F“n in.‘—>|

All members have the same
hollow circular cross section.

5. The frame shown in the accompanying figure is used to support a load of 2000 Ib. The main

vertical section of the frame has an annular cross section with an area of 8.63 in* and a polar
radius of gyration of 2.75 in. The outer diameter of the main tubular section is 6 in. All other
members also have annular cross sections with respective areas of 2.24 in? and polar radii of

AT PR A R SRR BT
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gyration of 1.91 in. The outer diameter of these members is 4 in. Using ANSYS, determine the
deflections at the points where the load is applied. The frame is made of steel, with a modu-
lus elasticity of E = 29 X 10 Ib/in’.

| 12f |

6. Using ANSYS, verify the stress-concentration chart for a flat bar with a circular hole under

axial loading. Refer to a textbook on the mechanics of materials or textbook on machine de-
sign for the appropriate chart. Recall that the stress-concentration factor k is defined as

Umu
ko= 2me

Uavg

and for this case, its value changes from approximately 3.0 to 2.0, depending on the size
of the hole.

. Consider one of the many steel brackets (E = 29 X 10°1b/in%,v = 0.3) used to support book-

shelves. The thickness of the bracket is 1/8 in. The dimensions of the bracket are shown in the
accompanying figure. The bracket is loaded uniformly along its top surface, and it is fixed
along its left edge. Under the given loading and the constraints, plot the deformed shape;
also, determine the von Mises stresses in the bracket.
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| 12 in. {

15 Ib/in.

8. A}-in-thick plate supports a load of 100 1b, as shown in the accompanying figure. The plate is made
of steel, with E = 29 X 10°Ib/in® and v = 0.3. Using ANSYS, determine the principal stresses in
the plate. When modeling, distribute the load over part of the bottom portion of the hole.

I 5.0in. I

50in. o

1.0in.

100 b
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9. Elements (1) and (2) are subjected to the distributed loads shown in the accompanying fig-
ure. Replace the distributed loads by equivalent loads at nodes 3, 4, and 5.

y 100

50 N/em

(x=25,y=20)

| |
15 cm
| - !

10. Using a steel sample similar to the one shown in the accompanying figure, perform a nu-
merical tension test over the elastic region of the material. Plot the stress-strain diagram

over the elastic region.
}4713/16 in‘—b‘

1/8in.

9/16 in:
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11.

Verify the equivalent nodal loading for a beam element subjected to a triangular load, as
shown in the accompanying figure.

e 3wl TwL
20 20
wL? wlL?
L —> 30 20

12. Referring to the section in this chapter discussing the frame elements, show that the stiff-

13.

14.

ness matrix represented with respect to the global coordinate system is related to the stiff-
ness matrix described with respect to the frame’s local coordinate system, according to the
relationship

(K9 = [T][K],,[T)

Example 1.4 (revisited). A steel plate is subjected to an axial load, as shown in the accom-
panying figure. The plate is 1/16 in thick, and it has a modulus of elasticity E = 29 x 10¢
Ib/in? Recall that we approximated the deflections and average stresses along the plate using
the concept of one-dimensional direct formulation. Using ANSYS, determine the deflection
and the x and y-components of the stress distributions in the plate. Also, determine the lo-
cation of the maximum-stress-concentration regions. Plot the variation of the x-component
of the stress at sections A-A, B-B, and C-C. Compare the results of the direct-formulation
model to the results obtained from ANSYS. Furthermore, recall that for the given problem,
it was mentioned that the way in which you apply the external load to your finite element
model will influence the stress-distribution results. Experiment with applying the load over
an increasingly large load-contact surface area. Discuss your results,

C B A

1 # ]
Consider a plate with a variable cross section supporting a load of 1500 Ib, as shown in the
accompanying figure. Using ANSYS, determine the deflection and the x- and y-components
of the stress distribution in the plate. The plate is made of a material with a modulus of elas-

ticity £ = 10.6 X 10°ksi. In Problem 24 of Chapter 1, you were asked to analyze this prob-
lem using simple direct formulation. Compare the results of your direct-formulation model
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to the results obtained from ANSYS. Experiment with applying the load over an increasing-
ly large load-contact surface area. Discuss your results.

; 4in: |

1500 1b

15. A thin steel plate with the profile given in the accompanying figure is subjected to an axial

load. Using ANSYS, determine the deflection and the x and y-components of the stress dis-
tributions in the plate. The plate has a thickness of 0.125 in and a modulus of elasticity of
E = 28 X 10° ksi. In Problem 4 of Chapter 1, you were asked to analyze this problem using
simple direct formulation. Compare the results of your direct-formulation model to the re-
sults obtained from ANSYS. Experiment with applying the load over an increasingly larger
load-contact surface area. Discuss your results.
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} 4 in: i 500 Ib/it
2in.
i 151t - I
12in.
18. The frame shown in the accompanying figure is used to support the load given in the figure.
Using ANSYS, size the members if standard sizes of steel I-beams are to be used.
700 1b/ft
500 Ib/ft
2in.

500 1b

16. Use ANSYS to solve Problem 3. Determine the magnitude and the location of the maximum
tensile and compressive stresses.

17. The frame shown in the accompanying figure is used to support a load of 500 Ib/ft. Using
ANSYS, size the cross sections of each member if standard-size steel square tubing is to be
used. Use three different sizes. The deflection of the centerpoint is to be kept under 0.05 in.

‘ 15 ft i 151 {

19. Consider the torsion of a steel bar (G = 11 X 10° ksi) having an equilateral-triangular cross
section, as shown in the accompanying figure. Assuming that 8 = 0.0005 rad/in and using
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ANSYS, determine the location(s) and magnitude of the maximum shear stress. Compare
the solution generated with ANSYS to the exact solution obtained from the equation

20. Consider the torsion of a steel wide-flange member (W 4 X 13 and G = 11 X 10° ksi) with
dimensions shown in the accompanying figure. Assuming 6 = 0.00035 rad/in and using
ANSYS, plot the shear stress distributions. Could you have solved this problem using the
thin-wall member assumption and, thus, avoid resorting to a finite element model?

0.345in.

4.16in.

I 4.06in.

21. Verify the equivalent nodal loading for a beam element subjected to the load shown in the
accompanying figure.

r P P
— 2
E L I L I (_/ J
2 2 _PL _PL

M= 3 M= 3
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22. Design Project The purpose of this project is twofold: (1) to provide a basis for the appli-
cation of solid-design principles using finite element methods and (2) to foster competitive-
ness among students. Each student is to design and construct a structural model from a
3 X 6 X6 in sheet of plexiglas material that adheres to the specifications and rules given later
in this problem and that is capable of competing in three areas: (1) maximum failure load per
model weight, (2) predication of failure load using ANSYS, and (3) workmanship. A sketch
of a possible model is shown in the accompanying figure. Each end of the model will have a
diameter hole (eye) of d > 1/2" drilled through it perpendicular to the axis of loading, for
which pins can be inserted and the model loaded in tension. The dimension a must also be
set such that a > 1. The distance between the eyes will be £ > 2”. The maximum thickness
of the member in the region of the eye will be ¢ < 3/8". This requirement will ensure that the
model fits into the loading attachment. A dimension of b < 1” from the center of the eyes to
the outer edge in the direction of loading must be maintained so that the loading attachment
can be utilized. The maximum width is limited to w < 6", and the maximum height is limit-
edtoh < 6". Any configuration may be used. Two sheets of § X 6 X 6 in plexiglas will be pro-
vided. You can use one sheet to experiment and one sheet for your final design. Write a brief
report discussing the evolution of your final design.

' L %

—

Holes parallel to
and at an angle of 90°
to the axis of loading

d Section A-A

23. Design Project Size the members of the bridge shown in the accompanying figure for a
case in which traffic is backed up with a total of four trucks equally spaced on the bridge. A
typical truck has a payload weight of 64,000 Ib and a cab weight of 8000 1b. As a starting point,
you may use one cross section for all beam elements. You may also assume one cross section
for all truss members. The roadbed weighs 1500 1b/ft and is supported by I-beams. Use stan-
dard steel I-beam sizes. Design your own truss configuration. In your analysis, you may as-
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sume that the concrete column does not deflect significantly. Write a brief report discussing

how you came up with the final design.

200 ft |
100 ft
7 "
251t \I-beam
design your own truss
58
concrete —»

CHAPTER 9

Analysis of Fluid Mechanics
Problems

The main objective of this chapter is to introduce you to the analysis of fluid mechan-
ics problems. First, we will discuss the direct formulation of pipe-network problems.
Then, we will consider finite element formulation of ideal fluid behavior (inviscid flow).
Finally, we will briefly look at the flow of fluid through porous media and finite element
formulation of underground seepage flows. The main topics discussed in Chapter 9 in-
clude the following:

9.1 Direct Formulation of Flow Through Pipes
9.2 Ideal Fluid Flow

9.3 Groundwater Flow

9.4 Examples Using ANSYS

9.5 Verification of Results

DIRECT FORMULATION OF FLOW THROUGH PIPES

We begin by reviewing fundamental concepts of fluid flow through pipes. The internal
flow through a conduit may be classified as laminar or turbulent flow. In laminar flow
situations, a thin layer of dye injected into a pipe will show as a straight line. No mixing
of fluid layers will be visible. This situation does not hold for turbulent flow, in which the
bulk mixing of adjacent fluid layers will occur. Laminar and turbulent flow are depict-
ed in Figure 9.1. Laminar flow typically occurs when the Reynolds number of the flow-
ing fluid is less than 2100. The Reynolds number is defined as
pVD

Re m 9.1)
where p and . are the density and the dynamic viscosity of the fluid, respectively. V rep-
resents the average fluid velocity, and D represents the diameter of the pipe. The flow
is said to be in a transition region when the Reynolds number is typically between 2100
and 4000. The behavior of the fluid flow is unpredictable in the transition region. The flow
is generally considered to be turbulent when the Reynolds number is greater than 4000.
The conservation of mass for a steady flow requires that the mass flow rate at any sec-
tion of the pipe remains constant according to the equation
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dye
w
—3
—
(a) Laminar flow in a pipe.
dye/
AR O §
— ——— —]
(b) Turbulent flow in a pipe. FIGURE 9.1 Laminar and turbulent flows.
my =m; = p Vi A = p,V, A, = constant (9.2)

Again, p is the density of the fluid, V is the average fluid velocity at a section, and A
represents the cross-sectional area of the flow as shown in Figure 9.2.

For an incompressible flow—a flow situation where the density of the fluid re-
mains constant—the volumetric flow rate Q through a conduit at any section of the con-
duit is also constant:

O =0 =VA, = V24, (%.3)

Section 2

Section 1

FIGURE 9.2 Flow of fluid through a
conduit with variable cross section.
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For a fully developed laminar flow, there exists a relationship between the volumetric
flow rate and the pressure drop P; — P, along a pipe of length L. This relationship is

given by:
_wD* (P - P2>
Q= 128 ( L (9.4)

The pressure drop for a turbulent flow is commonly expressed in terms of head loss,
which is defined as
P] - P2 L V2
Hy,=—"""=f—— 9.5

TRl ©5)
where fis the friction factor, which depends on the surface roughness of the pipe and
the Reynolds number. For turbulent flows, we can also obtain a relationship between the
volumetric flow rate and the pressure drop by substituting for V in terms of the flow rate
in Eq. (9.5) and rearranging terms:

2 _ l'ﬂ'zDs (Pl - Pz>

f 8 L
When we compare turbulent flow to laminar flow, we note that for turbulent flow, the
relationship between the flow rate and pressure drop is nonlinear.

(9.6)

Pipes in Series

For flow of a fluid through a piping network consisting of a series of pipes with respec-
tive diameters D,, D,, D5, ..., as shown in Figure 9.3, the conservation of mass (conti-
nuity equation) requires that under steady-state conditions, the mass flow rate through
each pipe be the same:

m; = m; = m3 = ... = constant 9.7

Moreover, for an incompressible flow, the volumetric flow rate through each pipe that
is part of a piping network in series is constant. That is,

0, =0, =Q; = ... = constant 9.8)
Expressing the flow rates in terms of the average fluid velocity in each pipe, we obtain
ViD} = V,D} = V;D% = ... = constant (9.9)

FIGURE 9.3 Pipes in series.
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my

my FIGURE 9.4 Pipes in parallel.

For pipes in series, the total pressure drop through a network is determined from the sum
of the pressure drops in each pipe:

APy = AP, + AP, + AP, + ... (9.10)

For flow of a fluid through a piping network consisting of pipes in parallel arrangement,
as shown in Figure 9.4, the conservation of mass (continuity equation) requires that

Mg = My + m, (9.11)
Moreover, for an incompressible flow,

Qo = Q1 + O 9.12)

For pipes in parallel configuration, the pressure drop in each parallel branch is the same,
and is related according to:

APy = AP, = AP, (9.13)

Finite Element Formulation

Consider an incompressible laminar flow of a viscous fluid through a network of piping
systems, as shown in Figure 9.5. We start by subdividing the problem into nodes and el-
ements. This example may be represented by a model that has four nodes and four ele-
ments.

The behavior of the fluid flow inside a pipe section is modeled by an element with
two nodes. The elemental description is given by the relationship between the flow rate
and the pressure drop as given by Eq. (9.4), such that

_ wD* (Pz = P
128 L

) =C(P, - P.y) (9.14)

0}

—_—

FIGURE 9.5 A network problem: an incompressible laminar flow of a viscous fluid
through a network of piping systems.
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where the flow-resistance coefficient C is given by

C= wD*
128Lp

(9.15)

Because there are two nodes associated with each element, we need to create two equa-
tions for each element. These equations must involve nodal pressure and the element’s
flow resistance. Consider the flow rates ; and Q; . ; and the nodal pressures P; and
P; , , of an element, which are related according to the equations

Q;=C(P. - P,))
Qi = C(Pi+1 - R) (9-16)

The equations given by (9.16) were formulated such that the conservation of mass is
satisfied as well. The sum of Q; and Q; . , is zero, which implies that under steady-state
conditions, what flows into a given node also flows out. Equations (9.16) can be ex-
pressed in matrix form by

wD* «D*

o_[c -Cc[ R]_| 128Lp 128Lp P @17)
Qi -C C Py _ wD* wD* P )
128Ly  128Lp

The element’s flow-resistance matrix is then given by

«D* _ wD*
128Lp 128L
(&) =
[R] ol ©19)

T128Lp  128Lp

Applying the elemental description given by Eq. (9.17) to all elements and assembling
them will lead to the formation of the global flow matrix, the flow-resistance matrix,
and the pressure matrix.

EXAMPLE 9.1

Oil with dynamic viscosity of . = 0.3 N . s/m? and density of p = 900 kg/m? flows
through the piping network shown in Figure 9.6. The 2—4-5 branch was added in paral-
lel to the 2-3-5 branch to allow for the flexibility of performing maintenance on one
branch while the oil flows through the other branch. The dimensions of the piping sys-
tem are shown in Figure 9.6. Determine the pressure distribution in the system if both
branches are on line. The flow rate at node 1is 5 X 107* m®/s. The pressure at node 1 is
39182 Pa (g) and the pressure at node 6 is —3665 Pa (g). For the given conditions, the
flow is laminar throughout the system. How does the flow divide in each branch?
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1

L =70.71m
D=5cm ©®

FIGURE 9.6 The piping network of Example 9.1.

The elemental flow resistance is given by Eq. (9.18) as

«D* _ wD*
[R](‘) _ 128 L 128Lp.
- wD* «D*

T128Lp  128Lp

We model the given network using six elements and six nodes. Evaluating the respec-

tive resistance matrices for elements (1)~(6), we obtain

[ 11570 -115707 1 [ 5076 —50.76 |2
0 = 107 @ — 107
[R] | —11570  115.70 ]2 (R]¥ =10 | —50.76  50.76 ]3
5177 -51777)2 [ 950 -9.507]3
®) = 10°° @ = 107
(R] | —51.77 5177 ]4 (R]¥ =10 | -9.50 9.50 ]5
723 723714 [ 13635 -13635]5
) = 107 © — 1979
(R] | ~723 723 ]5 [R% =10 | -13635 136.35 :|6

Note that in order to aid us in assembling the elemental resistance matrices into the -
global resistance matrix, the corresponding nodes are shown alongside of each element’s

resistance matrix. So, we have

115.7 -115.7 0 0 0 0 1
—115.7 115.7+50.76 +51.77  —-50.76 =51.77 0 0 |2

107 0 -50.76 50.76 +9.50 0 -9.50 0o |3
0 =51.77 0 51.77+7.23 -723 0 |4

0 0 -9.50 =723  950+7.23+136.35 —136.35|5

0 0 0 0 —136.35 136.35 6
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Applying the boundary conditions P, = 39182 and P, = —3665, we obtain

1 0 0 0 0 0 P, 39182

-1157 21823 -5076 -5177 0 0 B, 0
0 -5076 60.26 0 -950 0 Bl | o
0 -51.77 0O 590 —7.23 0 P 0
0 0 —950 -723 15308 —13635 Py 0
0 0 0 0 0 1 P ~3665

Solving the systems of equations simultaneously results in the nodal pressure values:
[P = [39182 34860 29366 30588 2 -—3665]Pa

The flow rate in each branch is determined from Eq. (9.14):

_ wD* F, - Pi+1) _
- 128}]. ( L - C(Pl })H-l)

0@ = 50.76 x 1079(34860 — 29366) = 2.79 X 107 m¥s
0P = 51.77 x 107°(34860 — 30588) = 2.21 X 10™*m’s
Q% =950 x 107°(29366 — 2) = 2.79 X 107* m%s
00 = 723 x 107°(30588 — 2) = 2.21 X 10~ m%s

The verification of these results is discussed in Section 9.5.

IDEAL FLUID FLOW

All fluids have some viscosity; however, in certain flow situations it may be reasonable
to neglect the effects of viscosity and the corresponding shear stresses. The assumption
may be made as a first approximation to simplify the behavior of real fluids with rela-
tively small viscosity. Also, in many external viscous flow situations, we can divide the flow
into two regions: (1) a thin layer close to a solid boundary—called the boundary layer
region—where the effects of viscosity are important and (2) a region outside the bound-
ary layer where the viscous effects are negligible, in which the fluid is considered to be
inviscid. This concept is demonstrated for the case of the flow of air over an airfoil in Fig-
ure 9.7. For inviscid flow situations, the only forces considered are those resulting from
pressure and the inertial forces acting on a fluid element.

Before discussing finite element formulation of ideal fluid problems, let us review
some fundamental information. For a two-dimensional flow field, the fluid velocity is

V=vi+v] (9.19)
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free-stream velocity

inviscid region

boundary-layer region

inviscid region

FIGURE 9.7 The flow of air over an airfoil.

where v, and v, are the x- and y-components of the fluid’s velocity vector, respectively.
The conservation of mass (continuity equation) for a two-dimensional incompressible
fluid can be expressed in the differential form in terms of fluid’s velocity components as

avx aVy

Ty =0 (9.20)

The Stream Function and Stream Lines

For a steady flow, a streamline represents the trajectory of a fluid particle. The stream-
line is a line that is tangent to the velocity of a fluid particle. Streamlines provide a means
for visualizing the flow patterns. The stream function {s(x, y) is defined such that it will
satisfy the continuity equation Eq. (9.20) according to the following relationships:

d d
v,=—¢ and v -

ay 'y ox (9.21)

Note that upon substitution of Eg. (9.21) into Eq. (9.20), the conservation of mass is sat- '

isfied. Along a line of constant §(x, y), we have:

o o
=0=—dx+ —dy = — !
dy =0 Py dx 3y dy v,dx + v, dy (922)
or
dy Y
v (9.23)

Consider Figure 9.8, in which the flow of a fluid around a sharp corner is shown.
For this flow situation, the velocity field is represented by

>

V=cxi- cyj
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B (x2,y2)
C

1 y2)
A

(x2.51)
FIGURE 9.8 The flow of fluid around a
sharp corner.

To obtain the expression for the stream function, we make use of Eq. (9.23):

o_dy oy

v, dx cx

Integrating, we have

dy J dx

y x
Evaluating the integral results in the stream function, which is given by

xy = constant
or
b= xy

We can plot the streamlines by assigning various values to y. Note that the individual
values of streamlines are not important; it is the difference between their values that is
important. The difference between the values of two streamlines provides a measure of

volumetric flow rate between the streamlines. To demonstrate this idea, let us refer back
to Figure 9.8. Along, the A-B section, we can write:

2_ [ 4= [ _J% - -
=ty [y = = v (02
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Similarly, along the B—C section, we have:

o JIZ f 2 9 ¥
= _ —v.dx = iy - - -
! vydx . ox dx Ll dv = Vv, - ¥, (9.25)

Therefore, the difference between the values of the streamlines represents the volu-
metric flow rate per unit width w.

The Irrotational Flow, Potential Function, and Potential Lines

As mentioned earlier, there are many flow situations for which the effects of viscosity may
be neglected. Moreover at low speeds, the fluid elements within inviscid flow situations may
have an angular velocity of zero (no rotation). These types of flow situations are referred
to as irrotational flows. A two-dimensional flow is considered to be irrotational when

%_6\11

dax ay

=0 (9.26)

We can also define a potential function ¢ such that the spatial gradients of the poten-
tial function are equal to the components of the velocity field:

_% _ %

BT YT 927)

Along a line of constant potential function, we have:

ad ad
db =0=—dx + —dy = =
ful Py dx 3y dy =v,dx + v,dy =0 (9.28)
dy vy
ix v (9.29)

y

By comparing Eqs. (9.29) and (9.23), we can see that the streamlines and the velocity po-
tential lines are orthogonal to each other. It is clear that the potential function comple-
ments the stream function. Using the relationship in Eq. (9.27) to substitute for v, and
v, in the continuity equation Eq. (9.20), we have

Fo o
Ty 0 (9.30)

Using the definitions of stream functions as given by Eq. (9.21) and substituting for v,
and v, in Eq. (9.26), we have

a9
re 2y
ax ay

=0 (9.31)
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Equations (9.30) and (9.31), which are forms of Laplace’s equation, govern the motion
of an ideal irrotational flow. Typically, for potential flow situations, the boundary con-
ditions are the known free-stream velocities, and at the solid surface boundary, the fluid
cannot have velocity normal to the surface. The latter condition is given by the equation

¢

n 0 (9.32)
Here, n represents a direction normal to the solid surface. Comparing the differential
equation governing the irrotational flow behavior of an inviscid fluid, Eq. (9.30), to the
heat diffusion equation, Eq. (7.8), we note that both of these equations have the same
form; therefore, we can apply the results of Sections 7.2 and 7.3 to the potential flow prob-
lems. However, when comparing the differential equations for irrotational flow problems,
welet C; = 1, C, = 1, and C; = 0.Later in this chapter, we will use ANSYS to analyze
the flow of an ideal fluid around a cylinder.

Now, let us briefly discuss the analysis of viscous flows. As mentioned earlier, all
real fluids have viscosity. The analysis of a complex viscous flow is generally performed
by solving the governing equations of motion for a specific boundary condition using the
finite differencing approach. However, in recent years, we have made some advances in
the finite element formulation of viscous fluid flow problems. Bathe (1996) discusses a
Galerkin procedure for the analysis of the two-dimensional laminar flow of an incom-
pressible fluid. For more details on the formulation of viscous laminar flows, also see Sec-
tion 7.1 of the theory volume of ANSYS documents.

9.3 GROUNDWATER FLOW

The study of fluid flow and heat transfer in porous media is important in many engi-
neering applications, including problems related to oil-recovery methods, groundwater
hydrology, solar energy storage, and geothermal energy. The flow of fluid through an
unbounded porous medium is governed by Darcy’s Law. Darcy’s Law relates the pres-
sure drop to the mean fluid velocity according to the relationship

k dP
==L 9.
Up =~ g (9.33)

where U, is the mean fluid velocity, & is the permeability of the porous medium, and p.
is the viscosity of the fluid. For two-dimensional flows, it is customary to use the hy-
draulic head ¢ to define the components of the fluid velocities. Consider the seepage flow
of water under a dam, as shown in Figure 9.9.

The two-dimensional flow of fluid through the soil is governed by Darcy’s Law,
which is given by:

k,— + k

o ¥
axz ya—z‘ =0 (934)
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FIGURE 9.9 The seepage flow of water through a porous medium under a dam.

The components of the seepage velocity are
v, = —k T and v, =—k,— (9.35)

where k, and &, are the permeability coefficients and ¢ represents the hydraulic head.
Comparing the differential equation governing the groundwater seepage flow, Eq. (9.34),
to the heat diffusion equation, Eq. (7.8), we note that both of these equations have the
same form; therefore, we can apply the resuits of Sections 7.2 and 7.3 to the groundwa-
ter flow problems. However, when comparing the differential equations for the ground-
water seepage flow problems, we let C; = k,,C, = k,,and C; = 0.

The permeability matrix for a rectangular element is

2 -2 -1 1 2 1 -1 -2
kwi-2 2 1 -1 k€1 2 -2 -1
6 -1 1 2 2 6w|-1 -2 2 1

1 -1 -2 2 -2 -1 1 2
where w and £ are the length and the width, respectively, of the rectangular element, as
shown in Figure 9.10. In addition, for a typical see page flow problem, the magnitude of

[K]© = (9.36)

the hydraulic head is generally known at certain surfaces, as shown in Figure 9.9. The :

known hydraulic head will then serve as a given boundary condition.
The nodal values of a hydraulic head for a triangular element are depicted in Fig-
ure 9.11. For triangular elements, the permeability matrix is
T R L
[K]© = Z;;“ BB BI BB |t A 88 ¥ 83 (9.37)
BiBi BB« Bi 88 88 8
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FIGURE 9.10 Nodal values of a hydraulic
X head for a rectangular element.

L7

x

. ¥)

i
X,y FIGURE 9.11 Nodal values of a hydraulic

X head for a triangular element.

where the area A of the triangular element and the a-, -, and 8-terms are given by:
24 = X(Y; - ) + X(Y, - ¥}) + X,(Y, - Y))
a;=X;Y -~ XY B=Y,-Y &=2X—X
o =XY. - XY B;=Y.-Y %=X -X
o = XY, - XY, =YY d=X-X
Next we discuss ANSYS elements.
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9.4 EXAMPLES USING ANSYS

ANSYS offers a number of elements for modeling fluid mechanics problems. Examples
of those elements include: FLUID15, FLUID66, and FLUID79.

FLUIDI1S is a two-dimensional plane fluid flow ¢lement with heat transfer capa-
bility. The Navier—Stokes equations, the continuity equation, and the energy equation for
incompressible laminar flow are discretized. The element has four corner nodes with
three degrees of freedom at each node. The degrees of freedom are the respective ve-
locities in the nodal x- and v-directions and the temperature. Pressure is also comput-
ed at the centroid of each element. The elemental input data include the node locations,
the fluid density. thermal conductivity, and viscosity.

FLUIDG66 is a thermal-flow element with the ability to conduct heat and trans-
port fluid between its two primary nodes. FLUID66 has two degrees of freedom at each
node: temperature and pressure. It can also account for convections taking place with
two additional optional nodes. The element is defined by its two primary nodes. The el-
emental input data include the node locations, the fluid density. the convective heat
transfer coefficient, thermal conductivity, specific heat, and viscosity.

FLUID 79 is a modification of the two-dimensional structural solid element
PLANE42.This element is used to model fluids contained within vessels having no net
flow rate. This element is defined by four nodes. with two degrees of freedom at each
node: translation in the nodal x- and y-directions. The elemental input data include the
node locations. the fluid’s elastic (bulk) modulus, and viscosity. The viscosity is used to
compute a damping matrix for dynamic analysis. Pressure may be input as surface loads
on the clement faces.

As the theory in the previous sections suggested, because of the similarities among
the governing differential equations, in addition to the elements listed above, you can use
thermal solid clements (e.g.. PLANE3S, a six-node triangular element; PLANESS, a
four-node quadrilateral element; or PLANE77, an eight-node quadrilateral element)
to model irrotational fluid flow or groundwater flow problems. However, when using the
solid thermal elements, make sure that the appropriate values are supplied to the prop-
erty fields. Examples 9.2 and 9.3 demonstrate this point.

EXAMPLE 9.2

Consider an ideal flow of air around a cylinder, as shown in Figure 9.12. The radius of
the cylinder is 5 cm, and the velocity of the approach is U = 10 cm/s. Using ANSYS,

1/ = approach veloaity @

FIGURE 9.12  Anideal flow of air around a cvlinder
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determine the velocity distribution around the cylinder. Assume that the free-stream
velocity remains constant at a distance of five diameters downstream and upstream of
the cylinder.

Enter the ANSYS program by using the Launcher. Type xansys54 on the com-
mand line, or consult your system administrator for the appropriate command
name to launch ANSYS from your computer system.

Pick Interactive from the Launcher menu.

Type FlowCYL (or a file name of your choice) in the Initial Jobname entry field
of the dialog box.

ANSYS 5.4 INTERACTIVE

ruversity Low Option

Pick Run to start the Graphic User Interface (GUI). A window will open with
some disclaimer information. You will eventually be asked to press the Return
key to start the graphics window and the main menu. Do so in order (o proceed.
Create a title for the problem. This title will appear on ANSYS display windows
to provide a simple way of identifying the displays. So.issue the following command
sequence:

utility menu: File — Change Title ..
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:Eh«?'nqe Tide

sotiopic Material Pioperties

< Isotropic Material Properties

Libiary of Element Types

ANSYS Toolbar: SAVE_DB

Set up the graphics area (i.c. workplane, zoom, ¢te.) with the following commands:

i .- ! . . . ity menu: W lane > Wp Settings .
main menu: Preprocessor — Material Props — -Constant-Isotropic utility menu: Workp p Settings .
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B WP = 25,25]

|

|

FLH [ Expand the rubber to r = 5.0]
OK

main menu: Preprocessor — -Modeling-Operate — -Booleans-Subtract
— Areas+

Pick Areal (the rectangle) and apply: then, pick Area2 (the circle) and apply.
OK

We now want to mesh the areas to create elements and nodes, but first, we need
to specify the element sizes. So, issue the following commands:

main menu: Preprocessor — -Meshing-Size Cntrls — -Global-Size ...

i Global Element Sizes

Toggle on the workplane by using the command:

utility menu: Workplane — Display Working Plane

Bring the workplane to view by using the command: main menu: Preprocessor — -Meshing-Mesh — -Areas-Free +

. Pick All
utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Apply boundary conditions with the following commands:
Click on the small circle until you bring the workplanc 1o view. Then, create the

gcometry with the following commands: main menu: Solution — -Loads-Apply — -Thermal-Heat Flux

— On Lines +.
main menu: Preprocessor — -Modeling-Create — Areas-Rectangle

— By 2 Corners+ Pick the left vertical edge of the rectangle.
1] [WP = 0.0) OK
[' _iApply HFLUX onLines
|’:\f [Expand the rubber up 50 and right 50|

]
il
'

OK
Create the cross section of the evlinder to be removed later:

main menu: Preprocessor — -Modeling-Create — Areas-Circle
— Solid Circle+
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main menu: Solution — -Loads-Apply — -Thermal-Heat Flux

Pick the right vertical edge of the rectangle,

OK

utility menu: PlotCtrls — Symbols ...

i Symbols

]
o
]
v
»
/]
§v ]
]

- On Lines +
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utility menu: Plot — Lines
ANSYS Toolbar: SAVE_DB
Solve the problem:
main menu: Solution — -Solve-Current LS
OK
Close (the solution is done!) window.
Close (the/STAT Command) window.
postprocessing phase. obtain information such as velocities (see Figure 9.13):

main menu: General Postproc — Plot Results
— -Vector Plot-Predefined ...

¥ector Plot of Predefined Vectois

TF

Maynitude based H§

_Undefnrned Mesh
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A\ ANSYS Graphics

1

|

FIGURE 9.13 The velocity vectors.

utility menu: Plot — Areas

main menu: General Postproc — Path Operations — Define Path

— On Working Plane +

Pick the two points along the line marked A-B, as shown in Figure 9.14.

A

FIGURE 9.14 Defining the path for path
operation.

* Map Result ltems onto Path (3]
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¢ On Working PIf'me

main menu: General Postproc — Path Operations — Map onto Path ...

DOF solution
Flux & gradient
lem table item d
Thermal grad TGX
1GY

1CZ

Now, plot the results (see Figure 9.15):

main menu: General Postproc — Path Operations
— -Plot Path Items-On Graph ..

i Plot of Path lems on Graph
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AUANSYS Graphics

FIGURE 9.15  The variation of fluid velocity along path A-B.

utility menu: Plot — Areas

main menu: General Postproc — Path Operations — Define Path
— On Working Plane +

Pick the two points along the line marked as C-D. as shown in Figure 9.14.

+ On Wolking Plane

OK
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main menu: General Postproc — Path Operations — Map onto Path . ..

i Map Result ltems onto Path

Now, plot the results (see Figure 9.16):

main menu: General Postproc — Path Operations
— -Plot Path Items-On Graph . ..

i Plot ot Path Items on Lraph

Exit and save the results:
ANSYS Toolbar: QUIT

t Exit trom ANS'
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A\ ANSYS Graphics

FIGURE 9.16  The variation of fluid velocity along the C~D section.

EXAMPLE 9.3

Consider the seepage {low of water under the concrete dam shown in Figure 9.17. The
permeability of the porous soil under the dam is approximated as K = 15 m/day. De-
termine the seepage velocity distribution in the porous soil.

water = ——
—— 0Smi——
+

* .
Im -
b

assume tobe | 5 porous medium

“Lassume to be
impermeable - -

- impermeable

‘assume to be impermeable :
- - ~Sm - -l m

-

FIGURE 9.17  The seepage flow of water through a porous medium under a conerete dam
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Enter the ANSYS program by using the Launcher. Type xansys54 on the com-
mand line, or consult your system administrator for the appropriate command
name to launch ANSYS from your computer system.

Pick Interactive from the Launcher menu.

Type DAM (or a file name of your choice) in the Initial Jobname cntry field of the
dialog box.

ANSYS 5.4 INTERAC
e

Pick Run to start the Graphic User Interface (GUI). A window will open with
some disclaimer information. You will eventually be asked to press the Return
key to start the graphics window and the main menu. Do so in order to proceed.
Create a title for the problem. This title will appear on ANSYS display windows
to provide a simple way of identifying the displays. So. issue the following com-
mands:

utility menu: File — Change Title ...
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main menu: Preprocessor — Element Types — Add/Edit/Delete ..

Element Types

NONE DEFINED

s Library of Element Types

PLANE??

Assign the permeability of the soil with the following commands:

main menu: Preprocessor — Material Props — -Constant-Isotropic
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sotropic Material Prapel

ANSYS Toolbar: SAVE_ DB
Sct up the graphics arca (1.c. workplane, zoom. ete.) with the commands:

utility menu: Workplane -» Wp Settings
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WP Settings

Toggle on the workplane by using the following command:
utility menu: Workplane — Display Working Plane

Bring the workplane to view by using the following command:
utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Click on the smalf circle until you bring the workplane to view. Then, create the
geometry:

main menu: Preprocessor — -Modeling-Create — -Areas-Rectangle
— By 2 Corners +
[WP = 0,0]
(Expand the rubber up 5 and right 16}
[WP = 54]

ﬁ [Expand the rubber up 1 and right 4]

OK
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main menu: Preprocessor — -Modeling-Operate
— -Booleans-Subtract — Areas

Pick Areal (the large rectangle) and Apply; then, pick Area2 (the small rectangle)
and Apply.

OK

We now want to mesh the argas to create elements and nodes, but first, we need
to specify the element sizes:

main menu: Preprocessor — -Meshing-Size Cntrls — -Global- Size ...

- Gl

main menu: Preprocessor — -Meshing-Mesh — -Areas-Free +
Pick All
Apply boundary conditions with the following commands:

main menu: Solution — -Loads-Apply — -Thermal-Temperature
— On nodes +

Using the box picking mode, pick all of the nodes attached to the left top edge of
the rectangle. Hold down the left button while picking.

OK

«Apply tEMP on Nodes

main menu: Solution — -Loads-Apply — -Thermal-Temperature
— Onnodes +

Using the box picking mode, pick all of the nodes attached to the right top edge
of the rectangle:

OK
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L Apply TEMP on Nodes

ANSYS Toolbar: SAVE_DB
Solve the problem:
main menu: Solution — -Solve-Current LS
OK
Close (the solution is done!) window.

Close (the/STAT Command) window.

For the postprocessing phase, obtain information such as velocities (see Figure 9.18):

main menu: General Postproc — Plot Results

— -Vector Plot-Predefined ...

:Vector Plot of Predefined Vectors

Flux B uradieat i Thermal flux

Lo
Magnitude based

Undeformed Mesh B
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A\ ANSYS Graphics

FIGURE 9.18 The seepage-velocity distribution within the soil.

utility menu: Plot — Areas

main menu: General Postproc — Path Operations — Define Path

— On Working Plane +

Pick the two points along the line marked as A-B, as shown in Figure 9.19.

« On Working Plane

FIGURE 9.19 Defining the path for path
operation.
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main menu: General Postproc — Path Operations — Map onto Path ...

:Map Resull Items onto Fath

Now, plot the results (see Figure 9.20):

main menu: General Postproc — Path Operations
— -Plot Path Items-On Graph ...

[ : Plot of Path ttems on ttaph

Exit and save the results:
ANSYS Toolbar: QUIT

< bait lom ANSYS
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[ A ANSYS Guaphics

R —

FIGURE 9.20 The variation of the seepage velocity along path A-B.

9.5 VERIFICATION OF RESULTS

There are various ways by which you can verify your findings. Consider the flow rate re-
sults of Example 9.1, shown in Table 9.1.

Referring to Figure 9.6, elements (2) and (4) are in series; therefore, the flow rate
through each element should be equal. Comparing Q® to Q®, we find that this condition
is true. Elements (3) and (5) are also in series, and the computed flow rates for these el-
ements are also equal. Moreover, the sum of the flow rates in elements (2) and (3) should
equal the flow rate in element (1). This condition is also true.

Let us now turn our attention to Example 9.2. One way of checking for the valid-
ity of your FEA findings is to consider the variation of air velocity along path A-B, as

TABLE 9.1 Summary of flow rate results
for Example 9.1

Element Flow Rate
1 5.0 X 107*
2 2.79 X 107
3 221 % 107*
4 2.79 x 1074
5 2.21 X 107
6 50 %X 107
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shown in Figure 9.15. The fluid velocity is at its maximum value at point A, and it de-
creases along path A-B, approaching the free-stream value. Another check on the va-
lidity of our results could come from examining the fluid velocity variation along path
C-D, as shown in Figure 9.16.The air velocity changes from its free-stream value to zero
at the forward stagnation point of the cylinder. These results are certainly consistent
with the results obtained from applying Euler’s equation to an inviscid flow of air around
a cylinder.

The results of Example 9.3 can be visually verified in a similar fashion. Consider Fig- v

ure 9.20, which shows the variation of the seepage velocity along path A-B. It is clear that
the seepage velocities are higher near point A than they are near point B. This difference
is attributed to the fact that point A lies on the path of the least resistance to the flow, and
consequently, more fluid flows near point A than near point B. The other check on the
validity of the result could come from comparing the seepage flow rates on the dam’s up-
stream side to the seepage flow on the downstream side; of course, they must be equal.

SUMMARY
At this point you should:

1. know how to solve laminar flow network problems. You should also know that the
resistance matrix for laminar pipe flow is given by:

wD* : wD*
(R = 128L 128Lp.
wD* «D*

T128Lp  128Lp

2. know the definitions of streamline and stream function, as well as what they phys-
ically represent.

3. know what an irrotational flow is.
4. know that the inviscid flow matrix for a rectangular element is

2 -2 -1 1 2 1 -1 =2
o_w|=2 2 1 -1 €1 2 -2 -1

661 -1 1 2 -2 6w| -1 -2 2 1
|1 -1 -2 2 -2 -1 1 2

(K]

and that the inviscid flow matrix for a triangular element is

T T B LA
(K](Z)=a B:B; B} BB« * 1A 8% 8 33,
[ B:Be BB B 8% 83 8
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5. know that the permeability matrix for seepage flow problems is similar to the con-
ductance matrix for two-dimensional conduction problems. The permeability ma-
trix for a rectangular element is

2 -2 -1 1 (2 1 -1 =2

(Ko < k-2 2 1 -1 LBt 2 2 4
66 |-1 1 2 -2 6w|-1 -2 2 1

1 -1 =2 2 [ -2 -1 1 2

and that the permeability matrix for a triangular element is

k| BOBB BB [ O 83 a3
[K](e)=j4"j B:B; B B; B« +a‘ 8,3, & 88,
BiBe BB. BE [ 3.3 8,8 8
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PROBLEMS

L. Oil with dynamic viscosity of p = 0.3 N - s/m” and density of p = 900 kg/m’ flows through
the piping network shown in the accompanying figure. Determine the pressure distribution
in the system if the flow rate at node 1 is 20 X 10™ m*/s. For the given conditions, the flow
is laminar throughout the system. How does the flow divide in each branch?

L=175m
D=19.78 cm

L=120m —_
L=100m D =1493 cm L=75m
D =2951cm — D=2951cm

1 L=160m
Ed D=19.78 cm

2. Consider the flow of air through the diffuser shown in the accompanying figure. Neglecting
the viscosity of air and assuming uniform velocities at the inlet and exit of the diffuser, use
ANSYS to compute and plot the velocity distribution within the diffuser.
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5. Using ANSYS, plot the velocity distributions for the transition-duct fitting shown in the ac-
companying figure. Plot the results for the combinations of the area ratios and transition an-
gles given in the accompanying table.

15 cm
Wem f— Oem Aof4, 6

01 10 20 45

025 10 45 60

60

}__15 cm——i L 0.5 20 45

3. Consider the flow of air through a 90° elbow. Assuming ideal flow behavior for air and uni-
form velocities at the inlet and outlet sections, use ANSYS to compute and plot the velocity
distribution within the elbow. The elbow has a uniform depth. Use the continuity equation
to obtain the velocity at the outlet.

v V2

0.55m

[g

Ay

6. Consider the inviscid flow of air past the rounded equilateral triangle shown in the accom-
panying figure. Perform numerical experiments by changing the velocity of the upstream air
and the r /L ratio (forr/L = 0,r/L = 0.1,and r/L = 0.25) and obtaining the corresponding
air velocity distributions over the triangie. Discuss your results.

|

F 0.65m

4. Consider the flow of air through the elbow in the accompanying figure. The corners of the
elbow are rounded as shown in the figure. Assuming ideal flow behavior for air and uniform
velocities at the inlet and outlet sections, use ANSYS to compute and plot the velocity dis-
tribution within the elbow. The elbow has a uniform depth. Use the continuity equation to ob-
tain the velocity at the outlet.

15m

0.55m

7. Consider the inviscid flow of air past the square rod with rounded corners shown in the ac-
companying figure. Perform numerical experiments by changing the velocity of the upstream
air and the r/L ratio (for r/L = 0,r/L = 0.1, and r/L = 0.25) and obtaining the corre-
sponding air velocity distributions over the square. Discuss your results.
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8. Consider the inviscid flow of air past a NACA symmetric airfoil. Abbor and Von Doenhoff
(1959) provide detailed information about NACA symmetric airfoil shapes, including geo-
metric data for NACA symmetric airfoils. Using their geometric data, obtain the velocity dis-
tribution over the NACA 0012-airfoil shown in the accompanying figure. Perform numerical
experiments by changing the angle of attack and obtaining the corresponding air velocity
distributions over the airfoil. Discuss your results. o

Free stream air velocity

angle of attack
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9. Consider the seepage flow of water under the concrete dam shown in the accompanying fig-
ure. The permeability of the porous soil under the dam is approximated ask = 45 ft/day.
Determine the seepage velocity distribution in the porous soil.

T

assume to be

assume to be
impermeable

impermeable
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10. Consider the seepage flow of water under the concrete dam shown in the accompanying fig-
ure. The permeability of the porous soil under the dam is approximated ask = 15 m/day. De-
termine the seepage velocity distribution in the porous soil.

Three-Dimensional Elements

Lo

RN

4 ———1m—— "~ water

The main objective of this chapter is to introduce three-dimensional elements. First, we
discuss the four-node tetrahedral element and the associated shape functions. Then, we
consider the analysis of structural solid problems using the four-node tetrahedral ele-
ment, including the formulation of an element’s stiffness matrix. This section is followed
by a discussion of the eight-node brick element and higher order tetrahedral and brick
- elements. Structural and thermal elements used by ANSYS will be covered next. This
chapter also presents basic ideas regarding top-down and bottom-up solid-modeling
assume to be methods. Finally, hints regarding how to mesh your solid model are given. The main top-
impermeable o ics of Chapter 10 include the following:

10.1 The Four-Node Tetrahedral Element

Tm im 10.2  Analysis of Three-Dimensional Solid Problems Using Four-Node Tetrahedral
Elements

10.3 The Eight-Node Brick Element

10.4 The Ten-Node Tetrahedral Element

10.5 The Twenty-Node Brick Element

10.6 Example of Three-Dimensional Elements in ANSYS
10.7 Basic Solid-Modeling Ideas

10.8 A Thermal Example Using ANSYS

10.9 A Structural Example Using ANSYS

10.10 Verification of Results: Error-Estimation Procedures

assume to be
impermeable

10.1 THE FOUR-NODE TETRAHEDRAL ELEMENT

The four-node tetrahedral element is the simplest three-dimensional element used in the
analysis of solid mechanics problems. This element has four nodes, with each node hav-
ing three translational degrees of freedom in the nodal X, Y, and Z-directions. A typi-
cal four-node tetrahedral element is shown in Figure 10.1.

In order to obtain the shape functions for the four-node tetrahedral element, we will
follow a procedure similar to the one we followed in Chapter 5 to obtain the triangular
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FIGURE 10.1 A four-node tetrahedral element.

shape functions for two-dimensional problems. We begin by representing the displacement '

field by the following equations:

u= Cll + C12X + C13Y + CI4Z (10.1)
w = C31 + C32X + C33Y + Cyz

Considering the nodal displacements, we must satisfy the following conditions:

u=uy at X =X, Y=Y, and Z =2
u=uy at X =X Y=Y, and zZ=2
U= ug at X = Xy Y=Y and Z=2Z
u=u at X =X Y=Y, and zZ=2

Similarly, we must satisfy the following requirements:
v=v; at X=X, Y=Y, and Z =2,

w=w, at X=X, Y=Y, and Z = Z,

Substitution of respective nodal values into Egs. (10.1) results in 12 equations and 12 5

unknowns:

up=Cy + CpX; + C3Y; + C 7, (10.2)
u;=Cy+ CpX; + CyY, + C 2,

wy = C31 + C32XL + C33YL + C342L
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Solving for the unknown C-coefficients, substituting the results back into Eq. (10.1), and
regrouping the parameters, we obtam
u= Slu, + SZuJ + S3uK + S4uL (10.3)
V= SI'UI + SZ‘UJ + S3'UK + S4‘UL

w = Slw, + Sz'llJ] + Sng + S4wL

The shape functions are
1
&=5ﬂm+hX+qY+¢ﬂ (10.4)
S, = 3{@+mx+qy+¢)
6V
S, = 14%+mx+qy+q)
6V
1
&=aﬂh+hX+qY+h@
where V, the volume of the tetrahedral element, is computed from
1 X, Y Z
_ 1 X] Y] Z]
6V = det 1 Xy Y Zy (10.5)
1 X, Y, Z;
the a;, by, ¢, dy,..., and d; -terms are:
X, Y Z 1Y Zz
a = det XK YK ZK bl = —det|1 YK ZK (10.6)
XL YL ZL 1 YL ZL
X, 1 Z X v 1
= det XK 1 ZK d] = —det XK YK 1
X, 1 Z, X, v 1

We can represent the a;,b;,¢;,d;,. .., and d;-terms using similar determinants by rotating
through the 1,J, K, and L subscripts using the right-hand rule. For example,

a; = det| X, L YL V4 L

X Y Z

It is important to note here that for thermal problems, we associate only a single de-

gree of freedom with each node of the four-node tetrahedral element—namely, temper-
ature. The variation of temperature over a four-node tetrahedral element is expressed by

T = T,8 + TS, + TyS, + T,.S, (10.7)
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10.2 ANALYSIS OF THREE-DIMENSIONAL SOLID PROBLEMS USING

Chapter 10 Three-Dimensional Elements

FOUR-NODE TETRAHEDRAL ELEMENTS

You may recall from Chapter 8 that only six independent stress components are need-
ed to characterize the general state of stress at a point. These components are

[of=[0. Oy Op Ty Ty Tyg) (10.8)

where o,,, 0,,,and o, are the normal stresses and 1, 7,,, and 7,, are the shear-stress
components. Moreover, we discussed the displacement vector that measures the changes
occurring in the position of a point within a body when the body is subjected to a load.
You may also recall that the displacement vector § can be written in terms of its Carte-
sian components as

8 = u(x,y,2) + v(x, y,2)] + wix, y, 2)k (109)

The corresponding state of strain at a point was also discussed in Chapter 8. The gen-
eral state of strain is characterized by six independent components as given by

el =lex &y 82 Yo Ve Vud (10.10)

where &,,, &,,, and ¢, are the normal strains and v,,, v,,, and v,, are the shear-strain
components. As previously discussed, the relationship between the strain and the dis-
placement is represented by:

du _a_'v _dw

S = 8y = 3y €n = - (10.11)

_m o w ow e, ow
YXy ay ax ‘sz 9z ay Yz = 9z ax
Equations (10.11) can be represented in matrix form as \
{e} = LU (10.12)
where
eXX
Eyy
]
fey= {2
yxy
Yyz
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and

ou

ox
v
dy
w
9z

wu
dy ox
o, w
az  ady
w o
ax oz

L is commonly referred to as the linear-differential operator.

Over the elastic region of a material, there also exists a relationship between the
state of stresses and strains, according to the generalized Hooke’s Law. This relationship
is given by the following equations:

[o,, - v(cyy + (rzz)] (10.13)

by | =

eXX

1
yy E[Uyy - "(("u + ”zz)]

1
€ = E[Uzz - "(O'xx + o'y,v)]

1 1 1
Yry = ETxy Yyz = ETyz Yax = Esz

The relationship between the stress and strain can be expressed in a compact-matrix
form as:

{o} = [v]{e} (10.14)
where
UXX
Tyy
-
Ty
Txz
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[1—-v v v )
1-2v 1-2v 1-2v 000
v 1-v v
1-2v 1-2v 1-2v 000
v v 1-v
[v] = 1-2v 1-2v 1-2v 000
1+v 1
0 0 0 - 00
2
1
0 0 0 0 =
2 0
1
0 0 0 =
L 00 2]
exx
Eyy
ell
el =
{e} "
Yyz
Vxz

For a solid material under triaxial loading, the strain energy A is

1
A@ = 5 J (cxxexx + Tyy€yy + 0,8, t Txy Yxy T Ty Ty + Tyz'yyz)dv (1015)
\4

Or, in a compact-matrix form,

A® =

N | =

Substituting for stresses in terms of strains using Hooke’s Law, Eq. (10.15) can be writ-
ten as )

A® = % L{e}T[v]{e}dV (10.17)

We will now use the four-node tetrahedral element to formulate the stiffness ma-
trix. Recall that this element has four nodes, with each node having three translational
degrees of freedom in the nodal x, y, and z-directions. The displacements u, v, and w in
terms of the nodal values and the shape functions are represented by

{u} = [S}{U} (10.18)

f (o] {e}dV (1016) 33
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where

u
{up =4

w

S 0 0SS 0O O S 0 0 S, 0 O
[S]=]10 & 0 0 S5 0 0 S5 0 0 § O
0 0 S O 0 S 0 0 S8 O 0 S,
L7
Yy
w;
Uy
v,
{uy ={*r
ug
Vk
Wk
up
(73
w

The next few steps are similar to the steps we took to derive the stiffness matrix
for plane-stress situations in Chapter 8, except more terms are involved in this case. We
begin by relating the strains to the displacement field and, in turn, to the nodal dis-
placements through the shape functions. We need to take the derivatives of the com-
ponents of the displacement field with respect to the x, y, and z-coordinates according
to the strain-displacement relations given by Eq. (10.12). The operation results in:

r as. aS. aS. 1
By 0 B2 g By g By o (M
ax ax ax ax vy
aS. 3S. aS.
0o Bog o0 By o By g By
ay dy ay y uy
as aS. as. as.
0 0 =L o 0 22 9 o = o o 2||¥
_ az 9z 9z 9z | Jw, (10.19)
|98 as o 0% 9% 9% 35 98 S jux| T
dy ox dy ox dy ox dy ox Vx
0 ig.l 6_51 0 9& ﬁl. 0 6_53 252 0 _‘?ﬂ ﬁ“. Wx
3z dy az ady dz  ady 9z  dy 773
38 0 6_51 6_52 0 a_Sz _('9_5_3 0 _a.‘gi ﬁ'.s.‘i 0 0_‘% VL
L 9z ax 90z ax 9z dx 9z ox 4 lwy
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Substituting for the shape functions using the relations of Eq. (10.4) and differentiating,
we have

{e} = [B{U} (10.20)
where

by 0 0 b, 0 0 by O 0 b, 0 O
0 ¢ 0 0 ¢, 0 0 ¢« 0 0 ¢ O
1 0 0 d 0 0 d, 0 0 d¢ 0 0 d,
6V | ¢ by 0 ¢ by 0 cx by 0 ¢, b, 0
0 d ¢ 0 dy ¢, 0 dy cx 0 d, ¢
d 0 b d; 0 b, d¢ 0 by d, 0 b,
and the volume V and the b, ¢, and d-terms are given by Egs. (10.5) and (10.6). Substi-

tuting into the strain energy equation for the strain components in terms of the dis-
placements, we obtain

Ao =2 Jv{e}f[v]{e} av =3 J [UF(BIv)BIU}4V  (1021)

v
Differentiating with respect to the nodal displacements yields
L (1 J [U[BY"[v][B][U] dV) fork =1,2,..,12 (1022
U, a0 \2 |, v ork =1,2,..., (10.22)

Evaluation of Eq. (10.22) results in the expression [K]?) {U} and, subsequently, the ex-
pression for the stiffness matrix, which is

(K9 = J[B]T[v][B] dV = V[B]"[v][B] (10.23)

14

where V is the volume of the element. Note that the resulting stiffness matrix will have
the dimensions of 12 X 12.

Load Matrix

The load matrix for three-dimensional problems is obtained by using a procedure sim-
ilar to the one described in Section 8.3. The load matrix for a tetrahedral element is a
12 X 1 matrix. For a concentrated-loading situation, the load matrix is formed by plac-
ing the components of the load at appropriate nodes in appropriate directions. For a
distributed load, the load matrix is computed from the equation :

®° = [ (7} da (1024)
where

Dx
{p} = {p,
P
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and A represents the surface over which the distributed-load components are acting, The
surfaces of the tetrahedral element are triangular in shape. Assuming that the distrib-
uted load acts on the /-J—K surface, the load matrix becomes:

px
Py
P,
px
p
AI-—J—K y

{F}9 = == Py (10.25)
Px
Py
P
0
0
0

The load matrix for a distributed load acting on the other surfaces of the tetrahedral el-
ement is obtained in a similar fashion.

10.3 THE EIGHT-NODE BRICK ELEMENT

The eight-node brick element is the next simple three-dimensional element used in the
analysis of solid mechanics problems. Each of the eight nodes of this element has three
translational degrees of freedom in the nodal x-, y-,and z-directions. A typical eight-node
brick element is shown in Figure 10.2.

FIGURE 10.2 An cight-node brick element.
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The element’s displacement field in terms of the nodal displacements and the 1
shape functions can be written as: § (T = s)(1 = 1)1 + r) + Ty(1 + s)(1 = 1)(1 + r))
1
u=g (w1 = s)(1 = A - r) + w1 + 5)1 - 1)1 - r)) (10.26) %(70(1 +)1+ A+ )+ Tl = s)(1 + 1)1 +7))
1
ts (ux(1 + )1+ 0)(1 = 7) +ug(1 = s)(1 + 1)1 = 1)) 10.4 THE TEN-NODE TETRAHEDRAL ELEMENT
1 The ten-node tetrahedral element, shown in Figure 10.3,is a higher order version of the
§ (up(1 - )1 - )1 + r) +uy(1l + s)(1 — 1)1 +r)) three-dimensional linear tetrahedral element. When compared to the four-node tetra-
hedral element, the ten-node tetrahedral element is better suited for and more accu-
1 rate in modeling problems with curved boundaries.
g (uo(1 + s)(X + )1 + r) + up(l — 5)1 + (1 +7)) For solid problems, the displacement field is represented by:
u = uy (28, — 1), + u, (28, — 1)8; + ux(28; — 1)8; + u, (25, — 1)S, (10.30)
1
v=3 (1 =)A= )1 = r) + (1 + )1 — 1)1 - 7)) (10.27) + 4up 1S, + un 283 + upSi Sy + upSi Sy + US4 + ugS;S)
v = v(25, — 1)8; + v,(25; — 1)8; + vk(285 — 1)8; + v, (28, - 1), (10.31)
1
*t3 (o1 + $)A + )1 = 1) + v (1 = s)(1 + 1)1 ~ 1)) + 4(vy S1S, + Sy S5 + V55185 + VpSi Sy + U554 + Vg S;S4)
w = wy(25, — 1)8; + w,(25, — 1)S; + wi(28; — 1)8; + w, (25, — 1)S, (10.32)
1
+3 (vl = $)(L = 1)1 + 1) + (L + 5)(1 — £)(1 + r)) + 4wy S5, + Wy $, S5 + WoS1 S5 + WpS; Sy + WS, Sy + WeS3Sy)
In similar fashion, the spatial distribution of temperature over an element is given by:
1 = - - -
+2 (0L + )L+ (1 + ) + w1 = )1+ (1L + 7)) T = T;(25, — 1)S; + Ty(25, — 1)S; + T(285 — 1)8; + T,(25, - 1)S,  (10.33)
+ 4Ty 8,5, + TSy Ss + ToS1 Sy + Tp S8y + Tp 8,84 + TrS384)
1
Sglul -9 -0d-nN+ud+i-gt-n)  102) 10.5 THE TWENTY-NODE BRICK ELEMENT

The twehty-node brick element, shown in Figure 104, is a higher order version of the
three-dimensional eight-node brick element. This element is more capable and more ac-

1
+ 5 (w1 + $)(A + 1)1 = 1) + w1 - )1 + (1 - 7))
curate for modeling problems with curved boundaries than the eight-node brick element.

+ 2 (w1 = )1 = DA + 1) + w1 + 5)(1 - £)(1 + 1))

0|

+3 (wo(1 + s)(L + 1)1 + r) + wp(l — s)(1 + 1)(1 + r))

In a similar fashion, for thermal problems, the spatial variation of temperature over an
element is represented by: '

T=

(T(1 = )X =)A= r) + T, + s)(1 — £)(1 = r)) (10.29)

oo]»—l

(Tx1 +5) 1+ )1 -r) +T(1 - 5)1 + )1 —r))

oo|>—~

FIGURE 10.3 A ten-node tetrahedral element.
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X u

FIGURE 10.4 A twenty-node brick element.

For solid mechanics problems, the displacement field is given by:

(l =)L =)L~ r)=s =t =r=2) +u(l+s)1 - )1 = r)(s — £ — r — 2))

%(uk(l A +A =r)s+e—r=2)+u (1 -5+ )1 - r=s+t—r—2))
%(uM(l =)A=+ r)=s—t+r=2)tuyl+ )1 - )1 + ) (s —t + r—2))
%(uo(l A+ A +r) s+t +r=2)+tup(l —s) 1+ )1 +r)(~s+t+r- 2))
7 (a1 = )0 = 01 = 1) + 1l + 5)(1 - 2)1 - )
+ 31 = A+ 0 = 1)+ urll - 5)(1 = A1 - 1)
%(uu(l - D1 - DA + ) + w1 + s)(1 -2 + r))
%(uw(l =)+ (1 + r) + ug(l - (1 -2)1 + r))
%(uy(l =81 =01 = r?) +ug(l +5)1 - (1 - )
%(u,‘(l + )1+ (1 = 77) + up(l = 5)(1 + )(1 - 72)) (10.34)
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The v- and w-components of the displacement are similar to the u-component:

%( (A =—sY1-0)A=-r)s—t—r=2)+o,(1 +s)1 -0} - r)(s—t — r — 2))
%(v,((l +1+)A-r)(s+t—r=2)+..)

%(w,(l - A=A -r)-s—t—-r=2)+wd+s)1-)A-r)s—t-r=2))

+ % (wel + )L+ )1 = r)(s +1—r—2)+..) (10.35)

For heat transfer problems, the spatial variation of temperature over an element is given by:

T= %(T,(l -1 -1 -r)(s—t—r=-2)+T,(1+s)1-t)(1-r)}s—t—-r—2))

+ —;— (Te@+ YA+ )1 =r)s+t—r—2)+..) (10.36)

10.6 EXAMPLES OF THREE-DIMENSIONAL ELEMENTS IN ANSYS®

ANSYS offers a broad variety of elements for the analysis of three-dimensional prob-
lems. Some examples of three-dimensional elements in ANSYS are presented next.

Thermal-Solid Elements

SOLID70 is a three-dimensional element used to model conduction heat transfer prob-
lems. It has eight nodes, with each node having a single degree of freedom—tempera-
ture—as shown in Figure 10.5. The element’s faces are shown by the circled numbers.

FIGURE 10.5 The SOLID70 element used
by ANSYS.

*Materials were adapted with permission from ANSYS documents.
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FIGURE 10.6 The SOLID90 element used
by ANSYS.

Convec?ion or heat fluxes may be applied to the element’s surfaces. In addition, heat-
generation rates may be applied at the nodes. This element may be used to analyze
steady-state or transient problems.

The solution output consists of nodal temperatures and other information, such as
average face temperature, temperature-gradient components, the vector sum at the cen-
troid of the element, and the heat-flux components.

SOLID90 is a twenty-node brick element used to model steady-state or transient
conduction heat transfer problems. This element is more accurate than the SOLID70 ei-
ement, but it requires more solution time. Each node of the element has a single degree
of freedom—temperature—as shown in Figure 10.6. This element is well suited to model
problems with curved boundaries. The required input data and the solution output are
similar to the data format of the SOLID70 elements.

Structural-Solid Elements

SOLID'45 isa three-f:limensional brick element used to model isotropic solid problems.
It has eight nodes, v"rxth each node having three translational degrees of freedom in the
nodal x-, y-, and z-directions, as shown in Figure 10.7 (The element’s faces are shown by

Y Surface coordinate system

FIGURE 10.7 The SOLID4S5 element used
by ANSYS.
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the circled numbers.) Distributed surface loads (pressures) may be applied to the ele-
ment’s surfaces. This element may be used to analyze large-deflection, large-strain, plas-
ticity, and creep problems.

The solution output consists of nodal displacements. Examples of additional ele-
mental output include normal components of the stresses in x, y, and z-directions; shear
stresses; and principal stresses. The element’s stress directions are parallel to the ele-
ment’s coordinate systems.

SOLIDG5 is used to model reinforced-concrete problems or reinforced compos-
ite materials, such as fiberglass. This element is similar to the SOLIDA45 elements, and it
has eight nodes, with each node having three translational degrees of freedom in the
nodal x, y, and z-directions, as shown in Figure 10.8. The element may be used to ana-
lyze cracking in tension or crushing in compression. The element can also be used to
analyze problems with or without reinforced bars. Up to three rebar specifications may
be defined. The rebars are capable of plastic deformation and creep. The element has one
solid material and up to three rebar materials. Rebar specifications include the materi-
al number; the volume ratio, which is defined as the ratio of the rebar volume to the
total element volume; and the orientation angles. The rebar orientation is defined by
two angles measured with respect to the element’s coordinate system. The rebar capa-
bility is removed by assigning a zero value to the rebar material number.

The solution output consists of nodal displacements. Examples of additional ele-
mental output include the normal components of the stresses in x, y, and z-directions,
shear stresses, and principal stresses. The element’s stress directions are parallel to the
element’s coordinate system.

SOLID72 is a four-node tetrahedral element, with each node having three trans-
lational degrees of freedom in the nodal x, y, and z-directions, as well as rotations about
the nodal x, y, and z-directions, as shown in Figure 10.9. As in previous examples, the el-
ement’s faces are shown by the circled numbers. Distributed surface loads (pressures)
may be applied to the element’s surfaces.

The solution output is similar to that of other structural-solid elements.

FIGURE 10.8 The SOLIDG65 element used
X by ANSYS.
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z
FIGURE 10.9 The SOLID72 element used
X by ANSYS.
z
FIGURE 10.10 The SOLID73 element used
X by ANSYS.

SOLID73 is an eight-node brick element that has three translational degrees of
freedom in the nodal x, y, and z-directions, as well as rotations about the nodal x,y,and
z-directions, as shown in Figure 10.10. The input data and the solution output are simi-
lar to those of elements discussed previously.

SOLIDY2 is a ten-node tetrahedral element that is more accurate than the
SOLID72 element, but it requires more solution time. Each node has three transla-
tional degrees of freedom in the nodal x-, y-, and z-directions, as shown in Figure 10.11.

This element may be used to analyze large-deflection, large-strain, plasticity, and creep
problems.

10.7 BASIC SOLID-MODELING IDEAS®

There are two ways to create a solid model of an object under investigation: bottom-up
modeling and top-down modeling. With bottom-up modeling, you start by defining key-
points first, then lines, areas, and volumes in terms of the defined keypoints. You can

*Materials were adapted with permission from ANSYS documents,

Keypoints [
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FIGURE 10.11 The SOLID92 element used
Z by ANSYS.

~— By picking on the working plane
-— By typing in coordinate values

FIGURE 10.12 The Keypoints menu.

define keypoints on the working plane by the picking method or you can enter, in ap-
propriate fields, the coordinates of the keypoints in terms of the active coordinate sys-
tem. The keypoints menu is shown in Figure 10.12, and the command for creating
keypoints is:

main menu: Preprocessor — -Modeling-Create — Keypoints

Lines, next in the hierarchy of bottom-up modeling, are used to represent the edges
of an object. ANSYS provides four options for creating lines, as shown in Figure 10.13.

Truly straight line, regardless of active coordinate system
“Straight” within the active coordinate system

FIGURE 10.13 The lines menu.
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A Arbitrary

i Two commonly used methods

FIGURE 10.14 The Area-Arbitrary sub-menu.

With the splines options, you can create a line of arbitrary shape from a spline fit to a
series of keypoints. You can then use the created line(s) to generate a surface with an
arbitrary shape. The command for creating lines is:

main menu: Preprocessor — -Modeling-Create — Lines

Using bottom-up modeling, you can define areas using the Area-Arbitrary submenu, as
shown in Figure 10.14. The command for defining areas is:

main menu: Preprocessor — -Modeling-Create — -Areas-Arbitrary

There are five other ways by which you can create areas: (1) dragging a line along
a path, (2) rotating a line about an axis; (3) creating an area fillet, (4) skinning a set of
lines, and (5) offsetting areas. With the drag and rotate options, you can generate an
area by dragging (sweeping) a line along another line (path) or by rotating a line about
another line (axis of rotation). With the area-fillet command, you can create a constant-
radius fillet tangent to two other areas. You can generate a smooth surface over a set of
lines by using the skinning command. Using the area-offset command, you can gener-
ate an area by offsetting an existing area. These operations are all shown in Figure 10.15.

Rotation axis

New fillet area (A3)

Area Fillet

Skinning (Area “skinned” Offsetting Areas (cylindrical area
over lines 1.1, L2, and L3) “inflated” and “deflated™)

FIGURE 10.15 Additional area-generation methods.
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FIGURE 10.16 The Volume submenu.

You can define volumes using the bottom-up method by selecting the Volume sub-
menu, as shown in Figure 10.16. The command for defining volume is:

main menu: Preprocessor — -Modeling-Create — -Volumes-Arbitrary

As with areas, you can also generate volumes by dragging (sweeping) an area along a
line (path) or by rotating an area about a line (axis of rotation). . .

With top-down modeling, you can create three-dimensional solid objects using
volume primitives. ANSYS provides the following three-dimensional primitives: block,
prism, cylinder, cone, sphere, and torus, as shown in Figure 10.17.

FIGURE 10.17 Examples of three-dimensional primitives.

Keep in mind that when you create a volume using primitives, ANSYS automati-
cally generates and assigns numbers to areas, lines, and keypoints that bound the volume.

Regardless of how you generate areas or volumes, you can use Boolean opera-
tions to add or subtract entities to create a solid model.

Meshing Control

So far, you have been using global element size to control the size of elements in you’r
model. The global-element-size dialog box allows you to specify the size of an element’s
edge length in the units of your model’s dimensions. Let us consif:ier other ways of con-
trolling not only the size of elements, but also their shapes. Setting the element shape
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* Mesher Options

Progran chooses [I}
Progran chooses Il
T
Pyranids - O

Progran chooses [f
L]

FIGURE 10.18 The dialog box for element shape.

prior to meshing is important when using elements that can take on two shapes. For ex-
ample, PLANES2 can take on triangular or quadrilateral shapes. Use the following com-
mand to see the dialog box for the meshing options (see Figure 10.18):

main menu: Preprocessor — -Meshing-Mesher Opts ...

Free Meshing Versus Mapped Meshing

Free meshing uses either mixed-area element shapes, all triangular-area elements, or all
tetrahedral-volume elements. You may want to avoid using lower order triangular and
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1/

| )

Py
‘ __\L}Lj_l%\l
— . FIGURE 10.19  An illustration of the
difference between free and mapped
Free meshing Mapped meshing meshing.

tetrahedral elements (those without midside nodes) in analysis of structures, when pos-
sible. On the other hand, mapped meshing uses all quadrilateral-area elements and all
hexahedral-volume elements. Figure 10.19 illustrates the difference between free and
mapped meshing.

There are, however, some requirements that need to be met for mapped meshing.
The mapped-area mesh requires that the area has three or four sides, equal numbers of
elements on opposite sides, and an even number of elements for three-sided areas. If an
area is bounded by more than four lines, then you need to use the combine command or
the concatenate command to combine (reduce) the number of lines to four. The mapped-
volume requirements are that the volume must be bound by four, five, or six sides, have
an equal number of elements on the opposite side, and have an even numbers of elements
if a five-sided prism or tetrahedron volume is involved. For volumes, you can add or con-
catenate areas to reduce the number of areas bounding a volume. Concatenation should
be the last step before meshing. You cannot perform any other solid-modeling operations
on concatenated entities. To concatenate, issue the following command (see Figure 10.20):

main menu: Preprocessing — -Meshing-Concatenate

' Concatenate

FIGURE 10.20 Concatenate dialog box.

Figure 10.21 shows an example of free and mapped meshing for an area. As a general
rule, you want to avoid meshing poorly shaped regions and avoid creating extreme el-
ement-size transitions in your model. Examples of these situations are given in
Figure 10.22.

If you are unhappy with the results of a meshed region, you can use the clear com-
mand to delete the nodes and elements associated with a corresponding solid-model
entity. To issue the clear command, use the following sequence:

main menu: Preprocessor — -Meshing-Clear

With the aid of an example, we will now demonstrate how to create a solid model
of a heat sink, using area and extrusion commands.
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L
«— concatenated line
FHH
[EmanEss|
five-sided area four-sided area

FIGURE 10.21  An example of free meshing and mapped meshing for an area.

new volume

1

sharp corner
causes tetrahedron
meshing failure ™

all 1 volume
meshes successfully

milder size transition
meshes successfully

extreme size transition causes
tetrahedron meshing failure

FIGURE 10.22 Examples of undesirable meshing situations.

EXAMPLE 10.1

Atuminum heat sinks are commonly used to dissipate heat from electronic devices. Con-
sider an example of a heat sink used to cool a personal-computer microprocessor chip.
The front view of the heat sink is shown in Figure 10.23. Using ANSYS, generate the solid
modcl of the heat sink. Because of the symmetry, model only a quarter of the heat sink
by extruding the shown frontal arca by 20.5 mm.
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2mm
-t

!

6 mm
— 4 mm
Imm
Imm
I mm

FIGURE 10.23 The front view of the heat sink in Example 10.1.

Enter the ANSYS program by using the Launcher. Type xansys54 on the com-
mand line, or consult your system administrator for the appropriate command
name to launch ANSYS on your computer system.

Pick Interactive from the Launcher menu.

Type Fin (or a file name of your choice) in the Initial Jobname entry ficld of the
dialog box.

ANSYS 5.4 INTERACTIVE

: [,i'i éngash]
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Pick Run to start the Graphic User Interface (GUI). A window will open with
some disclaimer information. You will eventually be asked to press the Return
key to start the graphics window and the main menu. Do so in order to proceed,

Create a title for the problem. This title will appear on ANSYS display windows
to provide a simple way of identifying the displays. To create a title, issue the fol-
lowing command:

utility menu: File — Change Title ...

- Change Tl

Set up the graphics area (i.e., workplane, zoom, etc.) with the following commands;
utility menu: Workplane — Wp Settings ...

SWP Settings

.3
*

Toggle on the workplane by using the following command:
utility menu: Workplane — Display Working Plane

Bring the workplane to view by using the following command:
utility menu: PlotCtrls — Pan, Zoom, Rotate ...
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Click on the small circle until you bring the workplane to view. Then, create the
geometry with the following command:

main menu: Preprocessor — -Modeling-Create — -Areas-Rectangle
— By 2 Comers +

[WP = 4,0]
[Expand the rubber band up 2.5 and right 16.5]

[WP =0,1]

[Expand the rubber band up 1.0 and right 4.0]
[WP = 0,3]

[Expand the rubber band up 1 and right 4.0]
[WP = 4,2.5]

[Expand the rubber band up 1.5 and right 6.0]
[WP = 44]

[Expand the rubber band up 6 and right 2]
[WP = 84]

[Expand the rubber band up 6.0 and right 2.0]

[WP = 11,2.5]

[Expand the rubber band up 6.0 and right 1.0]

(E(EE(E(E(EB(ECE(EEB(E[(ELE
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gy [WP = 13,2.5)

[Expand the rubber band up 6.0 and right 1.0}
[WP = 15,2.5]

[Expand the rubber band up 6.0 and right 1.0]

[WP = 17,2.5]

[Expand the rubber band up 6.0 and right 1.0]
[WP = 19,2.5]

[Expand the rubber band up 6.0 and right 1.0]

(B[ B[ B[B[B[ELE

OK

main menu: Preprocessor — -Modeling-Operate — -Booleans-Add
— Areas +

Pick All

main menu: Preprocessor — -Modeling-Operate — Extrude/Sweep
—> -Areas-Along Normal +

Pick or enter the area to be extruded, and then press the Apply button:

+ Extrude Area along Nosmal

utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Press the Ise (Isometric view) button. You should then see the image in Figure
10.24.
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Isometric view of the heat sink.
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Exit and save your results:
ANSYS Toolbar: QUIT

«kxit trom ANSYS

This example has demonstrated how to extrude an area along a normal direction to cre-
ate a volume. ’

10.8 A THERMAL EXAMPLE USING ANSYS
EXAMPLE 10.2

A section of an aquarium wall with a viewing window has the dimensions shown in Fig-
ure 10.25. The wall is constructed from concrete and other insulating materials, with an
average thermal conductivity of ¥ = 0.81 Btu/hr - ft . °F. The section of the wall has a
viewing window that is made of a six-inch-thick clear plastic with a thermal conductiv- /<

ity of k = 0.195 Btu/hr - ft - °F. The inside air temperature is kept at 70°F, with a corre-
sponding heat transfer coefficient of # = 1.46 Btu/hr - ft?. °F. Assuming a water-tank

Ve

18in.

temperature of 50°F and a corresponding heat transfer coefficient of A = 10.5 *5a > FIGURE 10.25 Dimensions of the wall and

Btu/hr - ft? . °F, use ANSYS to plot the temperature distribution within the wall section. \/ ;‘(‘)ezdeapplas“c viewing window of Example
Note that the main purpose of this example is to show the selection capabilities of -

ANSYS and to show how to move the working plane when constructing three-dimen- Enter the ANSYS program by using the Launcher. Type xansys54 on the com-
sional models. Recall that the heat loss through such a wall may be obtained with rea- mand line, or consult your system administrator for the appropriate command
sonable accuracy from the equation ¢ = Uyyerar(Tinsigze — Twates) 30d by calculating the name to launch ANSYS on your computer system.

overall U-factor for the wall. Pick Interactive from the Launcher menu.
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Type Wall (or a file name of your choice) in the Initial Jobname entry field of the
dialog box.

main menu: Preprocessor > Element Types — Add/Edit/Delete

ANSYS 5.4 INTERACTIVE

of Element Types

She
ANSYS Fluid

Pick Run to start the Graphic User Interface (GUI). A window will open with
some disclaimer information. You will eventually be asked to press the Return
key to start the graphics window and the main menu. Do so in order to proceed.

Create a title for the problem. This title will appear on ANSYS display windows
to provide a simple way of identifying the displays. To create a title, issue the fol-
lowing command:

utility menu: File — Change Title ...

< Change Tille
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Assign thermal conductivity values for concrete and plastic with the following
commands:

main menu: Preprocessor — Material Props — -Constant-Isotropic ...

i Isotiopic Material Properties

i Isotropic Material Properties

ANSYS Toolbar: SAVE_DB

Sctup the graphices arca (i.c.. workplane. zoom. cte.) with the following commands:
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utility menu: Workplane — Wp Settings ...

Toggle on the workplane by using the following command:
utility menu: Workplane — Display Working Plane
Bring the workplane to view by using the following command:

utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Click on the small circle until you bring the workplane to view. Then, press the Iso
(Isometric view) button. Next. create the geometry with the following commands:

main menu: Preprocessor — -Modeling-Create — -Volumes-Block
— By2Corners & Z +

=

"
§
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{WP = 0,0]

[Expand the rubber up 7 and right 2.5]

|Expand the rubber band in the negative Z-direction to — 1.5}

Create a volume. to be removed later, for the plastic volume:

/X Block by 2 Comners & 2
[ o

OK

main menu: Preprocessor — -Modeling-Operate — -Booleans-Subtract
— Volumes +

Pick Volumel and Apply; then pick Volume2 and Apply.

OK

utility menu: Plot — Volumes
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Create the plastic volume with the following command:

A\ Block by 2 Comers & Z (4

utility menu: WorkPlane — Offset WP by Increments ... j{_ *
In the XY, Z Offsets box, type in [0, 0, —0.5].

OK

main menu: Preprocessor — -Modeling-Operate — -Booleans-Glue
— Volumes +
Pick All
We now want to mesh the volumes to create elements and nodes, but first, we need
to specify the element sizes. So, issue the following commands:
main menu: Preprocessor — -Meshing-Size-Cntrls — Global-Size ...

OK
Now, issue the following commands:

main menu: Preprocessor — -Modeling-Create — -Volumes-Block
— By2Corners & Z +
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We also need to specify material attributes for the concrete and the plastic volumes

before we proceed with meshing. To do so, we issue the following commands:
main menu: Preprocessor —> -Attributes-Define — Picked Volumes +

FJjU [Pick the concrete part of the wall volume]

H | Apply anywhere in the ANSYS graphics window)

 Volume Attnbutes

une def ined fh
o)

main menu: Preprocessor — -Attributes-Define — Picked Volumes +
IDQ [Pick the plastic volume]

-
‘Ufﬂ [Apply anywhere in the ANSYS graphics window)

: Yolume Attributes

None def ined

_ SOLID3?

ANSYS Toolbar: SAVE_DB
We can proceed to mesh by issuing the following commands:
main menu: Preprocessor — -Meshing-Mesh — -Volumes-Free +

Pick All

i St e s

[y
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If you exceed the maximum number of clements allowed in the educational ver-
sion of ANSYS try the following:

main menu: Preprocessor — -Meshing-Size Cntrl — -Smart Size-basic ...

i Basic SmaitSize Settings

Now try to mesh the volumes again. To apply the boundary conditions, we first se-
lect the interior surfaces of the wall, including the clear plastic:

utility menu: Select — Entities ...
In the Min, Max field, type: {0, —0.5]
N Select Entities B3

By Location ¥

OK

utihty menu: Plot — Areas



476  Chapter 10 Three-Dimensional Elements

main menu: Solution — -Loads-Apply — -Thermal-Conveetion

Pick All

i Apply CONV on Aseas

utility menu: Select — Everything
utility menu: Select — Entities ...

In the Min, Max ficld. type: [— 1.0, — 1.5]

A\ Select Entities

OK

utility menu: Plot — Areas

— On Areas +

main menu: Solution —» -Loads-Apply —> -Thermal-Convection

— On Areas +

e

Section 10.8 A Thermal Example Using ANSYS

Pick All 10 specify the convection coefficient and temperature:

L Apply EDNY on Areas

To see the applied boundary conditions, use the following commands:

utility menu: PlotCntrls — Symbols ...

B e ex e

Convect FilmCoef |

'4Elllll

477
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utility menu: Seleet -» Everything

utility menu: Plot — Areas

ANSYS Toolbar: SAVE_DB

Solve the problem:

main menu: Solution — -Solve-Current LS
OK

Close (the solution is done!) window.
Close (the /STAT Command) window.

For the postprocessing phase, obtain information such as nodal temperatures

and heat fluxes with the following commands (see Figure 10.26 und Figure
10.27):

main menu: General Postproc — Plot Results

-> -Contour Plot-Nodal Solu ...

i Contour Nedal Solution Data
e NS

DOF solutian
Flux & gradient

flemperature TEMP
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#\ ANSYS Graphics

FIGURE 10.26 Temperature contour plot.

main menu: General Postproc — Plot Results
— -Vector Plot-Predefined ...

: Vector Plot n!flet!ehrge@

Thernal flux TF

P
Magnitude based 84
Undeformed Mesh ¥
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FIGURE 10.27 The heat flow vectors.

FIGURE 10.28 Dimensions of the bracket in Example 10.3.

Exit and save your results: 10.9 A STRUCTURAL EXAMPLE USING ANSYS
EXAMPLE 10.3

The bracket shown in Figure 10.28 is subjected to a distributed load of 50 1b/in® on the
top surface. It is fixed around the hole surfaces. The bracket is made of steel, with a mod-

e , ulus elasticity of 29 X 10°1b/in? and v = 0.3. Plot the deformed shape. Also, plot the von
W—W Mises stress distribution in the bracket.

' The following steps demonstrate how to create the geometry of the problem, choose

ANSYS Toolbar: QUIT

the appropriate element type, apply boundary conditions, and obtain nodal results:

Enter the ANSYS program by using the Launcher. Type xansys54 on the com-
mand line, or consult your system administrator for the appropriate command
name to launch ANSYS on your computer system.

Pick Interactive from the Launcher menu.

Type Brack3D (or a file name of your choice) in the Initial Jobname entry field of
the dialog box.
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ANSYS 5.4 INTERACTIVE

Pick Run to start the Graphic User Interface (GUI). A window will open with
some disclaimer information. You will eventually be asked to press the Return
key to start the graphics window and the main menu. Do so in order to proceed.
Create a title for the problem. This title will appear on ANSYS display windows
to provide a simple way of identifving the displays. So. issuce the following com-
mands:

utility menu: File — Change Title ...

i Change Title

main menu: Preprocessor — Element Type — Add/Edit/Delete ...

Section 109 ASteactural Example Using ANSYS 483

f Element Types )

Pefined Element Iypes:

" Stractaral Mase
Link
Bean
Fipe

t 2@node 5
g of Flement Types B ode L 42
aniso 64
concret 6%
w/rotat 73

usratate 22 b

Tec 16node 92

Shell
JHypere tastic

)

3 z
s

, i

Element type reference number

' oK ] -

Cancel [

Add. .. j Optiens... |.

Close 1 o

Assienthe moditus of clasnomy and Poisson’s vatio with the following commands:

main menw Preprocessor > Material Props - » -Constant-Isotropic ...
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E < 1sotiopic Material Properties

i Isotropic Matenial Piopesties

ANSYS Toolbar: SAVE_DB

Set up the graphics area (i.e. workplane, zoom, etc.) with the following commands:

utility menu: Workplane — WP Settings ...

Section 10.9 A Structural Example Using ANSYS 485

]
]
]
I
1
S
R

1]

Toggle on the workplane by using the following command:
utility menu: Workplane — Display Working Plane

Bring the workplane to view by using the following command:
utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Click on the small circle until you bring the workplane to view. Then, press the Iso
(Isometric view) button. Next, create the vertical plate by issuing the following
commands:

main menu: Preprocessor — -Modeling-Create — -Volumes-Block
— By2Corners & Z +
ﬁ [WP = 0,0]

H [Expand the rubber band up 3.0 and to the right 2.0]

ﬁ |Expand the rubber band in the negative Z-direction by 0.125}

OK
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lo ereate the holes. first we must ereate two evlinders, with the following com-
nands:

main menu: Preprocessor — -Modeling-Create — -Volumes-Cylinder
— Solid Cylinder +

On the workplane, pick the following locations:

I IWP = 1]

. |Expand the circle to rad = 0.25]

B |Expand the cylinder to a length of 0.125 in the negative Z-direction|

I (WP =12]

o | Expand the circle to rad = 0.25]

B {Expand the cylinder to a length of 0.125 in the negative Z-direction|

OK

Now. create the holes by subtracting from the vertical plate the volume of eylin-
dersowith the following commands:

main menu: Preprocessor — -Modeling-Operate — -Booleans-Subtract
— Volumes +

Pick Volume-1 (the vertical plate) and Apply: then, pick Volume-2 and Volume- 3
(the cviinders) and Apply.

OK
utility menu: Plot — Volumes

ANSYS Toolbar: SAVE_DB
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Move and rotate the workplane and create the top plate with the following com-
mand:

utilty menu: Workplane - > Offset WP by Increments

In the XUY. 7 Offsets box. type in [0, 3.0, —0.125]. and then Apply. To rotate the
WP move the Degrees Slider bar to 90 and then press the + X rotation button.

OK
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utility menu: PlotCtrls — Pan, Zoom, Rotate ...

utility menu: PlotCtrls — Pan, Zoom, Rotate ...
Press the Bot (bottom view) button and issue the following commands:

main menu: Preprocessor — -Modeling-Create — -Volumes-Block Change the view to Left and issue the following commands:
— By2 Comners & Z + main menu: Preprocessor — -Modeling-Create — -Volumes-Prism
[WP = 0,0] — By Vertices +
[In the active workplane, expand the rubber band to 3.0 and 2.0] E [Wp = 0,0]
ﬁ [Expand the rubber band in the negative Z-direction by 0.125] H (WP = 0,3.125]
OK [WP = 3,3.125]
utility menu: WorkPlane — Align WP With —> Global Cartesian E
utility menu: Plot — Volumes [WP = 3.0,3.0]
utility menu: WorkPlane — Offset WP by Increments ... E
In the X,Y, Z Offset.s box, type in [0, 0, —Q.IZS], then Apply. Rotate the work- [WP = 0.125,0]
plane about the Y-axis. Move the Degrees Slider bar to 90 and then press the =Y EE
rotation button.
ﬁ [WP = 0,0]

Change the view to the isometric view by pressing the Iso button:

[Stretch the rubber band 0.125 in the Z-direction.}

OK
utility menu: Plot — Volumes
utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Toggle on the dynamic mode; hold down the right button on the mouse and rotate
the object as desired. Then, issue the following commands:

main menu: Preprocessor — -Modeling-Operate — -Booleans-Add
— Volumes +

Pick All

‘We now want to mesh the volumes to create elements and nodes, but first, we need
to specify the element sizes. So, issue the following commands:

OK main menu: Preprocessor — -Meshing-Size Cntrls — -Smart Size-Basic ...
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: Basic SmartSize Settings 7 Choose the isometric view and issue the following commands:
utility menu: Select — Entities ...

i X Select Entities

ANSYS Toolbar: SAVE_DB
main menu: Preprocessor — -Meshing-Mesh — -Volumes-Free +

Pick All

Close

ANSYS Toolbar: SAVE_DB

Now. we need to apply boundary conditions. First, we will fix the periphery of the
holes by using the following command:

utility menu: PlotCtrls — Pan, Zoom, Rotate ...

Choose the Front view and issue the following commands: ; In the Min, Max field, type [3.125, 3.125].
main menu: Solution — -Loads-Apply — -Structural-Displacement OK
— On Keypoints + 5 utility menu: Plot — Areas
Change the picking mode to “circle” by toggling on the s Circle feature. Now, main menu: Solution — -Loads-Apply — -Structural-Pressure
starting at the center of the holes, stretch the rubber band until you are just out- 3 — On Areas +

side the holes and apply:
PPy Pick All to specify the distributed load (pressure) value:

*Apply B.RUT on KPs “Apply PHES on Ateas

11 DOF
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o see the applied boundary conditions. use the following commands:

utthty menu: PlotCtrls — Symbols

ﬁ‘k{;n:. .'!._‘! oe

utility menu: Select — Everything

utility menu: Plot — Areas
ANSYS Toolbar: SAVE_DB
Solve the problem:
main menu: Solation - -Solve-Current LS

OK
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Close (the sotution is done!) window,
Close (the /STAT Command) window.

In the postprocessing phase. first plot the deformed shape by using the following
commands (see Figure 10.29):

main menu: General Postproc — Plot Results — Deformed Shape ...

i Plot Deformed »Shape

FIGURE 10.29 The deformed shape of the bracket



494  Chapter 10 Three-Dimensional Elements

Plot the von Mises stresses by using the (ollowing commands (see Figure 10.30):

main menu: General Postproc —> Plot Results

: Contour Nedal Solution Data

—> -Contour Plot-Nodal Solu ...

[DOF sodution  affZnd principal $2
Strecs 3»d principal $3

Eillntensit S1
54 Mises QU
in-elastic ‘EAEPlasEquStrs SEPL
in—thermal StreasRatio SRAT
in-plastic HydrastPres HPRE

FIGURE 10.30

The von Mises stress distribution within the bracket

10.10
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Exit and save your results:

ANSYS Toolbar: QUIT

L Exit iom AN

VERIFICATION OF RESULTS: ERROR-ESTIMATION PROCEDURES

Up to this point, we have discussed how to use fundamental principles, such as statics
equilibrium conditions or the conservation of energy, to check for the validity of results.
We have also noted that when economically feasible or practical, the experimental ver-
ification of a finite element model is the best way to check for the validity of results.
Moreover, it has been pointed out that the element size affects the accuracy of your re-
sults. Now, consider how you know whether the element sizes associated with a meshed
model are fine enough to produce good results. A simple way to find out is to first model
a problem with a certain number of elements and then compare its results to the results
of a model that you create with twice as many elements. In other words, double the num-
ber of original elements and compare the results of the analysis. If no significant differ-
ence between the results of the two meshes is detected, then the meshing is adequate.
If substantially different results are obtained, then further mesh refinement might be nec-
essary.

The ANSYS program offers error-estimation procedures that calculate the level of
solution error due to mesh discretization. Error calculations used by ANSYS are based
on discontinuity of stresses (or heat fluxes) along interelemental boundaries. Because
neighboring elements share common nodes, the difference between the nodal stresses
calculated for each element results in a discontinuous stress solution from element to el-
ement. The degree of discontinuity is based on both the mesh discretization and the
severity of the stress gradient. Therefore, it is the difference in stresses from element to
element that forms the basis for error calculations in ANSYS.

Error calculations in ANSYS are presented in three different forms: (1) the ele-
mental-energy error (SERR for structural problems and TERR for thermal problems),
which measures the error in each element based on the differences between averaged
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and unaveraged nodal stress or thermal flux values; (2) the percent error in energy
norm (SEPC for structural problems and TEPC for thermal problems), which is a glob-
al measure of error energy in the model that is based on the sum of the elemental-
error energies; and (3) the nodal-component value deviation (SDSG for structural
problems and TDSG for thermal problems), which measures the local error quantity
for each element and is determined by computing the difference between the averaged
and unaveraged values of stress or heat flux components for an element. To display
error distributions, use the following commands:

main menu: General Postproc — Plot Results — Element Solu

You can select and plot the elemental-energy error to observe the high-error regions
where mesh refinement may be necessary. You can also plot SDSG (or TDSG) to iden-
tify and quantify the region of maximum discretization errors by using the following
command:

main menu: General Postproc — Element Table — Define Table

The elemental-energy error or the nodal-component deviations can be listed as well by
using the following command:

main menu: General Postproc — Element Table — List Element Table

Examples of ANSYS elements that include error estimations are given in Table 10.1.
Note that ANSYS stress-contour plots and listings give the upper and the lower error
bounds based on SDSG or TDSG calculations. The estimated-error bound of plotted
stresses is denoted by SMXB or SMNB labels in the graphics-status area.

To make the task of mesh evaluation and refinement simpler, ANSYS offers adap-
tive meshing, which is a process that automatically evaluates mesh-discretization error
and performs mesh refinement to reduce the error. The adaptive meshing performed

TABLE 10.1 Examples of ANSYS elements that include
error estimations

Structural Solids Thermat Solids
PLANE2 PLANE33
PLANE42 PLANESS
PLANES2 PLANE77
SOLID45 SOLID70
SOLID92 SOLID87
SOLID9S SOLID%0
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by the ADAPT program of ANSYS will perform the following tasks: (1) it will gener-
ate an initial mesh and solve the model; (2) based on error calculations, it will determine
if mesh refinement is needed; (3) if mesh refinement is necessary, it will automatically
refine the mesh and solve the new model; and (4) it will refine the mesh until a loop limit
or an acceptable error limit has been reached. To start the adaptive-meshing program,
issue the following command:

main menu: Solution — -Solve-Adaptive Mesh ...

Note that to begin the first run of the adaptive-meshing program, you need to create the
initial model by defining the element type, material property, and so on.

SUMMARY

At this point you should:

1. know how the shape functions for a tetrahedral element are derived.

2. know how the stiffness matrix and load matrix for a tetrahedral element are de-
rived.

3. be familiar with the eight-node brick element and its higher order counterpart
the twenty-node brick element.

»

4. be familiar with some of the structural-solid and thermal elements available
through ANSYS.

5. understand the difference between the top-down and bottom-up solid-modeling
methods.

6. be able to find ways to verify your FEA results.
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PROBLEMS

1. For a tetrahedral element, derive an expression for the stress components in terms of the
nodal displacement solutions. How are the three principal stresses computed from the cal-
culated stress component values?
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2. Use ANSYS to create the solid model of the object shown in the accompanying figure. Use
the dynamic-mode option to view the object from various directions. Plot the solid object in
its isometric view.

r = 0.25 hole all the way through

—r=0.5
r=0.75

3. Use ANSYS to create a solid model of a foot-long section of a pipe with the internal longi-
tudinal fins shown in the accompanying figure. Use the dynamic-mode option to view the
object from various directions. Plot the object in its isometric view.

1ft

n =2in.
r,=2%in.
= 1in.
3.
H=yin.

4. Use ANSYS to create the solid model of the wall-mount piping support bracket shown in the
accompanying figure. Use the dynamic-mode option to view the object from various direc-
tions. Plot the solid object in its isometric view.

b S v

s

5
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r=1.125 holes

- Use ANSYS to create the solid model of the heat exchanger shown in the accompanying fig-
ure. Use the dynamic-mode option to view the object from various directions. Plot the model
of the heat exchanger in its isometric view.

) 1
kness = —
Plate thickness 6

—n

re 08" S SHNG S PR S SIS L

ry = .5625"
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6. Use ANSYS to create the solid model of the wheel shown in the accompanying figure. Use

the dynamic-mode option to view the object from various directions. Plot the object in its iso-
metric view.

__-,,___,__._‘q‘

Dimension are in inches.

7. Use ANSYS to create a solid model of a 100-mm-long section of a pipe with the internat lon-
gitudinal fins shown in the accompanying figure. Use the dynamic-mode option to view the
object from various directions. Plot the object in its isometric view.

water

ethylene glycol
solution

Smm j
' |

8. Using ANSYS, calculate and plot the principal stress distributions in the support component

shown in the accompanying figure. The bracket is made of steel. It is fixed around the hole
surfaces.
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100 N/em? S
l 1 6 cm holes centered with r = 5 mm
-

" f 15cm
fillet radius = S mm

|
=5 mm

9. Using ANSYS, calculate and plot the von Mises stress distribution in the traffic signpost
shown in the accompanying figure. The post is made of steel, and the sign is subjected to a wind
gust of 60 miles/hr. Use the drag force relation F, = Cp A pU? to calculate the load caused
by the wind, where F, is the load, Cpp, = 1.18, p represents the density of air, U is the wind
speed, and A gives the frontal area of the sign. Distribute the load on the section of the post
covered by the sign. Could you model this problem as a simple cantilever beam and thus
avoid creating an elaborate finite element model? Explain.

i \
] 21t ‘

| 30din =

>t 1/8 in.

I« 15in»
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10.

11.

Determine the temperature distribution inside the aluminum heat sink in Example 10.1 if the
surrounding air is at 25°C, with a corresponding heat transfer coefficient £ = 20 W/m? . K,
The heat sink sits on a chip that dissipates approximately 200 W. Extrude the frontal area
shown in the accompanying figure 20.5 mm to create a quarter model of the heat sink.

The front view of the heat sink in Problem 10.

Imagine that by mistake, an empty coffee pot has been left on a heating plate. Assuming that
the heater puts approximately 200 Watts into the bottom of the pot, determine the temper-
ature distribution within the glass if the surrounding air is at 25°C, with a corresponding heat
transfer coefficient h = 15W/m? . K. The pot is cylindrical in shape, with a diameter of 14 cm
and height of 14 cm, and the glass is 3 mm thick.
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. Using ANSYS, generate a three-dimensional model of a socket wrench. Take measurements

from an actual socket. Use solid-cylinder, hexagonal-prism, and block primitives to construct
the model. Make reasonable assumptions regarding loading and boundary conditions, and per-
form stress analysis. Plot the von Mises stresses. Discuss the type and magnitude of loading
that could cause failure.

. During the winter months, the inside air temperature of a room is to be kept at 70°F. How-

ever, because of the location of a heat register under the window, the temperature distribu-
tion of the warm air along the window base is nonuniform. Assume a linear temperature
variation from 80°F to 90°F (over a foot long section) with a corresponding heat transfer co-
efficient & = 1.46 Btu/hr - ft* . °F. Also, assume an outside air temperature of 10°F and a cor-
responding & = 6 Btu/hr - ft? - °F. Using ANSYS, determine the temperature distribution in
the window assembly, as shown in the accompanying figure. What is the overall heat loss
through the window assembly?

lin.

i
34 in. -] m

aluminum

1/4 in. —t’ le—o

i
BEss 36in.

o l— 1175 in—>]

14. Using ANSYS, calculate and plot the principal stress distributions in the link component

shown in the accompanying figure. The link is made of steel.
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16. Design Problem Using a three-dimensional beam element in ANSYS; you are to size the
cross sections of members of the frame shown in the accompanying figure. Use hollow tubes.
The frame is to support the weight of a traffic light and withstand a wind gust of 80 miles/hr.
Write a brief report discussing your final design.

2000 Ib

15. Design Problem Referring to one of the design problems in Chapter 8 (Problem 22), each stu-
dent is to design and construct a structural model from a §” X 6” X 6” sheet of plexiglas ma-
terial that adheres to the specifications and rules given in Problem 22. Additionally, for this’
project, the model may have any cross-sectional shape. Examples of some common sections
are shown in the accompanying figure.

Holes parallel to
and at an angle of 90°
to the axis of loading

Examples of cross-section A-A




CHAPTER 11

Design Optimization

The objectives of this chapter are to introduce the basic design optimization ideas and
the parametric design language of ANSYS. The main topics discussed in Chapter 11 in-
clude the following:

11.1 Introduction to Design Optimization
11.2 The Parametric Design Language of ANSYS
11.3 An Example Using ANSYS

INTRODUCTION TO DESIGN OPTIMIZATION

Optimization means minimization or maximization. There are two broad types of design: -
a functional design and an optimized design. A functional design is one that meets all
of the preestablished design requirements, but allows for improvements to be made in
certain areas of the design. To better understand the concept of a functional design, we
will consider an example. Let us assume that we are to design a ten-foot-tall ladder to
support a person who weighs 300 pounds with a certain factor of safety. We will come
up with a design that consists of a steel ladder that is ten feet tall and can safely support
the load of 300 Ib at each step. The ladder would cost a certain amount of money. This
design would satisfy all of the requirements, including those of the strength and the size
and, thus, constitutes a functional design. Before we can consider improving our design,
we need to ask ourselves what criterion should we use to optimize the design? Design
optimization is always based on some criterion such as cost, strength, size, weight, reli-
ability, noise, or performance. If we use the weight as an optimization criterion, then the
problem becomes one of minimizing the weight of the ladder. For example, we may con-
sider making the ladder from aluminum. We could also perform stress analysis on the
new ladder to see if we could remove material from certain sections of the ladder with-
out compromising the loading and factor of safety requirements.

Another important fact to keep in mind is that while an engineering system con-
sists of various components, optimizing individual components that make up a system
does not necessarily lead to an optimized system. For example, consider a thermal-fluid
system such as a refrigerator. Optimizing the individual components independently—
such as the compressor, the evaporator, or the condenser—with respect to some crite-
rion does not lead to an optimized overall system.
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Initial
design

Perform
analysis

!

Evaluate
results
of analysis

Can the desi|

Modify be improved?

design

design FIGURE 11.1 An optimization procedure.

This chapter presents some basic ideas in design optimization of a component. We
will focus only on weight as an optimization criterion. Traditionally, improvements in a
design come from the process of starting with an initial design, performing an analysi.s,
looking at results, and deciding whether or not we can improve the initial design. This
procedure is shown in Figure 11.1.

In the past few decades, the optimization process has grown into a discipline .tha}t
ranges from linear to nonlinear programming techniques. As is the case with any disci-
pline, the optimization field has its own terminology. We will use the next two examples
to introduce the fundamental concepts of optimization and its terminology.

EXAMPLE 11.1

Assume that you have been asked to look into purchasing some storage tanks for your
company, and for the purchase of these tanks, you are given a budget of $1680. After
some research, you find two tank manufacturers that meet your requirements. From
Manufacturer A, you can purchase 16-ft>-capacity tanks that cost $120 each. M;;)reovef,
this type of tank requires a floor space of 7.5 ft*. Manufacturer B nzxakes 24-ft -capaci-
ty tanks that cost $240 each and that require a floor space qf 10 ft*. The tanks will be
placed in a section of a lab that has 90 ft? of floor space available for storage. Y(?u are
looking for the greatest storage capability within the budgetary and floor-space limita-
tions. How many of each tank must you purchase?
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First, we need to define the objective function, which is the function that we will at-
tempt to minimize or maximize. In this example, we want to maximize storage capaci-
ty. We can represent this requirement mathematically as

Maximize Z = 16x; + 24x, (11.1)
subject to the following constraints:
120x; + 240x, < 1680 (11.2)
7.5x; + 10x, < 90 (11.3)
x =0 (11.9)
x=0 (11.5)

In Eq. (11.1), Z is the objective function, while the variables x, and x, are called design
variables. The limitations imposed by the inequalities in (11.2)~(11.5) are referred to as
a set of constraints. Although there are specific techniques that deal with solving linear
programming problems (the objective function and constraints are linear), we will solve
this problem graphically to illustrate some additional concepts. The inequalities in
(11.2)~(11.5) are plotted in Figure 11.2.

The shaded region shown in Figure 11.2 is called a feasible solution region. Every
point within this region satisfies the constraints. However, our goal is to maximize the
objective function given by Eq. (11.1). Therefore, we need to move the objective func-
tion over the feasible region and determine where its value is maximized. It can be

X2

— X

(12,0)

FIGURE 11.2  The feasible solution region for Example 11.1.
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TABLE 11.1 Value of the objective function at the
cornerpoints of the feasible region

Cornerpoints Value of
(xl,xz) Z = 16x; + 24x,
0,0 0
0,7 168
12,0 192
83 200 (max.)

shown that the maximum value of the objective function will occur at one of the cor-
nerpoints of the feasible region. By evaluating the objective function at the cornerpoints
of the feasible region, we see that the maximum value occurs at x; = 8 and x, = 3.This
evaluation is shown in Table 11.1.

Thus, we should purchase eight of the 16-ft> tanks from Manufacturer A and three
of the 24-ft> tanks from Manufacturer B to maximize the storage capacity within the
given constraints.

Let us now consider a nonlinear example to demonstrate some additional terms.

EXAMPLE 11.2

Consider a wooden cantilever beam with rectangular cross section subject to the point

loads shown in Figure 11.3.To satisfy safety requirements, the average stress in the beam

is not to exceed a value of 30 MPa. Furthermore, the maximum deflection of the beam

must be kept under 1 cm. Additional spatial restrictions limit the size of the cross sec-

tion according to the limits 5 cm < x; = 15 cm and 20 cm =< X, < 40 cm. We are inter-

ested in sizing the cross section so that it results in a minimum weight of the beam.
This problem is modeled by the objective function:

Minimize W = pgx;x, L (11.6)

500N 500 N

FIGURE 11.3 A schematic of the beam in Example 11.2.
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Assuming constant material density, the problem then becomes one of minimizing the

volume:
Minimize V = x;x,L (117)
The constraints for this problem are: s
e < 30 MPa (11_;;5
Smax = 1om (11.9)
Sem=x; =<15cm (11_1'0') o
20cm = x; =40cm (11.11)

The variables x; and x, are called design variables; the o-variable for stress and the §- -

variable for deflection are called state variables. We will solve this problem using ANSYS,

but first, let us look at the parametric design language and optimization routines of
ANSYS.

11.2 THE PARAMETRIC DESIGN LANGUAGE OF ANSYS®

You can define your own variables or choose one of the ANSYS-supplied parameters.
User-named parameters, however, must adhere to the following rules: (1) User-named
parameters must consist of one to eight characters and must begin with a letter; (2) a pa-
rameter may be assigned a numeric value, a character value, or another parameter, as
long as the value of the other parameter is currently known to ANSYS; and (3) para-
meters can be of a scalar type or represent an array of values. Scalar parameters may be
defined by using the following command:
utility menu: Parameters — Scalar Parameters

To use a parameter, input the parameter’s name in the field where ANSYS expects a value.

For example, to assign a modulus of elasticity value of 29 X 10° Ib/in’ to 2 machine part made

of steel, you can define a parameter with the name STEEL and assign a value of 29e6toit. - -
ANSYS allows the user to define up to 400 parameters. You can define character =~

parameters by placing the characters in single quotes. For example, if you want to de-

fine a parameter by the name of Element and assign the characters PLANE42 to it,you b

can do so by typing: Element = ‘PLANE42’. You can obtain predefined parameters by
using the following commands:

utility menu: Parameters — Get Scalar Data — Parameters

You can also use thousands of ANSYS-supplied values as parameters. For example, yb
can retrieve nodal coordinates, node numbers, nodal displacements, nodal stresses, an el
ement volume, etc. and assign them to parameters. You can access the ANSYS-supplie
parameters by using the command :
utility menu: Parameters — Get Scalar Data
or by using the command
utility menu: Parameters — Get Vector Data

"Materials were adapted with permission from ANSYS documents.

Section 11.2 The Parametric Design Lang

You can list the parameters that have been defined by using the |

utility menu: List — Status — Parameters — Named Pa
You can use already-defined parameters to form an expression-
Length* Width, When using parametric expressions in a commar
ses to force operations to occur in the desired order. ANSYS als
tions that are a set of mathematical operations that return a si
include: SIN, COS, LOG, EXP, SQRT, ABS. To make use of these
lowing command: :

utility menu: Parameters — Auray Operations — Vector

Once you define the model in terms of design parameters, thes
design-optimization routines interactively with the Graphical Usc
a batch file. The batch mode is generally preferable because it offe
to perform analyses. Up to this point, we have been running ANSYS
GUI. Using a text editor, you can also create an ANSYS batch fil
sary commands to generate a model. The batch file is then submitte
job. The usual procedure for design optimization consists of the foll

1. Create an analysis file to be used during looping. You begir
sign variables, building the model parametrically, and obt
then need to retrieve and assign to parameters the values tt
variables and objective functions.

2. Enter OPT and specify the analysis file. At this point, you
OPT processor to begin optimization.

3. Declare optimization variables. Here, you define the objec
ify which variables are design variables and which are stat
lows you to define only one objective function. You ca
variables and up to 100 state variables in your model.

4. Choose an optimization procedure. The ANSYS program
optimization procedures. The procedures are divided into.
optimization methods of ANSYS deal with minimizing a si
On the other hand, the optimization tools are techniques
stand the design space of a problem. For a complete list ¢
with ANSYS, along with the relevant theory behind each
on-line documents. You can also supply your own externa
to be used during the optimization phase.

6. Specify optimization looping controls. Here, you specify th
iterations to be used with an optimization procedure.

7. Initiate optimization analysis.

8. Review the resulting design sets and postprocess results.

Throughout the book, up to this point, we have explained
teractively. We now introduce the required steps to create a batc
ate a batch file for Example 11.2, and using this problem, wi
optimization steps.
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Batch Files

You may recall from studying Chapter 6 that when you first enter ANSYS Create the geomeiry of the problem:

You are atthe

[}
]
Begin Level. From the Begin level, yo !
- mands that give you entrygtlo a prochslz):::llv::;: ;t(:: Oiﬁhe ?NSYS Processors. Com N,1,0,0 ! Define node 1 at location X=0, Y=0
/PREP7 command gives general access to the ANSYSWI aslash (/) For CXamPle,the N,2,2.5,0 ! Define node 2 at location X=2.5, Y=0
the general postprocessor by issuing the command/PO%"f‘processon You gaing o N.3,5.0,0 ! Define node 3 at location X=5.0, Y=0
sor to another, you must first return to the Begia | ¢ 1. To move from oné proce: E,1,2 ! Define element 1 as having node 1 and node 2
currently in. Only then can you acces egin Level by exiting the processor you £,2,3 ! Define element 2 as having node 2 and node 3
s another processor. To leave a FINISH ! Return to the Begin Level to access other processors

turn to the Begin Level, you must issue the FINISH command PfQCCssor and re

The fundamental tool used to enter data NS
and control AN .
command. Some commands can be used only a o] the' SYS program 15 14

b

! Apply boundary conditions, apply loading, and obtain

others may be used in qther processors. For example, you cannot use the /PREP7 /SoLu ! Enter the Solver processor
generating commands in other processors. The command format consists of one om
fields separated by commas. The first field always contains the co \ ore . . .
mand argument may be skipped by not o0 mmand na; ANTYPE, STATIC ! Analysis type is static
such cases, ANSYS ) y specifying any data between the D,1,ALL,0 ! Apply boundary conditions; all displacements at node
Fsesl, substitutes the default data for the argument. are zero
or
ment the bortlghptf;)ggams a{ld to keep track'of.the flow of the batch file, you can docu- F,2,FY,500 ! Apply 500 1b at node 2 in the positive Y-direction
clamati atch it 'e y plaClng.commen.ts within the file. A comment is indicated by ex- F,3,FY,500 ! Apply 500 1b at node 3 in the positive Y-direction
amation mark (!), and thus, information beyond the exclamation point is inte SOLVE ! Solve the problem
as comments by ANSYS. l’pretcd FINISH ! Return to the Begin Level to access other processors

!
11.3 AN EXAMPLE USING ANSYS ! Retrieve results parametrically:

!

/POST1 ! Enter postprocessing

We will now solve Example 11.2 using ANSYS. The batch file is as follows: !

NSORT,U,Y ! Sort nodes based on UY deflection
[|
1

{PREP7 ! Gain access to the preprocessor

*GET, DELTAMAX, SORT, ,MAX ! Assign DELTAMAX = maximum deflection

Initialize design variable parameters: ETABLE,VOLU, VOLU ! VOLU = volume of each element

! ETABLE, SMAX_I,NMISC,1 ! SMAX_I = maximum stress at end I of each
;L;:g : ;::E:::::: ::::E:: ;(; ::: :lf;:::ft't‘:ecz 3325?221?2,. l ETABLE, SMAX_J,NMISC, 3 | SMAX_) = E%EEEEE stress at end J of each

! Define element type, area, area moment of inertia: ' SSU

! *GET, VOLUME, SSUM, ITEM, VOLU ! Parameter VOLUME = total volume

ET,1,BEAM3 : Define element type; two-dimensional beam element se1etté ESORT, ETAB, SMAX_I, ,1 ! zalr;zlehments based on absolute value o.f
AREA=X1#X2 | (ET=Element Type, element reference number=1) *GET, SMAXI, SORT, ,MAX ! Parameter SMAX_I = maximum value of SMAX_I

! Define the beam’s cross- i
P71 (X24 33 /22 sectional area
!

Sorts elements based on absolute value of
SMAX_J
Parameter SMAX_] = maximum value of SMAX_J]
Parameter SMAX = the greater of SMAXI and
SMAXJ

RT,ETAB, S| J,,1
! Second moment of the area about the Z-axis ESORT. E MAX-

*GET, SMAXJ, SORT, ,MAX
SMAX=SMAXT>SMAX]J

!
!
R,1,AREA,177,X2

Assign real constants, modulus of elasticity:

! Assign area, area moment of inertia, cross-
sectional height

1 (R . .

t (R=Real Constant—des1gnat1ng geometry properties
such as area, area moment of inertia, real constant
reference number=1) e

: Assign value of the modulus of elasticity

! (MP=Material Property, EX=modulus of elasticity,

material reference number=1, value of modulus of
elasticity)

FINISH

!

! Establish parameters for optimization:
!

MP,EX, 1, 30E6 /OPT

OPVAR,X1,DV,0.05,0.15 | Parameter X1 is a design variable
OPVAR,X2,Dv,0.2,0.4 | Parameter X2 is a design variable
OPVAR,DELTAMAX, SV,0,0.01 ! Parameter DELTAMAX is a state variable
OPVAR, SMAX, SV, 0, 30000000 ! Parameter SMAX is a state variable
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OPVAR, VOLUME, 0B] VOLUME is the objective function

OPTYPE, SUBP Use subproblem approximation method
OPSUBP,100 Maximum number of iterations
OPEXE Initiate optimization

OPTYPE, SWEEP
OPSWEEP,BEST, 5
OPEXE

FINISH

Sweep evaluation tool
5 evaluations per DV at best design set
Initiate optimization looping

The optimization procedure used in the problem we just solved included the subprob-
lem approximation method, which is an advanced zero-order method, and the sweep-
generation technique, which varies one design variable at a time over its full range using
uniform design variable increments.

An edited version of the output is shown next.

*##k% ANSYS ANALYSIS DEFINITION (PREP7) *#x*x

PARAMETER X1 = 0.1000000
PARAMETER X2 = 0.3000000

ELEMENT TYPE 1 IS BEAM3

B 2-D ELASTIC BEAM
KEYOPT(1-12)= 00 0 0

DE
00000000

CURRENT NODAL DOF SET IS UX UY ROTZ
TWO-DIMENSIONAL MODEL
PARAMETER AREA = 0.3000000E-01

PARAMETER IZZ = 0.2250000E-03

REAL CONSTANT SET 1 ITEMS 1 T0 6
0.30000E-01 0.22500E-03 0.30000 0. 0. O.

MATERTAL 1 EX = 0.1300000E+11
NODE 1 KCS= 0 X,Y,Z= 0. 0. 0.
NODE 2 KCS= 0 X;Y,Z= 2.5000 0. 0.
NODE 3 KCS= 0 X,Y,Z= 5.0000 0. 0.
ELEMENT 1 1 2

ELEMENT 2 2 3

wakxk ROUTINE COMPLETED *##%* CPp = 0.551

Section 11.3 An Example Using ANSYS

w#xkx ANSYS SOLUTION ROUTINE *¥#w

PERFORM A STATIC ANALYSIS
THIS WILL BE A NEW ANALYSIS

SPECIFIED CONSTRAINT UX FOR SELECTED NODES 1 TO 1
BY 1

REAL= 0. IMAG= 0.

ADDITIONAL DOFS= UY ROTZ

SPECIFIED NODAL LOAD FY FOR SELECTED NODES 2 TO 2
BY 1

REAL= 500.000000 IMAG= 0.

SPECIFIED NODAL LOAD FY FOR SELECTED NODES 3 TO 3
BY 1

REAL= 500.000000 IMAG= 0.

wukkkk ANSYS SOLVE COMMAND *##%%

SOLUTION OPTIONS

PROBLEM DIMENSIONALITY......... 2-D
DEGREES OF FREEDOM.... UX UY ROTZ
ANALYSIS TYPE.............. STATIC (STEADY-STATE)

LOAD STEP OPTIONS

LOAD STEP NUMBER.............. 1
TIME AT END OF THE LOAD STEP..... 1.0000
NUMBER OF SUBSTEPS............ 1
STEP CHANGE BOUNDARY CONDITIONS....... NO
PRINT OUTPUT CONTROLS.......... NO PRINTOUT
DATABASE OUTPUT CONTROLS.......... ALL DATA WRITTEN

FOR THE LAST SUBSTEP

515
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¥REEE ANSYS RESULTS INTERPRETATION (POST1) *#wss *kadx ANSYS OPTIMIZATION ANALYSIS (QPT) *##*«

SORT ON ITEM<U COMPONENT=Y ORDER= 0 KABS= 0 NMAX= 3 9 Parameters exist and design set No. 1 is established.

SORT COMPLETED FOR 3 VALUES. DV NAME= X1 MIN= 0.50000E-01 MAX= 0.15000  TOLER= 0.10000E-02
*GET DELTAMAX FROM SORT ITEMMAX  VALUE= 0.934829060E-02 DV NAME= X2 MIN= 0.20000  MAX= 0.40000 TOLER= 0.20000E-02
STORE VOLU FROM ITEM=VOLU FOR ALL SELECTED ELEMENTS SV NAME= DELTAMAX MIN= 0. MAX= 0.10000E-01 TOLER= 0.10000E-03
STORE SMAX_I FROM ITEM<NMIS COMP= 1 FOR ALL SELECTED ELEMENTS SV NAME= SMAX MIN= O. MAX= 0.30000£+08  TOLER= 0.30000E+06

STORE SMAX_] FROM ITEM=NMIS COMP= 3 FOR ALL SELECTED ELEMENTS Default OBJ tolerance set to 0.01*(CURRENT PARAMETER VALUE) = 1.5E-03.

SUM ALL THE ACTIVE ENTRIES IN THE ELEMENT TABLE OBJ NAME= VOLUME TOLER= 0.15000E-02
TABLE LABEL TOTAL
VOLU 0.150000
SMAX_I  0.333333E+07
SMAX_J 833333.

ACTIVE OPTIMIZATION IS THE SUBPROBLEM APPROXIMATION METHOD

SUBPROBLEM APPROXIMATION OPTIMIZATION WILL PERFORM A MAXIMUM OF
100 ITERATIONS

UPON EXECUTION WITH A MAXIMUM OF 7 SEQUENTIAL INFEASIBLE SOLUTIONS
*GET VOLUME FROM SSUM ITEM=ITEM VOLU VALUE= 0.150000000
RUN OPTIMIZATION (SUBPROBLEM APPROXIMATION) WITH A MAXIMUM OF 100
ITERATIONS

AND 7 ALLOWED SEQUENTIAL INFEASIBLE SOLUTIONS.

SORT ON ITEM=ETAB COMPONENT=SMAX ORDER= 0 KABS= 1 NMAX= 2

SORT COMPLETED FOR 2 VALUES.
>>> BEGIN SUBPROBLEM APPROXIMATION ITERATION 1 OF 100 (MAX) <<<
*GET SMAXI ~ FROM SORT ITEMMAX  VALUE= 2500000.00
>>>>>> SOLUTION HAS CONVERGED TO POSSIBLE OPTIMUM <<<<<<
SORT ON ITEM=ETAB COMPONENT=SMAX ORDER= O KABS= 1 NMAX= 2 (BASED ON 0BJ TOLERANCE BETWEEN FINAL TWO DESICNS)

SORT COMPLETED FOR 2 VALUES. FINAL VARIABLES ARE

SET 6

(FEASIBLE)
DELTAMAX(SV)  0.93351E-02
SMAX (SV) 0.29249E+07
X1 (DV) 0.62267E-01
X2 (OV) 0.35148
VOLUME (OBJ) 0.10943

*CET SMAXJ FROM SORT ITEM=MAX VALUE= 833333.333
PARAMETER SMAX .= 2500000.

EXIT THE ANSYS POST1 DATABASE PROCESSOR




518

Chapter 11 Design Optimization

wxkksx DESTCN SENSITIVITY SUMMARY TABLE *####%
VOLUME DELTAMAX SMAX

X1 1.690 -0.1304 -0.4032E+08

X2 0.4513 -0.7969E-01 -0.1533E+08
ACTIVE OPTIMIZATION TOOL IS SWEEP EVALUATION

SWEEP OPTIMIZATION TOOL WILL PERFORM 5 ITERATIONS PER DESICN
VARIABLE UPON

EXECUTION ABOUT BEST DESIGN SET BASED ON 2 CURRENT DESIGN VARIABLES

RUN OPTIMIZATION (SWEEP DESIGNS) WITH A MAXIMUM OF 10 ITERATIONS
ABOUT DESICN SET 6.

>>>BEGIN SWEEP ITERATION 1 OF 10 <<<

>>>>>>SWEEP SELECTION OPTIMIZATION COMPLETED AFTER 10 ITERATIONS<<<<<<

BEST VARIABLES ARE:

SET 15
(FEASIBLE)
DELTAMAX(SV) 0.94544E-02
SMAX  (SV) 0.29498E+07
X1 owv 0.62267E-01
X2 (V) 0.35000
VOLUME (0BJ) 0.10897

#%% EXIT FROM ANSYS DESIGN OPTIMIZATION (/OPT) ##*
##%%% ROUTINE COMPLETED *#**#* CP = 4.035
#xxx% END OF INPUT ENCOUNTERED #**%#=*

NUMBER OF WARNING MESSAGES ENCOUNTERED= 0
NUMBER OF ERROR MESSAGES ENCOUNTERED= 0

The above ANSYS output should give you a good idea of the steps that the program fol-
lows to move toward an optimized solution.

SUMMARY
At this point you should:

1. have a good understanding of the fundamental co
cluding the definitions of objective function, consf
variables. You should also know what is meant b

2. know how to define and retrieve user-defined ar

3. know the basic steps involved in the optimizatio

4. be familiar with the creation of batch files.
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APPENDIX A APPENDIX B

Mechanical Properties Thermophysical Properties |
of Some Materials | of Some Materials

Mechanical Properties of Some Materials (SI Units) Thermophysical Properties of Some Materials (at room temperature or at the specified temperature)

(SI units)
Modulus of Modulus of Poisson’s Yield
Density  Elasticity Rigidity Ratio Strength  Ultimate Specific Thermal
Material (kg/m*) (GPa) (GPa) (Mpa) Strength (MPa) Density Heat Conductivity
- 3 . .
Aluminum (2014-T6) 2790 73.1 27 035 414 469 Material (ke/m) ke 10 Wm0
ALUMINUM (6061-T6) 2710 689 26 035 255 2% Aluminum (alloy 1100) 2740 896 221
Cast Iron (gray ASTM 20) 7190 67.0 27 028 - 179 (669 Comp.) Asphalt 2110 920 0.74
Concrete (low strength) 2380 221 - 0.15 - ~ Cement 1920 670 0.029
Concrete (high strength) 2380 29 - 0.15 - - Clay 1000 920
Steel (structural A36) 7850 200 75 0.32 250 400 Fireclay Brick 1790 @ 373 K 829 1.0@473K
Steel (stainless 304) 7860 193 75 0.27 207 517 R Glass (soda lime) 2470 750 1.0@366 K
Steel (tool L2) 8160 200 78 032 703 800 ' Glass (lead) 4280 490 14
Wood (Douglas Fir) 470 13.1 - 0.29 - 2.1 (26 Comp.) Glass (pyrex) 2230 840 1.0@366 K
Reference:  Hibbeler, R. C., Mechanics of Materials, 2d. ed, New York, Macmillan, 1994. Kgg E:varscglght) 77007é1;)73 K %0 a7 6@(;.::27 K
Paper 930 1300 0.13
Steel (mild) 7830 500 453
Wood (ash) 690 0172 @323K
Wood (mahogany) 550 0.13
Wood (oak) 750 2390 0.176
Wood (pine) 430 011

Reference: ASHRAE Handbook: Fundamental Volume, American Society of Heating, Refrigerating, and Air-Conditioning
Engineers, Atlanta, 1993.
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Conversion Factors

Conversion Factors (continued)

Appendix C

Conversion Factors
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Quantity

SI — US Customary

US Customary — SI

Conversion Factors

Quantity

SI — US Customary

US Customary — SI

Length

Volume

Second Moment of
Area (length)*

1mm = 0.03937in
1mm = 0.00328 ft
lem = 039370in

lcm = 0.0328 ft
1m = 39.3700 in
1m = 3281t

1 mm? = 1.55E-3 in’
1 mm? = 1.0764E-5 {2
1lem? = 0.155 in?
1cm? = 1.07E-3 ft?
1m? = 1550 in?

1m? = 10.76 ft

1mm® = 6.1024E-5 in®
1mm® = 3.5315E-8 ft*
1cm® = 0.061024 in®

1 cm?® = 3.5315E-5 ft?
1m? = 61024 in®

1m® = 35315

1 mm* = 2.402E6 in*

1 mm* = 115.861E—12 ft*
1cm? = 24.025E-3 in*
1cm* = 1.1586E—6 fr*
1m! = 2.40251E6 in*
Im = 11586 ft*

lin = 254 mm
1ft = 304.8 mm
lin = 2.54cm

1t = 3048 cm
lin = 0.0254 m
11t = 03048

lin? = 645.16 mm?
12 = 92903 mm?
1in? = 64516 cm?
1ft* = 929.03 cm?
1in? = 6.4516E~4 m*
12 = 0.0929 m?

1in® = 16387 mm®
1€ = 28.317E6 mm’
1in® = 16.387 em®
16 = 28317 em’®
1in® = 1.6387E—S m®
116 = 0.028317 m®

lin* = 416:231E3 mm*
1t* = 8.63097E9 mm*
lin = 41,623 em*
1ft* = 863110 cm*
lin* = 416231E-9 m*

Mass

Density

Force

Moment

Pressure, Stress, Modulus of
Elasticity, Modulus of Rigidity

Work, Energy

Power

Temperature

1kg = 68.521E-3 slug
1kg = 2.2046 Ibm

1kg/m® = 0.001938 slug/ft®
1kg/m® = 0.06248 Ibm/ft’

1N = 224.809E-3 Ibf

IN-m = 885lin-Ib
I1N-m = 0.7376 ft + Ib

1Pa = 145.0377E—6 lb/in®
1Pa = 20.885E-3 Ib/ft?
1KPa = 145.0377E-6 Ksi

17 =107375ft«1b
1 KW-+hr = 3.41214E3 Btu

1W = 0.7375 ft - lb/sec
1KW = 3.41214E3 Btu/hr
1KW = 1.341 hp

°C = 2 (°F - 32)

N=ARV.}

1slug = 14.593 kg
1ibm = 0.4536 kg

1 slug/ft* = 515.7 kg/m?
1 Ibm/ft’=16.018 kg/m?

11bf = 4448 N

lin+lb = 0113N-m
1ftelb = 1356 N-m

11b/in? = 6.8947E3 Pa
11b/f2 = 47.880 Pa
1Ksi = 6.8947E3 KPa

1ft-lb = 1.3558J
1Btu = 293.071E—6

1ftlb/sec = 1.3558 W
1 Btu/hr = 293.07E—6 KW
1hp = 0.7457KW

9
°F=2°C+32
5

1f¢ = 8.631E-3m*
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A

ANSYS, 73-79, 216-261, 452-458, 510-512

applying boundary conditions, 231

applying loads, 231,232

batch files, 512

begin level, 216

clear, 231

creating a model, 218
areas, 224,225
Boolean operations, 223,455
direct generation, 223
elements, 219, 256-261
keypoints, 224
lines, 224
nodes, 223
primitives, 223, 455
solid modeling, 223, 452
volumes, 224,455

coordinate system, 226

database, 217

elements, 219-220
adding, 219-220
deleting, 219-220
material properties, 221-222
options, 220

element types, 256-261
BEAMS3, 256
complete list, 256-261
LINK1,256
LINKS, 256
LINK32,258
LINK33,258
LINK34,258
PLANE2,256
PLANE35,258
PLANEA42,256
PLANESS, 258
PLANE77,258
PLANES2,257
SOLIDA45,257
SOLID70,259
SOLID72,257
SOLID73,257

SOLID92,257
SOLIDY5, 257
files, 217-218
Jobname.DB, 217
Jobname . EMAT, 218
Jobname.ERR, 218
Jobname.LOG, 218
Jobname.OUT, 218
Jobname.RST, 218
Jobname . RTH, 218
Graphical User Interface (GUI), 73
graphics capabilities, 238
meshing, 229
attributes, 229
size, 229
numbering, 229
areas, 229
elements, 229
keypoints, 229
lines, 229
nodes, 229
volumes, 229
parameters, 510
ANSYS-supplied, 510
scalar data, 510
User-defined, 510
vector data, 510
plotting, 228
areas, 229
deformed shape, 235
elements, 229
keypoints, 228
lines, 229
nodes, 229
results, 234-235
volumes, 229
postprocessor, 74,216
preprocessor, 74,216
processor level, 74,216
real constants, 220-221
selection options, 237-238
solution, 234
symbols, 232
workplane, 226-228
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displaying, 227
offsetting, 227
settings, 226

Area coordinates, 200-201

B

Beam, 320
deflection equations, 322-323
element, 321
loading, 326-328
shape functions, 324
strain energy, 321
stiffness matrix, 326

C

Collocation method, 39
Conductance matrix, 152,275,279
Conduction, 19, 146, 262
Fourier’s Law, 19,262
one-dimensional, 19
thermal conductivity, 19
two-dimensional, 262
heat flux, 263
Convection, 20, 262
Continuity equation, 402
Coordinate systems, 57, 131-132, 190, 192,200
area, 200-201
local, 131,190
natural, 132,192
Cubic Shape functions, 130, 135

D

Dam, 406
Darcy’s Law, 405
Design, 506
functional, 506
optimized, 506
variable, 508
Direct formulation, 6
Distributed loads, 320, 322-323, 328

E

Elasticity, 338-341
displacement, 339
Hooke’s Law, 9, 340
plane strain, 340
plane stress, 339
state of strain, 340
strain-displacement relations, 340
strain energy, 34,341,442

state of stress, 338
Element, 6

beam, 321
brick, 445, 447
frame, 332
isoparametric, 133, 206
Lagrangian, 212
linear, 121
one-dimensional, 121-135
quadratic, 127
quadrilateral, 192
tetrahedral, 437
three-dimensional, 437
triangular, 198,202
truss, 55-60
two-dimensional, 189

F

Feasible solution, 508
Finite difference method, 2
Finite Element method, 2
Flow rate, 396
Fluid element, 399, 406-407
Frame, 331-334

element, 332

loading, 328

stiffness matrix, 333-334

strain energy, 334

G

Galerkin’s method, 40, 148,269
one-dimensional, 148
two-dimensional, 269

Groundwater, 405
Darcy’s Law, 405
permeability, 405

Gauss-Legendre quadrature, 136, 207

H

Heat transfer, 19, 145,262
boundary conditions, 147-148, 265-268
composite wall, 18,48 -
conduction, 19, 146, 262
convection, 20,262
fin, 121, 146
Fourier’s Law, 19,262
heat flux,263
Newton’s Law of Cooling, 20, 263
one-dimensional, 19, 146
thermal conductivity, 19
heat transfer coefficient, 20
two-dimensional, 262
three-dimensional, 464

radiation, 262-263
Hooke’s Law, 9,340

I

Incompressible flow, 397
Irrotational flow, 404
Isoparametric formulation, 133, 206
Isotherms, 263

L

Least squares method, 41
Lagrange polynomials, 130
Load matrix, 14

beam, 328

frame, 328

axial members, 163-164

plane stress, 343

M

Modulus of elasticity, 9, 340
Modulus of rigidity, 52

o

Objective function, 508

P

Pipe flow, 395
Poisson’s ratio, 340
Porous media, 405
Potential energy, 33
Potential flow, 404
Pressure drop, 397

R
Reynolds number, 395

S

Shape functions, 135, 191, 193-195, 200-202, 439

beam element, 321
one-dimensional linear, 123,131-132,135
one-dimensional quadratic, 128,134, 135
one-dimensional cubic, 130,134,135
quadrilateral, 192, 193-195

eight-nodes, 193,195

linear, 192
rectangular, 189-191

Index

triangular, 198-200, 202
linear, 198-200
quadratic, 202
State variable, 510
Stiffness matrix, 60,73, 318-319, 326, 333-334, 349
beam element, 326
frame element, 333-334
plane stress, 343, 349
torsional element, 318-319
truss, 60,73
three-dimensional solid, 444
Strain-displacement relations, 340
two-dimensional, 340
three-dimensional, 340
Strain energy, 34, 321,334, 341, 442
axial force member, 34
beam, 321
frame, 334
two-dimensional solid, 341
three-dimensional solid, 442
Shear modulus, 27, 340
Stream line, 402
Stress, 9, 69, 165, 338-339
state of stress at a point, 338
two-dimensional, 339
three-dimensional, 338
Subdomain method, 39

T

Torsion, 315-320
circular cross section, 315-316
non-circular cross section, 318-320
rectangular cross section, 316-317
thin-wall members, 317
Truss, 55-60,71-73
element, 57
three-dimensional, 71-73
two-dimensional, 55-60
stiffness matrix, 60, 73
two-dimensional, 60
three-dimensional, 73

v

Velocity, 395

w
‘Weighted residual methods, 38
collocation, 39

Galerkin method, 40
subdomain method, 39

Y

Young’s modulus, 340
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