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Introduction

This module outlines the basic mechanics of elastic response — a physical phenomenon that
materials often (but do not always) exhibit. An elastic material is one that deforms immediately
upon loading, maintains a constant deformation as long as the load is held constant, and returns
immediately to its original undeformed shape when the load is removed. This module will also
introduce two essential concepts in Mechanics of Materials: stress and strain.

Tensile strength and tensile stress

Perhaps the most natural test of a material’s mechanical properties is the tension test, in which
a strip or cylinder of the material, having length L and cross-sectional area A, is anchored at
one end and subjected to an axial load P – a load acting along the specimen’s long axis – at
the other. (See Fig. 1). As the load is increased gradually, the axial deflection δ of the loaded
end will increase also. Eventually the test specimen breaks or does something else catastrophic,
often fracturing suddenly into two or more pieces. (Materials can fail mechanically in many
different ways; for instance, recall how blackboard chalk, a piece of fresh wood, and Silly Putty
break.) As engineers, we naturally want to understand such matters as how δ is related to P ,
and what ultimate fracture load we might expect in a specimen of different size than the original
one. As materials technologists, we wish to understand how these relationships are influenced
by the constitution and microstructure of the material.

Figure 1: The tension test.

One of the pivotal historical developments in our understanding of material mechanical
properties was the realization that the strength of a uniaxially loaded specimen is related to the
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magnitude of its cross-sectional area. This notion is reasonable when one considers the strength
to arise from the number of chemical bonds connecting one cross section with the one adjacent
to it as depicted in Fig. 2, where each bond is visualized as a spring with a certain stiffness and
strength. Obviously, the number of such bonds will increase proportionally with the section’s
area1. The axial strength of a piece of blackboard chalk will therefore increase as the square of
its diameter. In contrast, increasing the length of the chalk will not make it stronger (in fact it
will likely become weaker, since the longer specimen will be statistically more likely to contain
a strength-reducing flaw.)

Figure 2: Interplanar bonds (surface density approximately 1019 m−2).

Galileo (1564–1642)2 is said to have used this observation to note that giants, should they
exist, would be very fragile creatures. Their strength would be greater than ours, since the
cross-sectional areas of their skeletal and muscular systems would be larger by a factor related
to the square of their height (denoted L in the famous DaVinci sketch shown in Fig. 3). But
their weight, and thus the loads they must sustain, would increase as their volume, that is by
the cube of their height. A simple fall would probably do them great damage. Conversely,
the “proportionate” strength of the famous arachnid mentioned weekly in the SpiderMan comic
strip is mostly just this same size effect. There’s nothing magical about the muscular strength
of insects, but the ratio of L2 to L3 works in their favor when strength per body weight is
reckoned. This cautions us that simple scaling of a previously proven design is not a safe design
procedure. A jumbo jet is not just a small plane scaled up; if this were done the load-bearing
components would be too small in cross-sectional area to support the much greater loads they
would be called upon to resist.
When reporting the strength of materials loaded in tension, it is customary to account for

this effect of area by dividing the breaking load by the cross-sectional area:

σf =
Pf
A0

(1)

where σf is the ultimate tensile stress, often abbreviated as UTS, Pf is the load at fracture,
and A0 is the original cross-sectional area. (Some materials exhibit substantial reductions in
cross-sectional area as they are stretched, and using the original rather than final area gives the
so-call engineering strength.) The units of stress are obviously load per unit area, N/m2 (also

1The surface density of bonds NS can be computed from the material’s density ρ, atomic weight Wa and
Avogadro’s number NA as NS = (ρNA/Wa)

2/3. Illustrating for the case of iron (Fe):

NS =

(
7.86 g

cm3
· 6.023 × 1023 atoms

mol

55.85 g
mol

) 2
3

= 1.9× 1015
atoms

cm2

NS ≈ 10
15 atom

cm2
is true for many materials.

2Galileo, Two New Sciences, English translation by H. Crew and A. de Salvio, The Macmillan Co., New York,
1933. Also see S.P. Timoshenko, History of Strength of Materials, McGraw-Hill, New York, 1953.
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Figure 3: Strength scales with L2, but weight scales with L3.

called Pascals, or Pa) in the SI system and lb/in2 (or psi) in units still used commonly in the
United States.

Example 1

In many design problems, the loads to be applied to the structure are known at the outset, and we wish
to compute how much material will be needed to support them. As a very simple case, let’s say we wish
to use a steel rod, circular in cross-sectional shape as shown in Fig. 4, to support a load of 10,000 lb.
What should the rod diameter be?

Figure 4: Steel rod supporting a 10,000 lb weight.

Directly from Eqn. 1, the area A0 that will be just on the verge of fracture at a given load Pf is

A0 =
Pf

σf

All we need do is look up the value of σf for the material, and substitute it along with the value of 10,000
lb for Pf , and the problem is solved.
A number of materials properties are listed in the Materials Properties module, where we find the

UTS of carbon steel to be 1200 MPa. We also note that these properties vary widely for given materials
depending on their composition and processing, so the 1200 MPa value is only a preliminary design
estimate. In light of that uncertainty, and many other potential ones, it is common to include a “factor
of safety” in the design. Selection of an appropriate factor is an often-difficult choice, especially in cases
where weight or cost restrictions place a great penalty on using excess material. But in this case steel is
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relatively inexpensive and we don’t have any special weight limitations, so we’ll use a conservative 50%
safety factor and assume the ultimate tensile strength is 1200/2 = 600 Mpa.
We now have only to adjust the units before solving for area. Engineers must be very comfortable

with units conversions, especially given the mix of SI and older traditional units used today. Eventually,
we’ll likely be ordering steel rod using inches rather than meters, so we’ll convert the MPa to psi rather
than convert the pounds to Newtons. Also using A = πd2/4 to compute the diameter rather than the
area, we have

d =

√
4A

π
=

√
4Pf
πσf

=


 4× 10000(lb)

π × 600× 106(N/m2)× 1.449× 10−4
(
lb/in2

N/m2

)


1
2

= 0.38 in

We probably wouldn’t order rod of exactly 0.38 in, as that would be an oddball size and thus too

expensive. But 3/8′′ (0.375 in) would likely be a standard size, and would be acceptable in light of our

conservative safety factor.

If the specimen is loaded by an axial force P less than the breaking load Pf , the tensile stress
is defined by analogy with Eqn. 1 as

σ =
P

A0
(2)

The tensile stress, the force per unit area acting on a plane transverse to the applied load,
is a fundamental measure of the internal forces within the material. Much of Mechanics of
Materials is concerned with elaborating this concept to include higher orders of dimensionality,
working out methods of determining the stress for various geometries and loading conditions,
and predicting what the material’s response to the stress will be.

Example 2

Figure 5: Circular rod suspended from the top and bearing its own weight.

Many engineering applications, notably aerospace vehicles, require materials that are both strong and
lightweight. One measure of this combination of properties is provided by computing how long a rod of
the material can be that when suspended from its top will break under its own weight (see Fig. 5). Here
the stress is not uniform along the rod: the material at the very top bears the weight of the entire rod,
but that at the bottom carries no load at all.
To compute the stress as a function of position, let y denote the distance from the bottom of the rod

and let the weight density of the material, for instance in N/m3, be denoted by γ. (The weight density is
related to the mass density ρ [kg/m3] by γ = ρg, where g = 9.8 m/s2 is the acceleration due to gravity.)
The weight supported by the cross-section at y is just the weight density γ times the volume of material
V below y:

W (y) = γV = γAy
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The tensile stress is then given as a function of y by Eqn. 2 as

σ(y) =
W (y)

A
= γy

Note that the area cancels, leaving only the material density γ as a design variable.
The length of rod that is just on the verge of breaking under its own weight can now be found by

letting y = L (the highest stress occurs at the top), setting σ(L) = σf , and solving for L:

σf = γL⇒ L =
σf

γ

In the case of steel, we find the mass density ρ in Appendix A to be 7.85× 103(kg/m3); then

L =
σf

ρg
=

1200× 106(N/m2)

7.85× 103(kg/m3)× 9.8(m/s2)
= 15.6 km

This would be a long rod indeed; the purpose of such a calculation is not so much to design superlong

rods as to provide a vivid way of comparing materials (see Prob. 4).

Stiffness

It is important to distinguish stiffness, which is a measure of the load needed to induce a given
deformation in the material, from the strength, which usually refers to the material’s resistance
to failure by fracture or excessive deformation. The stiffness is usually measured by applying
relatively small loads, well short of fracture, and measuring the resulting deformation. Since
the deformations in most materials are very small for these loading conditions, the experimental
problem is largely one of measuring small changes in length accurately.
Hooke3 made a number of such measurements on long wires under various loads, and observed

that to a good approximation the load P and its resulting deformation δ were related linearly
as long as the loads were sufficiently small. This relation, generally known as Hooke’s Law, can
be written algebraically as

P = kδ (3)

where k is a constant of proportionality called the stiffness and having units of lb/in or N/m.
The stiffness as defined by k is not a function of the material alone, but is also influenced by
the specimen shape. A wire gives much more deflection for a given load if coiled up like a watch
spring, for instance.
A useful way to adjust the stiffness so as to be a purely materials property is to normalize

the load by the cross-sectional area; i.e. to use the tensile stress rather than the load. Further,
the deformation δ can be normalized by noting that an applied load stretches all parts of the
wire uniformly, so that a reasonable measure of “stretching” is the deformation per unit length:

ε =
δ

L0
(4)

3Robert Hooke (1635–1703) was a contemporary and rival of Isaac Newton. Hooke was a great pioneer in
mechanics, but competing with Newton isn’t easy.
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Here L0 is the original length and ε is a dimensionless measure of stretching called the strain.
Using these more general measures of load per unit area and displacement per unit length4,
Hooke’s Law becomes:

P

A0
= E

δ

L0
(5)

or

σ = Eε (6)

The constant of proportionality E, called Young’s modulus5 or the modulus of elasticity, is one
of the most important mechanical descriptors of a material. It has the same units as stress, Pa
or psi. As shown in Fig. 6, Hooke’s law can refer to either of Eqns. 3 or 6.

Figure 6: Hooke’s law in terms of (a) load-displacement and (b) stress-strain.

The Hookean stiffness k is now recognizable as being related to the Young’s modulus E and
the specimen geometry as

k =
AE

L
(7)

where here the 0 subscript is dropped from the area A; it will be assumed from here on (unless
stated otherwise) that the change in area during loading can be neglected. Another useful
relation is obtained by solving Eqn. 5 for the deflection in terms of the applied load as

δ =
PL

AE
(8)

Note that the stress σ = P/A developed in a tensile specimen subjected to a fixed load is
independent of the material properties, while the deflection depends on the material property
E. Hence the stress σ in a tensile specimen at a given load is the same whether it’s made of
steel or polyethylene, but the strain ε would be different: the polyethylene will exhibit much
larger strain and deformation, since its modulus is two orders of magnitude less than steel’s.

4It was apparently the Swiss mathematician Jakob Bernoulli (1655-1705) who first realized the correctness of
this form, published in the final paper of his life.

5After the English physicist Thomas Young (1773–1829), who also made notable contributions to the under-
standing of the interference of light as well as being a noted physician and Egyptologist.
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Example 3

In Example 1, we found that a steel rod 0.38′′ in diameter would safely bear a load of 10,000 lb. Now
let’s assume we have been given a second design goal, namely that the geometry requires that we use a
rod 15 ft in length but that the loaded end cannot be allowed to deflect downward more than 0.3′′ when
the load is applied. Replacing A in Eqn. 8 by πd2/4 and solving for d, the diameter for a given δ is

d = 2

√
PL

πδE

From Appendix A, the modulus of carbon steel is 210 GPa; using this along with the given load, length,
and deflection, the required diameter is

d = 2

√√√√ 104(lb)× 15(ft)× 12(in/ft)

π × 0.3(in)× 210× 109(N/m2)× 1.449× 10−4
(
lb/in2

N/m2

) = 0.5 in
This diameter is larger than the 0.38′′ computed earlier; therefore a larger rod must be used if the

deflection as well as the strength goals are to be met. Clearly, using the larger rod makes the tensile

stress in the material less and thus lowers the likelihood of fracture. This is an example of a stiffness-

critical design, in which deflection rather than fracture is the governing constraint. As it happens, many

structures throughout the modern era have been designed for stiffness rather than strength, and thus

wound up being “overdesigned” with respect to fracture. This has undoubtedly lessened the incidence of

fracture-related catastrophes, which will be addressed in the modules on fracture.

Example 4

Figure 7: Deformation of a column under its own weight.

When very long columns are suspended from the top, as in a cable hanging down the hole of an oil
well, the deflection due to the weight of the material itself can be important. The solution for the total
deflection is a minor extension of Eqn. 8, in that now we must consider the increasing weight borne by
each cross section as the distance from the bottom of the cable increases. As shown in Fig. 7, the total
elongation of a column of length L, cross-sectional area A, and weight density γ due to its own weight
can be found by considering the incremental deformation dδ of a slice dy a distance y from the bottom.
The weight borne by this slice is γAy, so

dδ =
(γAy) dy

AE

δ =

∫ L
0

dδ =
γ

E

y2

2

∣∣∣∣
L

0

=
γL2

2E

Note that δ is independent of the area A, so that finding a fatter cable won’t help to reduce the deforma-
tion; the critical parameter is the specific modulus E/γ. Since the total weight is W = γAL, the result
can also be written
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δ =
WL

2AE

The deformation is the same as in a bar being pulled with a tensile force equal to half its weight; this is
just the average force experienced by cross sections along the column.
In Example 2, we computed the length of a steel rod that would be just on the verge of breaking under

its own weight if suspended from its top; we obtained L = 15.6km. Were such a rod to be constructed,
our analysis predicts the deformation at the bottom would be

δ =
γL2

2E
=
7.85× 103(kg/m3)× 9.8(m/s2)× [15.6× 103(m)]2

2× 210× 109(N/m2)
= 44.6 m

However, this analysis assumes Hooke’s law holds over the entire range of stresses from zero to fracture.

This is not true for many materials, including carbon steel, and later modules will address materials

response at high stresses.

A material that obeys Hooke’s Law (Eqn. 6) is called Hookean. Such a material is elastic
according to the description of elasticity given in the introduction (immediate response, full
recovery), and it is also linear in its relation between stress and strain (or equivalently, force
and deformation). Therefore a Hookean material is linear elastic, and materials engineers use
these descriptors interchangeably. It is important to keep in mind that not all elastic materials
are linear (rubber is elastic but nonlinear), and not all linear materials are elastic (viscoelastic
materials can be linear in the mathematical sense, but do not respond immediately and are thus
not elastic).
The linear proportionality between stress and strain given by Hooke’s law is not nearly

as general as, say, Einstein’s general theory of relativity, or even Newton’s law of gravitation.
It’s really just an approximation that is observed to be reasonably valid for many materials
as long the applied stresses are not too large. As the stresses are increased, eventually more
complicated material response will be observed. Some of these effects will be outlined in the
Module on Stress–Strain Curves, which introduces the experimental measurement of the strain
response of materials over a range of stresses up to and including fracture.
If we were to push on the specimen rather than pulling on it, the loading would be described

as compressive rather than tensile. In the range of relatively low loads, Hooke’s law holds for
this case as well. By convention, compressive stresses and strains are negative, so the expression
σ = Eε holds for both tension and compression.

Problems

1. Determine the stress and total deformation of an aluminum wire, 30 m long and 5 mm in diameter,
subjected to an axial load of 250 N.

2. Two rods, one of nylon and one of steel, are rigidly connected as shown. Determine the stresses
and axial deformations when an axial load of F = 1 kN is applied.

3. A steel cable 10 mm in diameter and 1 km long bears a load in addition to its own weight of
W = 150 N. Find the total elongation of the cable.

4. Using the numerical values given in the Module on Material Properties,, rank the given materials
in terms of the length of rod that will just barely support its own weight.

5. Plot the maximum self-supporting rod lengths of the materials in Prob. 4 versus the cost (per unit
cross-sectional area) of the rod.
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Prob. 2

Prob. 3

6. Show that the effective stiffnesses of two springs connected in (a) series and (b) parallel is

(a) series :
1

keff
=
1

k1
+
1

k2
(b) parallel : keff = k1 + k2

(Note that these are the reverse of the relations for the effective electrical resistance of two resistors
connected in series and parallel, which use the same symbols.)

Prob. 6

7. A tapered column of modulus E and mass density ρ varies linearly from a radius of r1 to r2 in a
length L. Find the total deformation caused by an axial load P .

8. A tapered column of modulus E and mass density ρ varies linearly from a radius of r1 to r2 in a
length L, and is hanging from its broad end. Find the total deformation due to the weight of the
bar.

9. A rod of circular cross section hangs under the influence of its own weight, and also has an axial
load P suspended from its free end. Determine the shape of the bar, i.e. the function r(y) such
that the axial stress is constant along the bar’s length.

10. A bolt with 20 threads per inch passes through a sleeve, and a nut is threaded over the bolt as
shown. The nut is then tightened one half turn beyond finger tightness; find the stresses in the
bolt and the sleeve. All materials are steel, the cross-sectional area of the bolt is 0.5 in2, and the
area of the sleeve is 0.4 in2.
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Prob. 7

Prob. 8

Prob. 9

Prob. 10
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Introduction

The Introduction to Elastic Response Module introduced two very important material proper-
ties, the ultimate tensile strength σf and the Young’s modulus E. To the effective mechanical
designer, these aren’t just numerical parameters that are looked up in tables and plugged into
equations. The very nature of the material is reflected in these properties, and designers who
try to function without a sense of how the material really works are very apt to run into trou-
ble. Whenever practical in these modules, we’ll make an effort to put the material’s mechanical
properties in context with its processing and microstructure. This module will describe how for
most engineering materials the modulus is controlled by the atomic bond energy function.
For most materials, the amount of stretching experienced by a tensile specimen under a

small fixed load is controlled in a relatively simple way by the tightness of the chemical bonds
at the atomic level, and this makes it possible to relate stiffness to the chemical architecture of
the material. This is in contrast to more complicated mechanical properties such as fracture,
which are controlled by a diverse combination of microscopic as well as molecular aspects of
the material’s internal structure and surface. Further, the stiffness of some materials — notably
rubber — arises not from bond stiffness but from disordering or entropic factors. Some principal
aspects of these atomistic views of elastic response are outlined in the sections to follow.

Energetic effects

Chemical bonding between atoms can be viewed as arising from the electrostatic attraction
between regions of positive and negative electronic charge. Materials can be classified based on
the nature of these electrostatic forces, the three principal classes being

1. Ionic materials, such as NaCl, in which an electron is transferred from the less electroneg-
ative element (Na) to the more electronegative (Cl). The ions therefore differ by one
electronic charge and are thus attracted to one another. Further, the two ions feel an at-
traction not only to each other but also to other oppositely charged ions in their vicinity;
they also feel a repulsion from nearby ions of the same charge. Some ions may gain or lose
more than one electron.

2. Metallic materials, such as iron and copper, in which one or more loosely bound outer
electrons are released into a common pool which then acts to bind the positively charged
atomic cores.
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3. Covalent materials, such as diamond and polyethylene, in which atomic orbitals overlap
to form a region of increased electronic charge to which both nuclei are attracted. This
bond is directional, with each of the nuclear partners in the bond feeling an attraction to
the negative region between them but not to any of the other atoms nearby.

In the case of ionic bonding, Coulomb’s law of electrostatic attraction can be used to develop
simple but effective relations for the bond stiffness. For ions of equal charge e the attractive
force fattr can be written:

fattr =
Ce2

r2
(1)

Here C is a conversion factor; For e in Coulombs, C = 8.988 × 109 N-m2/Coul2. For singly
ionized atoms, e = 1.602× 10−19 Coul is the charge on an electron. The energy associated with
the Coulombic attraction is obtained by integrating the force, which shows that the bond energy
varies inversely with the separation distance:

Uattr =

∫
fattr dr =

−Ce2

r
(2)

where the energy of atoms at infinite separation is taken as zero.

Figure 1: The interpenetrating cubic NaCl lattice.

If the material’s atoms are arranged as a perfect crystal, it is possible to compute the elec-
trostatic binding energy field in considerable detail. In the interpenetrating cubic lattice of the
ionic NaCl structure shown in Fig. 1, for instance, each ion feels attraction to oppositely charged
neighbors and repulsion from equally charged ones. A particular sodium atom is surrounded by
6 Cl− ions at a distance r, 12 Na+ ions at a distance r

√
2, 8 Cl− ions at a distance r

√
3, etc.

The total electronic field sensed by the first sodium ion is then:

Uattr = −
Ce2

r

(
6
√
1
−
12
√
2
+
8
√
3
−
6
√
4
+
24
√
5
− · · ·

)
(3)

=
−ACe2

r
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where A = 1.747558 · · · is the result of the previous series, called the Madelung constant1. Note
that it is not sufficient to consider only nearest-neighbor attractions in computing the bonding
energy; in fact the second term in the series is larger in magnitude than the first. The specific
value for the Madelung constant is determined by the crystal structure, being 1.763 for CsCl
and 1.638 for cubic ZnS.
At close separation distances, the attractive electrostatic force is balanced by mutual repul-

sion forces that arise from interactions between overlapping electron shells of neighboring ions;
this force varies much more strongly with the distance, and can be written:

Urep =
B

rn
(4)

Compressibility experiments have determined the exponent n to be 7.8 for the NaCl lattice, so
this is a much steeper function than Uattr.

Figure 2: The bond energy function.

As shown in Fig. 2, the total binding energy of one ion due to the presence of all others is
then the sum of the attractive and repulsive components:

U = −
ACe2

r
+
B

rn
(5)

Note that the curve is anharmonic (not shaped like a sine curve), being more flattened out at
larger separation distances. The system will adopt a configuration near the position of lowest
energy, computed by locating the position of zero slope in the energy function:

(f)r=r0 =

(
dU

dr

)
r=r0

=

(
ACe2

r2
−
nB

rn+1

)
r=r0

= 0

ro =

(
nB

ACe2

) 1
n−1

(6)

The range for n is generally 5–12, increasing as the number of outer-shell electrons that cause
the repulsive force.

1C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, New York, 1966. The Madelung series
does not converge smoothly, and this text includes some approaches to computing the sum.
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Example 1

Figure 3: Simple tension applied to crystal face.

In practice the n and B parameters in Eqn. 5 are determined from experimental measurements, for
instance by using a combination of X-ray diffraction to measure r0 and elastic modulus to infer the
slope of the U(r) curve. As an illustration of this process, picture a tensile stress σ applied to a unit
area of crystal (A = 1) as shown in Fig. 3, in a direction perpendicular to the crystal cell face. (The
[100] direction on the (100) face, using crystallographic notation2.) The total force on this unit area is
numerically equal to the stress: F = σA = σ.
If the interionic separation is r0, there will be 1/r

2
0 ions on the unit area, each being pulled by a force

f . Since the total force F is just f times the number of ions, the stress can then be written

σ = F = f
1

r20

When the separation between two adjacent ions is increased by an amount δ, the strain is ε = δ/r0.
The differential strain corresponding to a differential displacement is then

dε =
dr

r0

The elastic modulus E is now the ratio of stress to strain, in the limit as the strain approaches zero:

E =
dσ

dε

∣∣∣∣
ε→0

=
1

r0

df

dr

∣∣∣∣
r→r0

=
1

r0

d

dr

(
ACe2

r2
−
nB

rn+1

)∣∣∣∣
r→r0

Using B = ACe2rn−10 /n from Eqn. 6 and simplifying,

E =
(n− 1)ACe2

r40

Note the very strong dependence of E on r0, which in turn reflects the tightness of the bond. If E and
r0 are known experimentally, n can be determined. For NaCl, E = 3× 1010 N/m2; using this along with
the X-ray diffraction value of r0 = 2.82× 10−10 m, we find n = 1.47.

Using simple tension in this calculation is not really appropriate, because when a material is stretched

in one direction, it will contract in the transverse directions. This is the Poisson effect, which will be

treated in a later module. Our tension-only example does not consider the transverse contraction, and

the resulting value of n is too low. A better but slightly more complicated approach is to use hydrostatic

2See the Module on Crystallographic Notation for a review of this nomenclature.
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compression, which moves all the ions closer to one another. Problem 3 outlines this procedure, which

yields values of n in the range of 5–12 as mentioned earlier.

Figure 4: Bond energy functions for aluminum and tungsten.

The stiffnesses of metallic and covalent systems will be calculated differently than the method
used above for ionic crystals, but the concept of electrostatic attraction applies to these non-ionic
systems as well. As a result, bond energy functions of a qualitatively similar nature result from
all these materials. In general, the “tightness” of the bond, and hence the elastic modulus E, is
related to the curvature of the bond energy function. Steeper bond functions will also be deeper
as a rule, so that within similar classes of materials the modulus tends to correlate with the energy
needed to rupture the bonds, for instance by melting. Materials such as tungsten that fill many
bonding and few antibonding orbitals have very deep bonding functions3, with correspondingly
high stiffnesses and melting temperatures, as illustrated in Fig. 4. This correlation is obvious
in Table 1, which lists the values of modulus for a number of metals, along with the values of
melting temperature Tm and melting energy ∆H.

Table 1: Modulus and bond strengths for transition metals.

Material E Tm ∆H αL
GPa (Mpsi) ◦C kJ/mol ×10−6,◦ C−1

Pb 14 (2) 327 5.4 29
Al 69 (10) 660 10.5 22
Cu 117 (17) 1084 13.5 17
Fe 207 (30) 1538 15.3 12
W 407 (59) 3410 32 4.2

The system will generally have sufficient thermal energy to reside at a level somewhat above
the minimum in the bond energy function, and will oscillate between the two positions labeled A
and B in Fig. 5, with an average position near r0. This simple idealization provides a rationale for
why materials expand when the temperature is raised. As the internal energy is increased by the

3A detailed analysis of the cohesive energies of materials is an important topic in solid state physics; see for
example F. Seitz, The Modern Theory of Solids, McGraw-Hill, 1940.
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addition of heat, the system oscillates between the positions labeled A′ and B′ with an average
separation distance r′0. Since the curve is anharmonic, the average separation distance is now
greater than before, so the material has expanded or stretched. To a reasonable approximation,
the relative thermal expansion ∆L/L is often related linearly to the temperature rise ∆T , and
we can write:

∆L

L
= εT = αL∆T (7)

where εT is a thermal strain and the constant of proportionality αL is the coefficient of linear
thermal expansion. The expansion coefficient αL will tend to correlate with the depth of the
energy curve, as is seen in Table 1.

Figure 5: Anharmonicity of the bond energy function.

Example 2

A steel bar of length L and cross-sectional area A is fitted snugly between rigid supports as shown in
Fig. 6. We wish to find the compressive stress in the bar when the temperature is raised by an amount
∆T .

Figure 6: Bar between rigid supports.

If the bar were free to expand, it would increase in length by an amount given by Eqn. 7. Clearly,
the rigid supports have to push on the bar – i.e. put in into compression – to suppress this expansion.
The magnitude of this thermally induced compressive stress could be found by imagining the material
free to expand, then solving σ = EεT for the stress needed to “push the material back” to its unstrained
state. Equivalently, we could simply set the sum of a thermally induced strain and a mechanical strain
εσ to zero:

ε = εσ + εT =
σ

E
+ αL∆T = 0
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σ = −αLE∆T

The minus sign in this result reminds us that a negative (compressive) stress is induced by a positive

temperature change (temperature rises.)

Example 3

A glass container of stiffness E and thermal expansion coefficient αL is removed from a hot oven and
plunged suddenly into cold water. We know from experience that this “thermal shock” could fracture
the glass, and we’d like to see what materials parameters control this phenomenon. The analysis is very
similar to that of the previous example.
In the time period just after the cold-water immersion, before significant heat transfer by conduction

can take place, the outer surfaces of the glass will be at the temperature of the cold water while the
interior is still at the temperature of the oven. The outer surfaces will try to contract, but are kept from
doing so by the still-hot interior; this causes a tensile stress to develop on the surface. As before, the
stress can be found by setting the total strain to zero:

ε = εσ + εT =
σ

E
+ αL∆T = 0

σ = −αLE∆T

Here the temperature change ∆T is negative if the glass is going from hot to cold, so the stress is positive
(tensile). If the glass is not to fracture by thermal shock, this stress must be less than the ultimate tensile
strength σf ; hence the maximum allowable temperature difference is

−∆Tmax =
σf

αLE

To maximize the resistance to thermal shock, the glass should have as low a value of αLE as possible.

“Pyrex” glass was developed specifically for improved thermal shock resistance by using boron rather

than soda and lime as process modifiers; this yields a much reduced value of αL.

Material properties for a number of important structural materials are listed in the Module
on Material Properties. When the column holding Young’s Modulus is plotted against the
column containing the Thermal Expansion Coefficients (using log-log coordinates), the graph
shown in Fig. 7 is obtained. Here we see again the general inverse relationship between stiffness
and thermal expansion, and the distinctive nature of polymers is apparent as well.
Not all types of materials can be described by these simple bond-energy concepts: in-

tramolecular polymer covalent bonds have energies entirely comparable with ionic or metallic
bonds, but most common polymers have substantially lower moduli than most metals or ce-
ramics. This is due to the intermolecular bonding in polymers being due to secondary bonds
which are much weaker than the strong intramolecular covalent bonds. Polymers can also have
substantial entropic contributions to their stiffness, as will be described below, and these effects
do not necessarily correlate with bond energy functions.

Entropic effects

The internal energy as given by the function U(r) is sufficient to determine the atomic positions
in many engineering materials; the material “wants” to minimize its internal energy, and it
does this by optimizing the balance of attractive and repulsive electrostatic bonding forces.
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Figure 7: Correlation of stiffness and thermal expansion for materials of various types.

But when the absolute temperature is greater than approximately two-thirds of the melting
temperature, there can be sufficient molecular mobility that entropic or disordering effects must
be considered as well. This is often the case for polymers even at room temperature, due to
their weak intermolecular bonding.
When the temperature is high enough, polymer molecules can be viewed as an interpenetrat-

ing mass of (extremely long) wriggling worms, constantly changing their positions by rotation
about carbon-carbon single bonds. This wriggling does not require straining the bond lengths
or angles, and large changes in position are possible with no change in internal bonding energy.

Figure 8: Conformational change in polymers.

The shape, or “conformation” of a polymer molecule can range from a fully extended chain
to a randomly coiled sphere (see Fig. 8). Statistically, the coiled shape is much more likely than
the extended one, simply because there are so many ways the chain can be coiled and only one
way it can be fully extended. In thermodynamic terms, the entropy of the coiled conformation
is very high (many possible “microstates”), and the entropy of the extended conformation is
very low (only one possible microstate). If the chain is extended and then released, there will be
more wriggling motions tending to the most probable state than to even more highly stretched
states; the material would therefore shrink back to its unstretched and highest-entropy state.
Equivalently, a person holding the material in the stretched state would feel a tensile force as
the material tries to unstretch and is prevented from doing so. These effects are due to entropic
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factors, and not internal bond energy.
It is possible for materials to exhibit both internal energy and entropic elasticity. Energy

effects dominate in most materials, but rubber is much more dependent on entropic effects. An
ideal rubber is one in which the response is completely entropic, with the internal energy changes
being negligible.
When we stretch a rubber band, the molecules in its interior become extended because they

are crosslinked by chemical or physical junctions as shown in Fig. 9. Without these links, the
molecules could simply slide past one another with little or no uncoiling. “Silly Putty ” is an
example of uncrosslinked polymer, and its lack of junction connections cause it to be a viscous
fluid rather than a useful elastomer that can bear sustained loads without continuing flow. The
crosslinks provide a means by which one molecule can pull on another, and thus establish load
transfer within the materials. They also have the effect of limiting how far the rubber can be
stretched before breaking, since the extent of the entropic uncoiling is limited by how far the
material can extend before pulling up tight against the network of junction points. We will see
below that the stiffness of a rubber can be controlled directly by adjusting the crosslink density,
and this is an example of process-structure-property control in materials.

Figure 9: Stretching of crosslinked or entangled polymers.

As the temperature is raised, the Brownian-type wriggling of the polymer is intensified,
so that the material seeks more vigorously to assume its random high-entropy state. This
means that the force needed to hold a rubber band at fixed elongation increases with increasing
temperature. Similarly, if the band is stretched by hanging a fixed weight on it, the band will
shrink as the temperature is raised. In some thermodynamic formalisms it is convenient to
model this behavior by letting the coefficient of thermal expansion be a variable parameter,
with the ability to become negative for sufficiently large tensile strains. This is a little tricky,
however; for instance, the stretched rubber band will contract only along its long axis when the
temperature is raised, and will become thicker in the transverse directions. The coefficient of
thermal expansion would have to be made not only stretch-dependent but also dependent on
direction (“anisotropic”).

Example 4

An interesting demonstration of the unusual thermal response of stretched rubber bands involves
replacing the spokes of a bicycle wheel with stretched rubber bands as seen in Fig. 10, then mounting
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the wheel so that a heat lamp shines on the bands to the right or left of the hub. As the bands warm
up, they contract. This pulls the rim closer to the hub, causing the wheel to become unbalanced. It
will then rotate under gravity, causing the warmed bands to move out from under the heat lamp and be
replaced other bands. The process continues, and the wheel rotates in a direction opposite to what would
be expected were the spokes to expand rather than contract on heating.

Figure 10: A bicycle wheel with entropic spokes.

The bicycle-wheel trick produces a rather weak response, and it is easy to stop the wheel with

only a light touch of the finger. However, the same idea, using very highly stretched urethane bands

and employing superheated geothermal steam as a heat source, becomes a viable route for generating

mechanical energy.

It is worthwhile to study the response of rubbery materials in some depth, partly because
this provides a broader view of the elasticity of materials. But this isn’t a purely academic
goal. Rubbery materials are being used in increasingly demanding mechanical applications (in
addition to tires, which is a very demanding application itself). Elastomeric bearings, vibration-
control supports, and biomedical prostheses are but a few examples. We will outline what is
known as the “kinetic theory of rubber elasticity,” which treats the entropic effect using concepts
of statistical thermodynamics. This theory stands as one of the very most successful atomistic
theories of mechanical response. It leads to a result of satisfying accuracy without the need for
adjustable parameters or other fudge factors.
When pressure-volume changes are not significant, the competition between internal energy

and entropy can be expressed by the Helmholtz free energy A = U − TS, where T is the
temperature and S is the entropy. The system will move toward configurations of lowest free
energy, which it can do either by reducing its internal energy or by increasing its entropy. Note
that the influence of the entropic term increases explicitly with increasing temperature. With
certain thermodynamic limitations in mind (see Prob. 5), the mechanical work dW = F dL done
by a force F acting through a differential displacement dL will produce an increase in free energy
given by

F dL = dW = dU − T dS (8)

or

F =
dW

dL
=

(
∂U

∂L

)
T,V

− T
(
∂S

∂L

)
T,V

(9)

For an ideal rubber, the energy change dU is negligible, so the force is related directly
to the temperature and the change in entropy dS produced by the force. To determine the
force-deformation relationship, we obviously need to consider how S changes with deformation.
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We begin by writing an expression for the conformation, or shape, of the segment of polymer
molecule between junction points as a statistical probability distribution. Here the length of
the segment is the important molecular parameter, not the length of the entire molecule. In the
simple form of this theory, which turns out to work quite well, each covalently bonded segment
is idealized as a freely-jointed sequence of n rigid links each having length a.

Figure 11: Random-walk model of polymer conformation

A reasonable model for the end-to-end distance of a randomly wriggling segment is that of a
“random walk” Gaussian distribution treated in elementary statistics. One end of the chain is
visualized at the origin of an xyz coordinate system as shown in Fig. 11, and each successive link
in the chain is attached with a random orientation relative to the previous link. (An elaboration
of the theory would constrain the orientation so as to maintain the 109◦ covalent bonding angle.)

The probability Ω1(r) that the other end of the chain is at a position r =
(
x2 + y2 + z2

)1/2
can

be shown to be

Ω1(r) =
β3
√
π
exp(−β2r2) =

β3
√
π
exp

[
−β2

(
x2 + y2 + z2

)]
The parameter β is a scale factor related to the number of units n in the polymer segment and
the bond length a; specifically it turns out that β =

√
3/2n/a. This is the “bell-shaped curve”

well known to seasoned test-takers. The most probable end-to-end distance is seen to be zero,
which is expected because the chain will end up a given distance to the left (or up, or back) of
the origin exactly as often as it ends up the same distance to the right.
When the molecule is now stretched or otherwise deformed, the relative positions of the two

ends are changed. Deformation in elastomers is usually described in terms of extension ratios,
which are the ratios of stretched to original dimensions, L/L0. Stretches in the x, y, and z
directions are denoted by λx, λy, and λz respectively, The deformation is assumed to be affine,
i.e. the end-to-end distances of each molecular segment increase by these same ratios. Hence
if we continue to view one end of the chain at the origin the other end will have moved to
x2 = λxx, y2 = λyy, z2 = λzz. The configurational probability of a segment being found in this
stretched state is then

Ω2 =
β3
√
π
exp

[
−β2

(
λ2xx

2 + λ2yy
2 + λ2zz

2
)]

The relative change in probabilities between the perturbed and unperturbed states can now be
written as

ln
Ω2
Ω1
= −β2

[(
λ2x − 1

)
x2 +

(
λ2y − 1

)
y2 +

(
λ2z − 1

)
z2
]
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Several strategems have been used in the literature to simplify this expression. One simple
approach is to let the initial position of the segment end x, y, z be such that x2 = y2 = z2 = r20/3,

where r20 is the initial mean square end-to-end distance of the segment. (This is not zero, since
when squares are taken the negative values no longer cancel the positive ones.) It can also be

shown (see Prob. 8) that the distance r20 is related to the number of bonds n in the segment and

the bond length a by r20 = na
2. Making these substitutions and simplifying, we have

ln
Ω2
Ω1
= −
1

2

(
λ2x + λ

2
y + λ

2
z − 3

)
(10)

As is taught in subjects in statistical thermodynamics, changes in configurational probability
are related to corresponding changes in thermodynamic entropy by the “Boltzman relation” as

∆S = k ln
Ω2
Ω1

where k = 1.38× 10−23 J/K is Boltzman’s constant. Substituting Eqn. 10 in this relation:

∆S = −
k

2

(
λ2x + λ

2
y + λ

2
z − 3

)
This is the entropy change for one segment. If there are N chain segments per unit volume, the
total entropy change per unit volume ∆SV is just N times this quantity:

∆SV = −
Nk

2

(
λ2x + λ

2
y + λ

2
z − 3

)
(11)

The associated work (per unit volume) required to change the entropy by this amount is

∆WV = −T∆SV = +
NkT

2

(
λ2x + λ

2
y + λ

2
z − 3

)
(12)

The quantity ∆WV is therefore the strain energy per unit volume contained in an ideal rubber
stretched by λx, λy, λz.

Example 5

Recent research by Prof. Christine Ortiz has demonstrated that the elasticity of individual polymer
chains can be measured using a variety of high-resolution force spectroscopy techniques, such as atomic
force microscopy (AFM). At low to moderate extensions, most polymer chains behave as ideal, entropic,
random coils; i.e. molecular rubber bands. This is shown in Fig. 12, which displays AFM data (re-
traction force, Fchain, versus chain end-to-end separation distance) for stretching and uncoiling of single
polystyrene chains of different lengths. By fitting experimental data with theoretical polymer physics
models of freely-jointed chains (red lines in Fig. 12) or worm-like chains, we can estimate the “statistical
segment length” or local chain stiffness and use this parameter as a probe of chemical structure and
local environmental effects (e.g. electrostatic interactions, solvent quality, etc.). In addition, force spec-
troscopy can be used to measure noncovalent, physisorption forces of single polymer chains on surfaces
and covalent bond strength (chain “fracture”).

To illustrate the use of Eqn. 12 for a simple but useful case, consider a rubber band, initially
of length L0 which is stretched to a new length L. Hence λ = λx = L/L0. To a very good
approximation, rubbery materials maintain a constant volume during deformation, and this
lets us compute the transverse contractions λy and λz which accompany the stretch λx. An
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Figure 12: Experimental measurements from numerous force spectroscopy (AFM) experiments
of force-elongation response of single polystyrene segments in toluene, compared to the freely-
jointed chain model. The statistical segment length is 0.68, and n = number of molecular units
in the segment.

expression for the change ∆V in a cubical volume of initial dimensions a0, b0, c0 which is stretched
to new dimensions a, b, c is

∆V = abc− a0b0c0 = (a0λx)(b0λy)(c0λz)− a0b0c0 = a0b0c0(λxλyλz − 1)

Setting this to zero gives

λxλyλz = 1 (13)

Hence the contractions in the y and z directions are

λ2y = λ
2
z =
1

λ

Using this in Eqn. 12, the force F needed to induce the deformation can be found by differenti-
ating the total strain energy according to Eqn. 9:

F =
dW

dL
=
d(V ∆WV )

L0 dλ
= A0

NkT

2

(
2λ−

2

λ2

)

Here A0 = V/L0 is the original area. Dividing by A0 to obtain the engineering stress:

σ = NkT

(
λ−

1

λ2

)
(14)

Clearly, the parameter NkT is related to the stiffness of the rubber, as it gives the stress σ
needed to induce a given extension λ. It can be shown (see Prob. 10) that the initial modulus
— the slope of the stress-strain curve at the origin — is controlled by the temperature and the
crosslink density according to E = 3NkT .
Crosslinking in rubber is usually done in the “vulcanizing” process invented by Charles

Goodyear in 1839. In this process sulfur abstracts reactive hydrogens adjacent to the double
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bonds in the rubber molecule, and forms permanent bridges between adjacent molecules. When
crosslinking is done by using approximately 5% sulfur, a conventional rubber is obtained. When
the sulfur is increased to ≈ 30–50%, a hard and brittle material named ebonite (or simply “hard
rubber”) is produced instead.
The volume density of chain segments N is also the density of junction points. This quan-

tity is related to the specimen density ρ and the molecular weight between crosslinks Mc as
Mc = ρNA/N , where N is the number of crosslinks per unit volume and NA = 6.023 × 1023 is
Avogadro’s Number. When N is expressed in terms of moles per unit volume, we have simply
Mc = ρ/N and the quantity NkT in Eqn. 14 is replaced by NRT , where R = kNA = 8.314
J/mol-◦K is the Gas Constant.

Example 6

The Young’s modulus of a rubber is measured at E = 3.5 MPa for a temperature of T = 300 ◦K. The
molar crosslink density is then

N =
E

3RT
=

3.5× 106 N/m2

3× 8.314 N·m
mol·K × 300 K

= 468 mol/m3

The molecular weight per segment is

Mc =
ρ

N
=
1100 kg/m3

468 mol/m3
= 2350 gm/mol

Example 7

A person with more entrepreneurial zeal than caution wishes to start a bungee-jumping company, and
naturally wants to know how far the bungee cord will stretch; the clients sometimes complain if the cord
fails to stop them before they reach the asphalt. It’s probably easiest to obtain a first estimate from an
energy point of view: say the unstretched length of the cord is L0, and that this is also the distance the
jumper free-falls before the cord begins to stretch. Just as the cord begins to stretch, the the jumper
has lost an amount of potential energy wL0, where w is the jumper’s weight. The jumper’s velocity at
this time could then be calculated from (mv2)/2 = wL0 if desired, where m = w/g is the jumper’s mass
and g is the acceleration of gravity. When the jumper’s velocity has been brought to zero by the cord
(assuming the cord doesn’t break first, and the ground doesn’t intervene), this energy will now reside
as entropic strain energy within the cord. Using Eqn. 12, we can equate the initial and final energies to
obtain

wL0 =
A0L0 ·NRT

2

(
λ2 +

2

λ
− 3

)

Here A0 L0 is the total volume of the cord; the entropic energy per unit volume ∆WV must be multiplied
by the volume to give total energy. Dividing out the initial length L0 and using E = 3NRT , this result
can be written in the dimensionless form

w

A0E
=
1

6

(
λ2 +

2

λ
− 3

)

The closed-form solution for λ is messy, but the variable w/A0E can easily be plotted versus λ (see Fig.
13.) Note that the length L0 has canceled from the result, although it is still present implicitly in the
extension ratio λ = L/L0.
Taking a typical design case for illustration, say the desired extension ratio is taken at λ = 3 for a

rubber cord of initial modulus E = 100 psi; this stops the jumper safely above the pavement and is verified
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Figure 13: Dimensionless weight versus cord extension.

to be well below the breaking extension of the cord. The value of the parameter w/AE corresponding to
λ = 3 is read from the graph to be 1.11. For a jumper weight of 150 lb, this corresponds to A = 1.35 in2,
or a cord diameter of 1.31 in.

If ever there was a strong case for field testing, this is it. An analysis such as this is nothing more

than a crude starting point, and many tests such as drops with sandbags are obviously called for. Even

then, the insurance costs would likely be very substantial.

Note that the stress-strain response for rubber elasticity is nonlinear, and that the stiffness
as given by the stress needed to produce a given deformation is predicted to increase with
increasing temperature. This is in accord with the concept of more vigorous wriggling with a
statistical bias toward the more disordered state. The rubber elasticity equation works well at
lower extensions, but tends to deviate from experimental values at high extensions where the
segment configurations become nongaussian.
Deviations from Eqn. 14 can also occur due to crystallization at high elongations. (Rubbers

are normally noncrystalline, and in fact polymers such as polyethylene that crystallize readily
are not elastomeric due to the rigidity imparted by the crystallites.) However, the decreased
entropy that accompanies stretching in rubber increases the crystalline melting temperature
according to the well-known thermodynamic relation

Tm =
∆U

∆S
(15)

where ∆U and ∆S are the change in internal energy and entropy on crystallization. The quantity
∆S is reduced if stretching has already lowered the entropy, so the crystallization temperature
rises. If it rises above room temperature, the rubber develops crystallites that stiffen it consider-
ably and cause further deviation from the rubber elasticity equation. (Since the crystallization is
exothermic, the material will also increase in temperature; this can often be sensed by stretching
a rubber band and then touching it to the lips.) Strain-induced crystallization also helps inhibit
crack growth, and the excellent abrasion resistance of natural rubber is related to the ease with
which it crystallizes upon stretching.

Problems

1. Justify the first two terms of the Madelung series given in Eqn. 3.

2. Using Eqn. 6 to write the parameter B in terms of the equilibrium interionic distance r0,
show that the binding energy of an ionic crystal, per bond pair, can be written as
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U = −
(n− 1)ACe2

nr0

where A is the Madelung constant, C is the appropriate units conversion factor, and e is
the ionic charge.

3. Measurements of bulk compressibility are valuable for probing the bond energy function,
because unlike simple tension, hydrostatic pressure causes the interionic distance to de-
crease uniformly. The modulus of compressibility K of a solid is the ratio of the pressure
p needed to induce a relative change in volume dV/V :

K = −
dp

(dV )/V

The minus sign is needed because positive pressures induce reduced volumes (volume
change negative).

(a) Use the relation dU = pdV for the energy associated with pressure acting through a
small volume change to show

K

V0
=

(
d2U

dV 2

)
V=V0

where V0 is the crystal volume at the equilibrium interionic spacing r = a0.

(b) The volume of an ionic crystal containing N negative and N positive ions can be
written as V = cNr3 where c is a constant dependent on the type of lattice (2 for NaCl).
Use this to obtain the relation

K

V0
=

(
d2U

dV 2

)
V=V0

=
1

9c2N2r2
·
d

dr

(
1

r2
dU

dr

)

(c) Carry out the indicated differentiation of the expression for binding energy to obtain
the expression

K

V0
=
K

cNr30
=

N

9c2Nr20

[
−4ACe

r50
+
n(n+ 3)B

rn+40

]

Then using the expression B = ACe2rn−10 /n, obtain the formula for n in terms of com-
pressibility:

n = 1 +
9cr40K

ACe2

4. Complete the spreadsheet below, filling in the values for repulsion exponent n and lattice
energy U .
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type r0 (pm) K (GPa) A n U(kJ/mol) Uexpt
LiF 201.4 6.710e+01 1.750 -1014

NaCl 282.0 2.400e+01 1.750 -764

KBr 329.8 1.480e+01 1.750 -663

The column labeled Uexpt lists experimentally obtained values of the lattice energy.

5. Given the definition of Helmholtz free energy:

A = U − TS

along with the first and second laws of thermodynamics:

dU = dQ+ dW

dQ = TdS

where U is the internal energy, T is the temperature, S is the entropy, Q is the heat and
W is the mechanical work, show that the force F required to hold the ends of a tensile
specimen a length L apart is related to the Helmholtz energy as

F =

(
∂A

∂L

)
T,V

6. Show that the temperature dependence of the force needed to hold a tensile specimen at
fixed length as the temperature is changed (neglecting thermal expansion effects) is related
to the dependence of the entropy on extension as

(
∂F

∂T

)
L

= −
(
∂S

∂L

)
T

7. (a) Show that if an ideal rubber (dU = 0) of mass M and specific heat c is extended
adiabatically, its temperature will change according to the relation

∂T

∂L
=
−T

Mc

(
∂S

∂L

)

i.e. if the entropy is reduced upon extension, the temperature will rise. This is known as
the thermoelastic effect.

(b) Use this expression to obtain the temperature change dT in terms of an increase dλ in
the extension ratio as

dT =
σ

ρc
dλ

where σ is the engineering stress (load divided by original area) and ρ is the mass density.

8. Show that the end-to-end distance r0 of a chain composed of n freely-jointed links of length
a is given by ro = na

2.
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9. Evalute the temperature rise in a rubber specimen of ρ = 1100 kg/m3, c = 2 kJ/kg·K,
NkT = 500 kPa, subjected to an axial extension λ = 4.

10. Show that the initial engineering modulus of a rubber whose stress-strain curve is given
by Eqn. 14 is E = 3NRT .

11. Calculate the Young’s modulus of a rubber of density 1100 gm/mol and whose inter-
crosslink segments have a molecular weight of 2500 gm/mol. The temperature is 25◦C.

12. Show that in the case of biaxial extension (λx and λy prescribed), the x-direction stress
based on the original cross-sectional dimensions is

σx = NkT

(
λx −

1

λ3xλ
2
y

)

and based on the deformed dimensions

tσx = NkT

(
λ2x −

1

λ2xλ
2
y

)

where the t subscript indicates a “true” or current stress.

13. Estimate the initial elastic modulus E, at a temperature of 20C, of an elastomer having a
molecular weight of 7,500 gm/mol between crosslinks and a density of 1.0 gm/cm3. What
is the percentage change in the modulus if the temperature is raised to 40C?

14. Consider a line on a rubber sheet, originally oriented at an angle φ0 from the vertical.
When the sheet is stretched in the vertical direction by an amount λy = λ, the line rotates
to a new inclination angle φ′. Show that

tanφ′ =
1

λ3/2
tan φ0

15. Before stretching, the molecular segments in a rubber sheet are assumed to be distributed
uniformly over all directions, so the the fraction of segments f(φ) oriented in a particular
range of angles dφ is

f(φ) =
dA

A
=
2πr2 sinφdφ

2πr
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The Herrman orientation parameter is defined in terms of the mean orientation as

f =
1

2

(
3〈cos2 φ′〉 − 1

)
, 〈cos2φ′〉 =

∫ π/2
0
cos2 φ′f(φ) dφ

Using the result of the previous problem, plot the orientation function f as a function of
the extension ratio λ.
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Introduction

This module introduces basic concepts of stiffness and strength underlying the mechanics of
fiber-reinforced advanced composite materials. This aspect of composite materials technology
is sometimes terms “micromechanics,” because it deals with the relations between macroscopic
engineering properties and the microscopic distribution of the material’s constituents, namely
the volume fraction of fiber. This module will deal primarily with unidirectionally-reinforced
continuous-fiber composites, and with properties measured along and transverse to the fiber
direction.

Materials

The term composite could mean almost anything if taken at face value, since all materials are
composed of dissimilar subunits if examined at close enough detail. But in modern materials
engineering, the term usually refers to a “matrix” material that is reinforced with fibers. For in-
stance, the term “FRP” (for Fiber Reinforced Plastic) usually indicates a thermosetting polyester
matrix containing glass fibers, and this particular composite has the lion’s share of today’s
commercial market. Figure 1 shows a laminate fabricated by “crossplying” unidirectionally-
reinforced layers in a 0◦-90◦stacking sequence.
Many composites used today are at the leading edge of materials technology, with perfor-

mance and costs appropriate to ultrademanding applications such as spacecraft. But heteroge-
neous materials combining the best aspects of dissimilar constituents have been used by nature
for millions of years. Ancient society, imitating nature, used this approach as well: the Book of
Exodus speaks of using straw to reinforce mud in brickmaking, without which the bricks would
have almost no strength.
As seen in Table 11, the fibers used in modern composites have strengths and stiffnesses

far above those of traditional bulk materials. The high strengths of the glass fibers are due to
processing that avoids the internal or surface flaws which normally weaken glass, and the strength
and stiffness of the polymeric aramid fiber is a consequence of the nearly perfect alignment of
the molecular chains with the fiber axis.

1F.P. Gerstle, “Composites,” Encyclopedia of Polymer Science and Engineering, Wiley, New York, 1991. Here
E is Young’s modulus, σb is breaking stress, εb is breaking strain, and ρ is density.
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Figure 1: A crossplied FRP laminate, showing nonuniform fiber packing and microcracking
(from Harris, 1986).

Table 1: Properties of Composite Reinforcing Fibers.

Material E σb εb ρ E/ρ σb/ρ cost
(GPa) (GPa) (%) (Mg/m3) (MJ/kg) (MJ/kg) ($/kg)

E-glass 72.4 2.4 2.6 2.54 28.5 0.95 1.1
S-glass 85.5 4.5 2.0 2.49 34.3 1.8 22–33
aramid 124 3.6 2.3 1.45 86 2.5 22–33
boron 400 3.5 1.0 2.45 163 1.43 330–440
HS graphite 253 4.5 1.1 1.80 140 2.5 66–110
HM graphite 520 2.4 0.6 1.85 281 1.3 220–660

Of course, these materials are not generally usable as fibers alone, and typically they are
impregnated by a matrix material that acts to transfer loads to the fibers, and also to pro-
tect the fibers from abrasion and environmental attack. The matrix dilutes the properties to
some degree, but even so very high specific (weight-adjusted) properties are available from these
materials. Metal and glass are available as matrix materials, but these are currently very ex-
pensive and largely restricted to R&D laboratories. Polymers are much more commonly used,
with unsaturated styrene-hardened polyesters having the majority of low-to-medium perfor-
mance applications and epoxy or more sophisticated thermosets having the higher end of the
market. Thermoplastic matrix composites are increasingly attractive materials, with processing
difficulties being perhaps their principal limitation.

Stiffness

The fibers may be oriented randomly within the material, but it is also possible to arrange for
them to be oriented preferentially in the direction expected to have the highest stresses. Such
a material is said to be anisotropic (different properties in different directions), and control of
the anisotropy is an important means of optimizing the material for specific applications. At
a microscopic level, the properties of these composites are determined by the orientation and
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distribution of the fibers, as well as by the properties of the fiber and matrix materials. The
topic known as composite micromechanics is concerned with developing estimates of the overall
material properties from these parameters.

Figure 2: Loading parallel to the fibers.

Consider a typical region of material of unit dimensions, containing a volume fraction Vf of
fibers all oriented in a single direction. The matrix volume fraction is then Vm = 1 − Vf . This
region can be idealized as shown in Fig. 2 by gathering all the fibers together, leaving the matrix
to occupy the remaining volume — this is sometimes called the “slab model.” If a stress σ1 is
applied along the fiber direction, the fiber and matrix phases act in parallel to support the load.
In these parallel connections the strains in each phase must be the same, so the strain ε1 in the
fiber direction can be written as:

εf = εm = ε1

The forces in each phase must add to balance the total load on the material. Since the forces in
each phase are the phase stresses times the area (here numerically equal to the volume fraction),
we have

σ1 = σfVf + σmVm = Ef ε1Vf + Emε1Vm

The stiffness in the fiber direction is found by dividing by the strain:

E1 =
σ1
ε1
= Vf Ef + VmEm (1)

This relation is known as a rule of mixtures prediction of the overall modulus in terms of the
moduli of the constituent phases and their volume fractions.
If the stress is applied in the direction transverse to the fibers as depicted in Fig. 3, the slab

model can be applied with the fiber and matrix materials acting in series. In this case the stress
in the fiber and matrix are equal (an idealization), but the deflections add to give the overall
transverse deflection. In this case it can be shown (see Prob. 5)

1

E2
=
Vf
Ef
+
Vm
Em

(2)

Figure 4 shows the functional form of the parallel (Eqn. 1) and series (Eqn. 2) predictions for
the fiber- and transverse-direction moduli.
The prediction of transverse modulus given by the series slab model (Eqn. 2) is considered

unreliable, in spite of its occasional agreement with experiment. Among other deficiencies the
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Figure 3: Loading perpendicular to the fibers.

assumption of uniform matrix strain being untenable; both analytical and experimental studies
have shown substantial nonuniformity in the matirx strain. Figure 5 shows the photoelastic
fringes in the matrix caused by the perturbing effect of the stiffer fibers. (A more complete
description of these phtoelasticity can be found in the Module on Experimental Strain Analysis,
but this figure can be interpreted simply by noting that closely-spaced photoelastic fringes are
indicative of large strain gradients.
In more complicated composites, for instance those with fibers in more than one direction

or those having particulate or other nonfibrous reinforcements, Eqn. 1 provides an upper bound
to the composite modulus, while Eqn. 2 is a lower bound (see Fig. 4). Most practical cases
will be somewhere between these two values, and the search for reasonable models for these
intermediate cases has occupied considerable attention in the composites research community.
Perhaps the most popular model is an empirical one known as the Halpin-Tsai equation2, which
can be written in the form:

E =
Em[Ef + ξ(VfEf + VmEm)]

VfEm + VmEf + ξEm
(3)

Here ξ is an adjustable parameter that results in series coupling for ξ = 0 and parallel averaging
for very large ξ.

Strength

Rule of mixtures estimates for strength proceed along lines similar to those for stiffness. For
instance, consider a unidirectionally reinforced composite that is strained up to the value at
which the fibers begin to break. Denoting this value εfb, the stress transmitted by the composite
is given by multiplying the stiffness (Eqn. 1):

σb = εfbE1 = Vfσfb + (1− Vf )σ
∗

The stress σ∗ is the stress in the matrix, which is given by εfbEm. This relation is linear in Vf ,
rising from σ∗ to the fiber breaking strength σfb = Ef εfb. However, this relation is not realistic
at low fiber concentration, since the breaking strain of the matrix εmb is usually substantially
greater than εfb. If the matrix had no fibers in it, it would fail at a stress σmb = Emεmb. If the
fibers were considered to carry no load at all, having broken at ε = εfb and leaving the matrix

2c.f. J.C.. Halpin and J.L. Kardos, Polymer Engineering and Science, Vol. 16, May 1976, pp. 344–352.
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Figure 4: Rule-of-mixtures predictions for longitudinal (E1) and transverse (E2) modulus, for
glass-polyester composite (Ef = 73.7 MPa, Em = 4 GPa). Experimental data taken from Hull
(1996).

to carry the remaining load, the strength of the composite would fall off with fiber fraction
according to

σb = (1− Vf )σmb

Since the breaking strength actually observed in the composite is the greater of these two
expressions, there will be a range of fiber fraction in which the composite is weakened by the
addition of fibers. These relations are depicted in Fig. 6.
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Figure 5: Photoelastic (isochromatic) fringes in a composite model subjected to transverse
tension (from Hull, 1996).

Figure 6: Strength of unidirectional composite in fiber direction.

Problems

1. Compute the longitudinal and transverse stiffness (E1, E2) of an S-glass epoxy lamina for
a fiber volume fraction Vf = 0.7, using the fiber properties from Table 1, and matrix
properties from the Module on Materials Properties.

2. Plot the longitudinal stiffness E1 of an E-glass/nylon unidirectionally-reinforced composite,
as a function of the volume fraction Vf .

3. Plot the longitudinal tensile strength of a E-glass/epoxy unidirectionally-reinforced com-
posite, as a function of the volume fraction Vf .

4. What is the maximum fiber volume fraction Vf that could be obtained in a unidirectionally
reinforced with optimal fiber packing?

5. Using the slab model and assuming uniform strain in the matrix, show the transverse
modulus of a unidirectionally-reinforced composite to be
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1

E2
=
Vf
Ef
+
Vm
Em

or in terms of compliances

C2 = CfVf + CmVm
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Introduction

Stress-strain curves are an extremely important graphical measure of a material’s mechanical
properties, and all students of Mechanics of Materials will encounter them often. However, they
are not without some subtlety, especially in the case of ductile materials that can undergo sub-
stantial geometrical change during testing. This module will provide an introductory discussion
of several points needed to interpret these curves, and in doing so will also provide a preliminary
overview of several aspects of a material’s mechanical properties. However, this module will
not attempt to survey the broad range of stress-strain curves exhibited by modern engineering
materials (the atlas by Boyer cited in the References section can be consulted for this). Several
of the topics mentioned here — especially yield and fracture — will appear with more detail in
later modules.

“Engineering” Stress-Strain Curves

Perhaps the most important test of a material’s mechanical response is the tensile test1, in which
one end of a rod or wire specimen is clamped in a loading frame and the other subjected to
a controlled displacement δ (see Fig. 1). A transducer connected in series with the specimen
provides an electronic reading of the load P (δ) corresponding to the displacement. Alternatively,
modern servo-controlled testing machines permit using load rather than displacement as the
controlled variable, in which case the displacement δ(P ) would be monitored as a function of
load.

The engineering measures of stress and strain, denoted in this module as σe and εe respec-
tively, are determined from the measured the load and deflection using the original specimen
cross-sectional area A0 and length L0 as

σe =
P

A0
, εe =

δ

L0
(1)

When the stress σe is plotted against the strain εe, an engineering stress-strain curve such as
that shown in Fig. 2 is obtained.

1Stress-strain testing, as well as almost all experimental procedures in mechanics of materials, is detailed by
standards-setting organizations, notably the American Society for Testing and Materials (ASTM). Tensile testing
of metals is prescribed by ASTM Test E8, plastics by ASTM D638, and composite materials by ASTM D3039.
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Figure 1: The tension test.

Figure 2: Low-strain region of the engineering stress-strain curve for annealed polycrystaline
copper; this curve is typical of that of many ductile metals.

In the early (low strain) portion of the curve, many materials obey Hooke’s law to a reason-
able approximation, so that stress is proportional to strain with the constant of proportionality
being the modulus of elasticity or Young’s modulus, denoted E:

σe = Eεe (2)

As strain is increased, many materials eventually deviate from this linear proportionality,
the point of departure being termed the proportional limit. This nonlinearity is usually as-
sociated with stress-induced “plastic” flow in the specimen. Here the material is undergoing
a rearrangement of its internal molecular or microscopic structure, in which atoms are being
moved to new equilibrium positions. This plasticity requires a mechanism for molecular mo-
bility, which in crystalline materials can arise from dislocation motion (discussed further in a
later module.) Materials lacking this mobility, for instance by having internal microstructures
that block dislocation motion, are usually brittle rather than ductile. The stress-strain curve
for brittle materials are typically linear over their full range of strain, eventually terminating in
fracture without appreciable plastic flow.

Note in Fig. 2 that the stress needed to increase the strain beyond the proportional limit
in a ductile material continues to rise beyond the proportional limit; the material requires an
ever-increasing stress to continue straining, a mechanism termed strain hardening.

These microstructural rearrangements associated with plastic flow are usually not reversed
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when the load is removed, so the proportional limit is often the same as or at least close to the
materials’s elastic limit. Elasticity is the property of complete and immediate recovery from
an imposed displacement on release of the load, and the elastic limit is the value of stress at
which the material experiences a permanent residual strain that is not lost on unloading. The
residual strain induced by a given stress can be determined by drawing an unloading line from
the highest point reached on the se - ee curve at that stress back to the strain axis, drawn with
a slope equal to that of the initial elastic loading line. This is done because the material unloads
elastically, there being no force driving the molecular structure back to its original position.

A closely related term is the yield stress, denoted σY in these modules; this is the stress
needed to induce plastic deformation in the specimen. Since it is often difficult to pinpoint the
exact stress at which plastic deformation begins, the yield stress is often taken to be the stress
needed to induce a specified amount of permanent strain, typically 0.2%. The construction used
to find this “offset yield stress” is shown in Fig. 2, in which a line of slope E is drawn from the
strain axis at εe = 0.2%; this is the unloading line that would result in the specified permanent
strain. The stress at the point of intersection with the σe − εe curve is the offset yield stress.

Figure 3 shows the engineering stress-strain curve for copper with an enlarged scale, now
showing strains from zero up to specimen fracture. Here it appears that the rate of strain
hardening2 diminishes up to a point labeled UTS, for Ultimate Tensile Strength (denoted σf in
these modules). Beyond that point, the material appears to strain soften, so that each increment
of additional strain requires a smaller stress.

Figure 3: Full engineering stress-strain curve for annealed polycrystalline copper.

The apparent change from strain hardening to strain softening is an artifact of the plotting
procedure, however, as is the maximum observed in the curve at the UTS. Beyond the yield
point, molecular flow causes a substantial reduction in the specimen cross-sectional area A, so
the true stress σt = P/A actually borne by the material is larger than the engineering stress
computed from the original cross-sectional area (σe = P/A0). The load must equal the true
stress times the actual area (P = σtA), and as long as strain hardening can increase σt enough
to compensate for the reduced area A, the load and therefore the engineering stress will continue
to rise as the strain increases. Eventually, however, the decrease in area due to flow becomes
larger than the increase in true stress due to strain hardening, and the load begins to fall. This

2The strain hardening rate is the slope of the stress-strain curve, also called the tangent modulus.
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is a geometrical effect, and if the true stress rather than the engineering stress were plotted no
maximum would be observed in the curve.

At the UTS the differential of the load P is zero, giving an analytical relation between the
true stress and the area at necking:

P = σtA→ dP = 0 = σtdA+Adσt → −
dA

A
=
dσt
σt

(3)

The last expression states that the load and therefore the engineering stress will reach a maxi-
mum as a function of strain when the fractional decrease in area becomes equal to the fractional
increase in true stress.

Even though the UTS is perhaps the materials property most commonly reported in tensile
tests, it is not a direct measure of the material due to the influence of geometry as discussed
above, and should be used with caution. The yield stress σY is usually preferred to the UTS in
designing with ductile metals, although the UTS is a valid design criterion for brittle materials
that do not exhibit these flow-induced reductions in cross-sectional area.

The true stress is not quite uniform throughout the specimen, and there will always be
some location - perhaps a nick or some other defect at the surface - where the local stress is
maximum. Once the maximum in the engineering curve has been reached, the localized flow at
this site cannot be compensated by further strain hardening, so the area there is reduced further.
This increases the local stress even more, which accelerates the flow further. This localized and
increasing flow soon leads to a “neck” in the gage length of the specimen such as that seen in
Fig. 4.

Figure 4: Necking in a tensile specimen.

Until the neck forms, the deformation is essentially uniform throughout the specimen, but
after necking all subsequent deformation takes place in the neck. The neck becomes smaller and
smaller, local true stress increasing all the time, until the specimen fails. This will be the failure
mode for most ductile metals. As the neck shrinks, the nonuniform geometry there alters the
uniaxial stress state to a complex one involving shear components as well as normal stresses.
The specimen often fails finally with a “cup and cone” geometry as seen in Fig. 5, in which
the outer regions fail in shear and the interior in tension. When the specimen fractures, the
engineering strain at break — denoted εf — will include the deformation in the necked region
and the unnecked region together. Since the true strain in the neck is larger than that in the
unnecked material, the value of εf will depend on the fraction of the gage length that has necked.
Therefore, εf is a function of the specimen geometry as well as the material, and thus is only a

4



crude measure of material ductility.

Figure 5: Cup-and-cone fracture in a ductile metal.

Figure 6 shows the engineering stress-strain curve for a semicrystalline thermoplastic. The
response of this material is similar to that of copper seen in Fig. 3, in that it shows a proportional
limit followed by a maximum in the curve at which necking takes place. (It is common to term
this maximum as the yield stress in plastics, although plastic flow has actually begun at earlier
strains.)

Figure 6: Stress-strain curve for polyamide (nylon) thermoplastic.

The polymer, however, differs dramatically from copper in that the neck does not continue
shrinking until the specimen fails. Rather, the material in the neck stretches only to a “natural
draw ratio” which is a function of temperature and specimen processing, beyond which the
material in the neck stops stretching and new material at the neck shoulders necks down. The
neck then propagates until it spans the full gage length of the specimen, a process called drawing.
This process can be observed without the need for a testing machine, by stretching a polyethylene
“six-pack holder,” as seen in Fig. 7.

Not all polymers are able to sustain this drawing process. As will be discussed in the
next section, it occurs when the necking process produces a strengthened microstructure whose
breaking load is greater than that needed to induce necking in the untransformed material just
outside the neck.
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Figure 7: Necking and drawing in a 6-pack holder.

“True” Stress-Strain Curves

As discussed in the previous section, the engineering stress-strain curve must be interpreted with
caution beyond the elastic limit, since the specimen dimensions experience substantial change
from their original values. Using the true stress σt = P/A rather than the engineering stress
σe = P/A0 can give a more direct measure of the material’s response in the plastic flow range.
A measure of strain often used in conjunction with the true stress takes the increment of strain
to be the incremental increase in displacement dL divided by the current length L:

dεt =
dL

l
→ εt =

∫ L
l0

1

L
dL = ln

L

L0
(4)

This is called the “true” or “logarithmic” strain.
During yield and the plastic-flow regime following yield, the material flows with negligible

change in volume; increases in length are offset by decreases in cross-sectional area. Prior to
necking, when the strain is still uniform along the specimen length, this volume constraint can
be written:

dV = 0→ AL = A0L0 →
L

L0
=
A

A0
(5)

The ratio L/L0 is the extension ratio, denoted as λ. Using these relations, it is easy to develop
relations between true and engineering measures of tensile stress and strain (see Prob. 2):

σt = σe (1 + εe) = σeλ, εt = ln (1 + εe) = ln λ (6)

These equations can be used to derive the true stress-strain curve from the engineering curve, up
to the strain at which necking begins. Figure 8 is a replot of Fig. 3, with the true stress-strain
curve computed by this procedure added for comparison.

Beyond necking, the strain is nonuniform in the gage length and to compute the true stress-
strain curve for greater engineering strains would not be meaningful. However, a complete true
stress-strain curve could be drawn if the neck area were monitored throughout the tensile test,
since for logarithmic strain we have

L

L0
=
A

A0
→ εt = ln

L

L0
= ln

A

A0
(7)

Ductile metals often have true stress-strain relations that can be described by a simple
power-law relation of the form:
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Figure 8: Comparison of engineering and true stress-strain curves for copper. An arrow indicates
the position on the “true” curve of the UTS on the engineering curve.

σt = Aε
n
t → log σt = logA+ n log εt (8)

Figure 9 is a log-log plot of the true stress-strain data3 for copper from Fig. 8 that demonstrates
this relation. Here the parameter n = 0.474 is called the strain hardening parameter, useful as a
measure of the resistance to necking. Ductile metals at room temperature usually exhibit values
of n from 0.02 to 0.5.

Figure 9: Power-law representation of the plastic stress-strain relation for copper.

A graphical method known as the “Considère construction” uses a form of the true stress-
strain curve to quantify the differences in necking and drawing from material to material. This
method replots the tensile stress-strain curve with true stress σt as the ordinate and extension
ratio λ = L/L0 as the abscissa. From Eqn. 6, the engineering stress σe corresponding to any

3Here percent strain was used for εt; this produces the same value for n but a different A than if full rather
than percentage values were used.
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value of true stress σt is slope of a secant line drawn from origin (λ = 0, not λ = 1) to intersect
the σt − λ curve at σt.

Figure 10: Considère construction. (a) True stress-strain curve with no tangents - no necking or
drawing. (b) One tangent - necking but not drawing. (c) Two tangents - necking and drawing.

Among the many possible shapes the true stress-strain curves could assume, let us consider
the concave up, concave down, and sigmoidal shapes shown in Fig. 10. These differ in the
number of tangent points that can be found for the secant line, and produce the following yield
characteristics:

(a) No tangents: Here the curve is always concave upward as in part (a) of Fig. 10, so the
slope of the secant line rises continuously. Therefore the engineering stress rises as well,
without showing a yield drop. Eventually fracture intercedes, so a true stress-strain curve
of this shape identifies a material that fractures before it yields.

(b) One tangent: The curve is concave downward as in part (b) of Fig. 10, so a secant line
reaches a tangent point at λ = λY . The slope of the secant line, and therefore the
engineering stress as well, begins to fall at this point. This is then the yield stress σY seen
as a maximum in stress on a conventional stress-strain curve, and λY is the extension ratio
at yield. The yielding process begins at some adventitious location in the gage length of
the specimen, and continues at that location rather than being initiated elsewhere because
the secant modulus has been reduced at the first location. The specimen is now flowing at
a single location with decreasing resistance, leading eventually to failure. Ductile metals
such as aluminum fail in this way, showing a marked reduction in cross sectional area at
the position of yield and eventual fracture.

(c) Two tangents: For sigmoidal stress-strain curves as in part (c) of Fig. 10, the engineering
stress begins to fall at an extension ration λY , but then rises again at λd. As in the previous
one-tangent case, material begins to yield at a single position when λ = λY , producing
a neck that in turn implies a nonuniform distribution of strain along the gage length.
Material at the neck location then stretches to λd, after which the engineering stress there
would have to rise to stretch it further. But this stress is greater than that needed to
stretch material at the edge of the neck from λY to λd, so material already in the neck
stops stretching and the neck propagates outward from the initial yield location. Only
material within the neck shoulders is being stretched during propagation, with material
inside the necked-down region holding constant at λd, the material’s “natural draw ratio,”
and material outside holding at λY . When all the material has been drawn into the necked
region, the stress begins to rise uniformly in the specimen until eventually fracture occurs.

The increase in strain hardening rate needed to sustain the drawing process in semicrys-
talline polymers arises from a dramatic transformation in the material’s microstructure. These
materials are initially “spherulitic,” containing flat lamellar crystalline plates, perhaps 10 nm
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thick, arranged radially outward in a spherical domain. As the induced strain increases, these
spherulites are first deformed in the straining direction. As the strain increases further, the
spherulites are broken apart and the lamellar fragments rearranged with a dominantly axial
molecular orientation to become what is known as the fibrillar microstructure. With the strong
covalent bonds now dominantly lined up in the load-bearing direction, the material exhibits
markedly greater strengths and stiffnesses — by perhaps an order of magnitude — than in the
original material. This structure requires a much higher strain hardening rate for increased
strain, causing the upturn and second tangent in the true stress-strain curve.

Strain energy

The area under the σe − εe curve up to a given value of strain is the total mechanical energy
per unit volume consumed by the material in straining it to that value. This is easily shown as
follows:

U∗ =
1

V

∫
P dL =

∫ L
0

P

A0

dL

L0
=

∫ ε
0
σ dε (9)

In the absence of molecular slip and other mechanisms for energy dissipation, this mechanical
energy is stored reversibly within the material as strain energy. When the stresses are low enough
that the material remains in the elastic range, the strain energy is just the triangular area in
Fig. 11:

Figure 11: Strain energy = area under stress-strain curve.

Note that the strain energy increases quadratically with the stress or strain; i.e. that as the
strain increases the energy stored by a given increment of additional strain grows as the square
of the strain. This has important consequences, one example being that an archery bow cannot
be simply a curved piece of wood to work well. A real bow is initially straight, then bent when
it is strung; this stores substantial strain energy in it. When it is bent further on drawing the
arrow back, the energy available to throw the arrow is very much greater than if the bow were
simply carved in a curved shape without actually bending it.

Figure 12 shows schematically the amount of strain energy available for two equal increments
of strain ∆ε, applied at different levels of existing strain.

The area up to the yield point is termed the modulus of resilience, and the total area up to
fracture is termed the modulus of toughness; these are shown in Fig. 13. The term “modulus”
is used because the units of strain energy per unit volume are N-m/m3 or N/m2, which are the
same as stress or modulus of elasticity. The term “resilience” alludes to the concept that up
to the point of yielding, the material is unaffected by the applied stress and upon unloading
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Figure 12: Energy associated with increments of strain

Table 1: Energy absorption of various materials.

Material Maximum Maximum Modulus of Density Max. Energy
Strain, % Stress, MPa Toughness, MJ/m3 kg/m3 J/kg

Ancient Iron 0.03 70 0.01 7,800 1.3
Modern spring steel 0.3 700 1.0 7,800 130
Yew wood 0.3 120 0.5 600 900
Tendon 8.0 70 2.8 1,100 2,500
Rubber 300 7 10.0 1,200 8,000

will return to its original shape. But when the strain exceeds the yield point, the material is
deformed irreversibly, so that some residual strain will persist even after unloading. The modulus
of resilience is then the quantity of energy the material can absorb without suffering damage.
Similarly, the modulus of toughness is the energy needed to completely fracture the material.
Materials showing good impact resistance are generally those with high moduli of toughness.

Figure 13: Moduli of resilience and toughness.

Table 14 lists energy absorption values for a number of common materials. Note that natural
and polymeric materials can provide extremely high energy absorption per unit weight.

During loading, the area under the stress-strain curve is the strain energy per unit volume
absorbed by the material. Conversely, the area under the unloading curve is the energy released
by the material. In the elastic range, these areas are equal and no net energy is absorbed. But

4J.E. Gordon, Structures, or Why Things Don’t Fall Down, Plenum Press, New York, 1978.
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if the material is loaded into the plastic range as shown in Fig. 14, the energy absorbed exceeds
the energy released and the difference is dissipated as heat.

Figure 14: Energy loss = area under stress-strain loop.

Compression

The above discussion is concerned primarily with simple tension, i.e. uniaxial loading that
increases the interatomic spacing. However, as long as the loads are sufficiently small (stresses
less than the proportional limit), in many materials the relations outlined above apply equally
well if loads are placed so as to put the specimen in compression rather than tension. The
expression for deformation and a given load δ = PL/AE applies just as in tension, with negative
values for δ and P indicating compression. Further, the modulus E is the same in tension and
compression to a good approximation, and the stress-strain curve simply extends as a straight
line into the third quadrant as shown in Fig. 15.

Figure 15: Stress-strain curve in tension and compression.

There are some practical difficulties in performing stress-strain tests in compression. If
excessively large loads are mistakenly applied in a tensile test, perhaps by wrong settings on the
testing machine, the specimen simply breaks and the test must be repeated with a new specimen.
But in compression, a mistake can easily damage the load cell or other sensitive components,
since even after specimen failure the loads are not necessarily relieved.

Specimens loaded cyclically so as to alternate between tension and compression can exhibit
hysteresis loops if the loads are high enough to induce plastic flow (stresses above the yield
stress). The enclosed area in the loop seen in Fig. 16 is the strain energy per unit volume
released as heat in each loading cycle. This is the well-known tendency of a wire that is being
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bent back and forth to become quite hot at the region of plastic bending. The temperature of
the specimen will rise according to the magnitude of this internal heat generation and the rate
at which the heat can be removed by conduction within the material and convection from the
specimen surface.

Figure 16: Hysteresis loop.

Specimen failure by cracking is inhibited in compression, since cracks will be closed up rather
than opened by the stress state. A number of important materials are much stronger in com-
pression than in tension for this reason. Concrete, for example, has good compressive strength
and so finds extensive use in construction in which the dominant stresses are compressive. But
it has essentially no strength in tension, as cracks in sidewalks and building foundations attest:
tensile stresses appear as these structures settle, and cracks begin at very low tensile strain in
unreinforced concrete.
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Problems

1. The figure below shows the engineering stress-strain curve for pure polycrystalline alu-
minum; the numerical data for this figure are in the file aluminum.txt, which can be
imported into a spreadsheet or other analysis software. For this material, determine (a)
Young’s modulus, (b) the 0.2% offset yield strength, (c) the Ultimate Tensile Strength
(UTS), (d) the modulus of resilience, and (e) the modulus of toughness.

2. Develop the relations given in Eqn. 6:

σt = σe (1 + εe) = σeλ, εt = ln (1 + εe) = ln λ
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Prob. 1

3. Using the relations of Eqn. 6, plot the true stress-strain curve for aluminum (using data
from Prob.1) up to the strain of neck formation.

4. Replot the the results of the previous problem using log-log axes as in Fig. 9 to determine
the parameters A and n in Eqn. 8 for aluminum.

5. Using Eqn. 8 with parameters A = 800 MPa, n = 0.2, plot the engineering stress-strain
curve up to a strain of εe = 0.4. Does the material neck? Explain why the curve is or is
not valid at strains beyond necking.

6. Using the parameters of the previous problem, use the condition (dσe/dεe)neck = 0 to show
that the engineering strain at necking is εe,neck = 0.221.

7. Use a Considère construction (plot σt vs. λ, as in Fig. 10 ) to verify the result of the
previous problem.

8. Elastomers (rubber) have stress-strain relations of the form

σe =
E

3

(
λ−

1

λ2

)
,

where E is the initial modulus. Use the Considère construction to show whether this
material will neck, or draw.

9. Show that a power-law material (one obeying Eqn. 8) necks when the true strain εt becomes
equal to the strain-hardening exponent n.

10. Show that the UTS (engineering stress at incipient necking) for a power-law material
(Eqn. 8) is

σf =
Ann

en

11. Show that the strain energy U =
∫
σ dε can be computed using either engineering or true

values of stress and strain, with equal result.
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12. Show that the strain energy needed to neck a power-law material (Eqn.8) is

U =
Ann+1

n+ 1
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Introduction

A truss is an assemblage of long, slender structural elements that are connected at their ends.
Trusses find substantial use in modern construction, for instance as towers (see Fig. 1), bridges,
scaffolding, etc. In addition to their practical importance as useful structures, truss elements
have a dimensional simplicity that will help us extend further the concepts of mechanics in-
troduced in the modules dealing with uniaxial response. This module will also use trusses to
introduce important concepts in statics and numerical analysis that will be extended in later
modules to more general problems.

Figure 1: Truss tower supporting the NASA wind turbine generator at Oahu, Hawaii.

Example 1

Trusses are often used to stiffen structures, and most people are familiar with the often very elaborate
systems of cross-bracing used in bridges. The truss bracing used to stiffen the towers of suspension bridges
against buckling are hard to miss, but not everyone notices the vertical truss panels on most such bridges
that serve to stiffen the deck against flexural and torsional deformation.
Many readers will have seen the very famous movie, taken on November 7, 1940, by Barney Elliott of

The Camera Shop in Tacoma, Washington. The wind was gusting up to 42 mph that day, and induced a
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sequence of spectacular undulations and eventual collapse of the Tacoma Narrows bridge1. This bridge
was built using relatively short I-beams for deck stiffening rather than truss panels, reportedly for aesthetic
reasons; bridge designs of the period favored increasingly slender and graceful-appearing structures. Even
during construction, the bridge became well known for its alarming tendency to sway in the wind, earning
it the local nickname “Galloping Gertie.”

Truss stiffeners were used when the bridge was rebuilt in 1950, and the new bridge was free of the

oscillations that led to the collapse of its predecessor. This is a good example of one important use of

trusses, but it is probably an even better example of the value of caution and humility in engineering. The

glib answers often given for the original collapse — resonant wind gusts, von Karman vortices, etc. —

are not really satisfactory beyond the obvious statement that the deck was not stiff enough. Even today,

knowledgeable engineers argue about the very complicated structural dynamics involved. Ultimately,

many uncertainties exist even in designs completed using very modern and elaborate techniques. A wise

designer will never fully trust a theoretical result, computer-generated or not, and will take as much

advantage of experience and intuition as possible.

Statics analysis of forces

Newton observed that a mass accelerates according to the vector sum of forces applied to it:∑
F = ma. (Vector quantities indicated by boldface type.) In structures that are anchored

so as to prevent motion, there is obviously no acceleration and the forces must sum to zero.
This vector equation has as many scalar components as the dimensionality of the problem; for
two-dimensional cases we have:

∑
Fx = 0 (1)

∑
Fy = 0 (2)

where Fx and Fy are the components of F in the x and y cartesian coordinate directions.
These two equations, which we can interpret as constraining the structure against translational
motion in the x and y directions, allow us to solve for at most two unknown forces in structural
problems. If the structure is constrained against rotation as well as translation, we can add a
moment equation that states that the sum of moments or torques in the x-y plane must also
add to zero:

∑
Mxy = 0 (3)

In two dimensions, then, we have three equations of static equilibrium that can be used to solve
for unknown forces. In three dimensions, a third force equation and two more moment equations
are added, for a total of six:

∑
Fx = 0∑
Fy = 0∑
Fz = 0

∑
Mxy = 0∑
Mxz = 0∑
Myz = 0

(4)

These equations can be applied to the structure as a whole, or we can (conceptually) remove
a piece of the structure and consider the forces acting on the removed piece. A sketch of the

1An interactive instructional videodisk of the Tacoma Narrows Bridge collapse is available from Wiley Educa-
tional Software (ISBN 0-471-87320-9).
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piece, showing all forces acting on it, is called a free body diagram. If the number of unknown
forces in the diagram is equal to or less than the number of available static equilibrium equations,
the unknowns can be solved in a straightforward manner; such problems are termed statically
determinate. Note that these equilibrium equations do not assume anything about the material
from which the structure is made, so the resulting forces are also independent of the material.
In the analyses to be considered here, the truss elements are assumed to be joined together

by pins or other such connections that allow free rotation around the joint. As seen in the free-
body diagram of Fig. 2, this inability to resist rotation implies that the force acting on a truss
element’s pin joint must be in the element’s axial direction: any transverse component would
tend to cause rotation, and if the element is to be in static equilibrium the moment equation
forces the transverse component to vanish. If the element ends were to be welded or bolted
rather than simply pinned, the end connection could transmit transverse forces and bending
moments into the element. Such a structure would then be called a frame rather than a truss,
and its analysis would have to include bending effects. Such structures will be treated in the
Module on Bending.

Figure 2: Pinned elements cannot support transverse loads.

Knowing that the force in each truss element must be be in the element’s axial direction is
the key to solving for the element forces in trusses that contain many elements. Each element
meeting at a pin joint will pull or push on the pin depending on whether the element is in tension
or compression, and since the pin must be in static equilibrium the sum of all element forces
acting on the pin must equal the force that is externally applied to the pin:

∑
e

Fei = Fi

Here the e superscript indicates the vector force supplied by the element on the ith pin in the
truss and Fi in the force externally applied to that pin. The summation is over all the elements
connected to the pin.

Example 2

The very simple two-element truss often found in high school physics books and shown in Fig. 3 can be
analyzed this way. Intuition tells us that the upper element, connecting joints A and B, is in tension
while element BC is in compression. In more complicated problems it is not always possible to determine
the sign of the element force by inspection, but it doesn’t matter. In sketching the free body diagrams
for the pins, the load can be drawn in either direction; if the guess turns out to be wrong, the solution
will give a negative value for the force magnitude.
The unknown forces on the connecting pin B are in the direction of the elements attached to it,

and since there are only two such forces they may be determined from the two static equilibrium force
equations:
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Figure 3: A two-element truss.

∑
Fy = 0 = +FAB sin θ − P ⇒ FAB =

P

sin θ

∑
Fx = 0 = −FAB cos θ + FBC ⇒ FBC = FAB cos θ =

P

tan θ

In more complicated trusses, the general approach is to start at a pin joint containing no more
than two elements having unknown forces, and then work from joint to joint using the element
forces from the previous step to reduce the number of unknowns. Consider the 6-element truss
shown in Fig. 4, in which the joints and elements are numbered as indicated, with the element
numbers appearing in circles. Joint 3 is a natural starting point, since only forces F2 and F5
appear as unknowns. Once F5 is found, an analysis of joint 5 has only forces F4 and F6 as
unknowns. Finally, the free-body diagram of node 2 can be completed, since only F1 and F3 are
now unknown. The force analysis is then complete.

Figure 4: A six-element truss.

There are often many ways to complete problems such as this, perhaps with some being easier
than others. Another approach might be to start at one of the joints at the wall; i.e. joint 1 or
joint 4. The problem as originally stated gives these joints as having fixed displacements rather
than specified forces. This is an example of a mixed boundary value problem, with some parts
of the boundary having specified forces and the remaining parts having specified displacements.
Such problems are generally more difficult, and require more mathematical information for their
solution than problems having only one or the other type of boundary condition. However, in the
statically determinate problems, the structure can be converted to a load-only type by invoking
static equilibrium on the structure as a whole. The fixed-displacement boundary conditions are
then replaced by reaction forces that are set up at the points of constraint.
Moment equilibrium equations were not useful in the joint-by-joint analysis described earlier,

since individual elements cannot support moments. But as seen in Fig. 5, we can consider the
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Figure 5: Free-body diagram of six-element truss

6-element truss as a whole and take moments around joint 4. With counterclockwise-tending
moments being positive, this gives

∑
M4 = 0 = F1 × L− P × 2L⇒ F1 = 2P

The force F1 is the force applied by the wall to joint 1, and this is obviously equal to the tensile
force in element 1. There can be no vertical component of this reaction force, since the element
forces must be axial and only element 1 is connected to joint 1. At joint 4, reaction forces Rx
and Ry can act in both the x and y directions since element 3 is not perpendicular to the wall.
These reaction forces can be found by invoking horizontal and vertical equilibrium:

∑
Fx = 0 = −F1 +Rx ⇒ Rx = F1 = 2P

∑
Fy = 0 = +Ry − P ⇒ Ry = P

A joint-by-joint analysis can now be started from joint 4, since only two unknown forces act
there (see Fig. 6). For vertical equilibrium, F3 cos 45 = P , so F3 =

√
2P . Then for horizontal

equilibrium F6+F3 cos 45 = 2P , so F6 = P . Now moving to joint 5, horizontal equilibrium gives
F5 cos 45 = P so F5 = F3 =

√
2P , and vertical equilibrium gives F4 = F5 cos 45 so F4 = P .

Finally, at joint 3 horizontal equilibrium gives F2 = F5 cos 45 so F2 = P .

Figure 6: Individual joint diagrams.

In actual truss design, once each element’s force is known its cross-sectional area can then be
calculated so as to keep the element stress according to σ = P/A safely less than the material’s
yield point. Elements in compression, however, must be analyzed for buckling as well, since
their ratios of EI to L2 are generally low. The buckling load can be increased substantially
by bracing the element against sideward deflection, and this bracing is evident in most bridges
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and cranes. Also, the truss elements are usually held together by welded or bolted joints rather
than pins. These joints can carry some bending moments, which helps stiffen the truss against
buckling.

Deflections

It may be important in some applications that the truss be stiff enough to keep the deformations
inside specified limits. Astronomical telescopes are an example, since deflection of the structure
supporting the optical assemblies can degrade the focusing ability of the instrument. A typical
derrick or bridge, however, is probably more likely to be strength rather than stiffness-critical,
so it might appear deflections would be relatively unimportant. However, it will be seen that
consideration of deflections is necessary to solve the great number of structures that are not
statically determinate. The following sections treat truss deflections for both these reasons.

Geometrical approach

Once the axial force in each truss element is known, the individual element deformations follow
directly using δ = PL/AE. The deflection of any point in the truss can then be determined
geometrically, invoking the requirement that the elements remain pinned together at their at-
tachment points. In the symmetric two-element truss shown in Fig. 7, joint B will obviously
deflect downward vertically. The relation between the the axial deformation δ of the elements
and the vertical deflection of the joint δv is then seen to be

δv =
δ

cos θ

It is assumed here that the deformation is small enough that the gross aspects of the geometry
are essentially unchanged; in this case, that the angle θ is the same before and after the load is
applied.

Figure 7: Two-element truss.

In geometrical analyses of more complicated trusses, it is sometimes convenient to visualize
unpinning the elements at a selected joint, letting the elements elongate or shrink according
to the axial force they are transmitting, and then swinging them around the still-pinned joint
until the pin locations match up again. The motion of the unpinned ends would trace out
circular paths, but if the deflections are small the path can be approximated as a straight line
perpendicular to the element axis. The joint position can then be computed from Pythagorean
relationships.
In the earlier two-element truss shown in Fig. 3, we had PAB = P/ sin θ and PBC = P/ tan θ.

If the pin at joint B were removed, the element deflections would be
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δAB =
P

sin θ

(
L

AE

)
AB

(tension)

δBC =
P

tan θ

(
L

AE

)
BC

(compression)

The total downward deflection of joint B is then

δv = δ1 + δ2 =
δAB
sin θ

+
δBC
tan θ

=
P

sin2 θ

(
L

AE

)
AB

+
P

tan2 θ

(
L

AE

)
BC

These deflections are shown in Fig. 8.

Figure 8: Displacements in the two-element truss.

The horizontal deflection δh of the pin is easier to compute, since it is just the contraction
of element BC:

δh = δBC =
P

tan θ

(
L

AE

)
BC

Energy approach

The geometrical approach to truss deformation analysis can be rather tedious, especially as
problems become larger. Many problems can be solved more easily using a strain energy rather
than force-at-a-point approach. The total strain energy U in a single elastically loaded truss
element is

U =

∫
P dδ

The increment of deformation dδ is related to a corresponding increment of load dP by

δ =
PL

AE
⇒ dδ =

L

AE
dP

The strain energy is then

U =

∫
P
L

AE
dP =

P 2L

2AE
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Figure 9: Increments of strain and complimentary strain energy.

The incremental increase in strain energy corresponding to an increase in deformation dδ is
just dU = P dδ. If the force-elongation curve is linear, this is identical to the increase in the
quantity called the complimentary strain energy: dU c = δdP . These quantities are depicted
in Fig. 9. Now consider a system with many joints, subjected to a number of loads acting at
different joints. If we were to increase the ith load slightly while holding all the other loads
constant, the increase in the total complementary energy of the system would be

dU c = δidPi

where δi is the displacement that would occur at the location of Pi, moving in the same direction
as the force vector for Pi. Rearranging,

δi =
∂U c

∂Pi

and since U c = U :

δi =
∂U

∂Pi
(5)

Hence the displacement at a given point is the derivative of the total strain energy with respect
to the load acting at that point. This provides the basis of an extremely useful method of
displacement analysis known as Castigliano’s Theorem2, which can be stated for truss problems
as the following recipe:

1. Let the load applied at the joint whose deformation is sought, in the direction of the desired
deformation, be written as an algebraic variable, say Q. If the load is known numerically,
replace the number with a letter. If there is no load at the desired location and direction,
put an imaginary one there that will be set to zero at the end of the problem.

2. Solve for the forces Fi(Q) in each truss element, each of which may be dependent on the
load Q assigned in the previous step.

3. Use these forces to compute the strain energy for each element, and sum the energies in
each element to obtain the total strain energy for the truss:

2From the 1873 thesis of the Italian engineer Alberto Castigliano (1847–1884), at the Turin Polytechnical
Institute.
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Utot =
∑
i

Ui =
∑
i

F 2i Li
2AiEi

(6)

Each term in this summation may contain the variable Q.

4. The deformation congruent to Q, i.e. the deformation at the point where Q is applied and
in the same direction as Q, is then

δQ =
∂Utot
∂Q

=
∑
i

FiLi
AiEi

∂Fi(Q)

∂Q
(7)

5. The load Q is replaced by its numerical value, if known. Or by zero, if it was an imaginary
load in the first place.

Applying this method to the vertical deflection of the two-element truss of Fig. 3, the problem
already has a force in the required direction, the applied downward load P . The forces have
already been shown to be PAB = P/ sin θ and PBC = P/ tan θ, so the vertical deflection can be
written immediately as

δv = PAB

(
L

AE

)
AB

∂PAB
∂P

+ PBC

(
L

AE

)
BC

∂PBC
∂P

=
P

sin θ

(
L

AE

)
AB

1

sin θ
+
P

tan θ

(
L

AE

)
AB

1

sin θ
+
P

tan θ

(
AE

L

)
BC

1

tan θ

This is identical to the expression obtained from geometric considerations. The energy method
didn’t save too many algebraic steps in this case, but it avoided having to visualize and idealize
the displacements geometrically.
If the horizontal displacement at joint B is desired, the method requires that a horizontal

force exist at that point. One isn’t given, so we place an imaginary one there, say Q. The truss
is then reanalyzed statically to find how the element forces are influenced by this new force
Q. The upper element force is PAB = P/ sin θ as before, and the lower element force becomes
PBC = P/ tan θ−Q. Repeating the Castigliano process, but now differentiating with respect to
Q:

δh = PAB

(
L

AE

)
AB

∂PAB
∂Q

+ PBC

(
L

AE

)
BC

∂PBC
∂Q

=
P

sin θ

(
L

AE

)
AB

· 0 +
(
P

tan θ
−Q
)(

L

AE

)
BC

(−1)

The first term vanishes upon differentiation since Q did not appear in the expression for PAB .
This is the method’s way of noticing that the horizontal deflection is determined completely by
the contraction of element BC. Upon setting Q = O, the final result is

δh = −
P

tan θ

(
AE

L

)
BC

as before.

9



Example 3

Consider the 6-element truss of Fig. 4 whose individual element forces were found earlier by free body
diagrams. We are seeking the vertical deflection of node 3, which is congruent to the force P . Using
Castigliano’s method, this deflection is the derivative of the total strain energy with respect to P . Equiv-
alently, we can differentiate the strain energy of each element with respect to P individually, and then
add the contributions of each element to obtain the final result:

δP =
∂

∂P

∑
i

F 2i Li

2AiEi
=
∑
i

(
FiLi

AiEi

∂Fi

∂P

)

To systemize this approach, we can form a table of needed parameters as follows:

i Fi
Li
AiEi

∂Fi
∂P

FiLi
AiEi

∂Fi
∂P

1 2P L/AE 2 4PL/AE
2 P L/AE 1 PL/AE

3
√
2P

√
2L/AE

√
2 2.83PL/AE

4 P L/AE 1 PL/AE

5
√
2P

√
2L/AE

√
2 2.83PL/AE

6 P L/AE 1 PL/AE

δP =
∑
= 12.7PL/AE

If for instance we have as numerical parameters P = 1000 lbs, L = 100 in, E = 30 Mpsi and A = 0.5 in2,

then δP = 0.0844 in.

Statically indeterminate trusses

It has already been noted that that the element forces in the truss problems treated up to now
do not depend on the properties of the materials used in their construction, just as the stress
in a simple tension test is independent of the material. This result, which certainly makes the
problem easier to solve, is a consequence of the earlier problems being statically determinate;
i.e. able to be solved using only the equations of static equilibrium. Statical determinacy, then,
is an important aspect of the difficulty we can expect in solving the problem. Not all problems
are statically determinate, and one consequence of this indeterminacy is that the forces in the
structure may depend on the material properties.
After performing a static analysis of the truss as a whole to find reaction forces at the

supports, we typically try to find the element forces using the joint-at-a-time method described
above. However, there can be at most two unknown forces at a pin joint in a two-dimensional
truss problem if the joint is to be solved using statics alone, since the moment equation does
not provide usable information in this case. If more unknowns are present no matter in which
order the truss joints are analyzed, then a number of additional equations equal to the remaining
unknowns must be found. These extra equations are those enforcing compatibility of the various
joint displacements, each of which must be such as to keep the truss joints pinned together.

Example 4

A simple example, just two truss elements acting in parallel as shown in Fig. 10, will show the
approach needed. Here the compatibility condition is just

δA = δB
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Figure 10: Two truss elements in parallel.

The individual element displacements are related to the element forces by δ = PL/AE, which is material-
dependent and can be termed a constitutive equation because it reflects the material’s mechanical con-
stitution. Combining this with the compatibility condition gives

PAL

AAEA
=
PBL

ABEB
⇒ PB = PA

ABEB

AAEA

Finally, the individual element forces must add up to the total applied load P in order to satisfy equilib-
rium:

P = PA + PB = PA + PA
ABEB

AAEA
⇒ PA = P


 1

1 +
(
ABEB
AAEA

)



Note that the final answer in the above example depends on the element dimensions and
material stiffnesses, as promised. Here the geometrical compatibility condition was very simple
and obvious, namely that the displacements of the two element end joints were identical. In more
complex trusses these relations can be subtle, but tend to become more evident with practice.
Three different types of relations were used in the above problem: a compatibility equation,

stating how the structure must deform kinematically in order to remain connected; a constitutive
equation, embodying the stress-strain response of the material; and an equilibrium equation,
stating that the forces must sum to zero if acceleration is to be avoided. These three concepts,
made somewhat more general mathematically to handle geometrically more elaborate problems,
underlie all of solid mechanics.
In the Module on Elastic Response, we noted that the stress in a tensile specimen is deter-

mined only by considerations of static equilibrium, being given by σ = P/A independent of the
material properties. We see now that the statical determinacy depends, among other things, on
the material being homogeneous, i.e. identical throughout. If the tensile specimen is composed
of two subunits each having different properties, the stresses will be allocated differently among
the two units, and the stresses will not be uniform. Whenever a stress or deformation formula
is copied out of a handbook, the user must be careful to note the limitations of the underlying
theory. The handbook formulae are usually applicable only to homogeneous materials in their
linear elastic range, and higher-order theories must be used when these conditions are not met.

Example 5

Figure 11(a) shows another statically indeterminate truss, with three elements having the same area and
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Figure 11: (a) Three-element statically indeterminate truss. (b) Free-body diagram of node 4.
(c) Deflections at node 4.

modulus, but different lengths, meeting at a common node. At a glance, we can see node 4 has three
elements meeting there whose forces are unknown, and this is one more than the useful equations of static
equilibrium will be able to handle. This is also evident in the free-body diagram of Fig. 11(b): horizontal
and vertical equilibrium gives

∑
Fx = 0 = −F1 + F2 → F1 = F2

∑
Fy = 0 = −P + F2 + F1 cos θ + F3 cos θ → F2 + 2F3 cos θ = P (8)

These two equations are clearly not sufficient to determine the unknowns F1, F2, F3. We need another
equation, and it’s provided by requiring the deformation be such as to keep the truss pinned together
at node 4. Since the symmetry of the problems tells us that the deflection there is straight downward,
the diagram in Fig. 11(c) can be used. And since the deflection is small relative to the lengths of the
elements, the angle of element 3 remains essentially unchanged after deformation. This lets us write

δ3 = δ2 cos θ

or

F3L3

A3E3
=
F2L2

A2E2
cos θ

Using A2 = A3, E2 = E3, L3 = L, and L2 = L cos θ, this becomes

F3 = F2 cos
2 θ

Solving this simultaneously with Eqn. 8, we obtain

F2 =
P

1 + 2 cos3 θ
, F3 =

P cos2 θ

1 + 2 cos3 θ

Note that the modulus E does not appear in this result, even though the problem is statically indeter-

minate. If the elements had different stiffnesses, however, the cancellation of E would not have occurred.

12



Matrix analysis of trusses

The joint-by-joint free-body analysis of trusses is tedious for large and complicated structures,
especially if statical indeterminacy requires that displacement compatibility be considered along
with static equilibrium. However, even statically indeterminate trusses can be solved quickly
and reliably for both forces and displacements by a straightforward numerical procedure known
as matrix structural analysis. This method is a forerunner of the more general computer method
named finite element analysis (FEA), which has come to dominate much of engineering analysis
in the past two decades. The foundations of matrix analysis will be outlined here, primarily as
an introduction to the more general use of FEA in stress analysis.
Matrix analysis of trusses operates by considering the stiffness of each truss element one

at a time, and then using these stiffnesses to determine the forces that are set up in the truss
elements by the displacements of the joints, usually called “nodes” in finite element analysis.
Then noting that the sum of the forces contributed by each element to a node must equal the
force that is externally applied to that node, we can assemble a sequence of linear algebraic
equations in which the nodal displacements are the unknowns and the applied nodal forces are
known quantities. These equations are conveniently written in matrix form, which gives the
method its name:




K11 K12 · · · K1n
K21 K22 · · · K2n
...

...
. . .

...
Kn1 Kn2 · · · Knn







u1
u2
...
un



=




f1
f2
...
fn




Here ui and fj indicate the deflection at the i
th node and the force at the jth node (these

would actually be vector quantities, with subcomponents along each coordinate axis). The Kij
coefficient array is called the global stiffness matrix, with the ij component being physically the
influence of the jth displacement on the ith force. The matrix equations can be abbreviated as

Kijuj = fi or Ku = f (9)

using either subscripts or boldface to indicate vector and matrix quantities.
Either the force externally applied or the displacement is known at the outset for each node,

and it is impossible to specify simultaneously both an arbitrary displacement and a force on a
given node. These prescribed nodal forces and displacements are the boundary conditions of
the problem. It is the task of analysis to determine the forces that accompany the imposed
displacements, and the displacements at the nodes where known external forces are applied.

Stiffness matrix for a single truss element

As a first step in developing a set of matrix equations that describe truss systems, we need a
relationship between the forces and displacements at each end of a single truss element. Consider
such an element in the x−y plane as shown in Fig. 12, attached to nodes numbered i and j and
inclined at an angle θ from the horizontal.
Considering the elongation vector δ to be resolved in directions along and transverse to the

element, the elongation in the truss element can be written in terms of the differences in the
displacements of its end points:

δ = (uj cos θ + vj sin θ)− (ui cos θ + vi sin θ)
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Figure 12: Individual truss element.

where u and v are the horizontal and vertical components of the deflections, respectively. (The
displacements at node i drawn in Fig. 12 are negative.) This relation can be written in matrix
form as:

δ =
[
−c −s c s

]



ui
vi
uj
vj




Here c = cos θ and s = sin θ.

Figure 13: Components of nodal force.

The axial force P that accompanies the elongation δ is given by Hooke’s law for linear elastic
bodies as P = (AE/L)δ. The horizontal and vertical nodal forces are shown in Fig. 13; these
can be written in terms of the total axial force as:




fxi
fyi
fxj
fyj



=




−c
−s
c

s



P =




−c
−s
c

s



AE

L
δ

=




−c
−s
c

s



AE

L

[
−c −s c s

]



ui
vi
uj
vj




Carrying out the matrix multiplication:




fxi
fyi
fxj
fyj



=
AE

L



c2 cs −c2 −cs
cs s2 −cs −s2

−c2 −cs c2 cs

−cs −s2 cs s2







ui
vi
uj
vj




(10)
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The quantity in brackets, multiplied by AE/L, is known as the “element stiffness matrix”
kij . Each of its terms has a physical significance, representing the contribution of one of the
displacements to one of the forces. The global system of equations is formed by combining the
element stiffness matrices from each truss element in turn, so their computation is central to the
method of matrix structural analysis. The principal difference between the matrix truss method
and the general finite element method is in how the element stiffness matrices are formed; most
of the other computer operations are the same.

Assembly of multiple element contributions

Figure 14: Element contributions to total nodal force.

The next step is to consider an assemblage of many truss elements connected by pin joints.
Each element meeting at a joint, or node, will contribute a force there as dictated by the
displacements of both that element’s nodes (see Fig. 14). To maintain static equilibrium, all
element force contributions f elemi at a given node must sum to the force f exti that is externally
applied at that node:

f exti =
∑
elem

f elemi = (
∑
elem

kelemij uj) = (
∑
elem

kelemij )uj = Kijuj

Each element stiffness matrix kelemij is added to the appropriate location of the overall, or “global”
stiffness matrix Kij that relates all of the truss displacements and forces. This process is called
“assembly.” The index numbers in the above relation must be the “global” numbers assigned
to the truss structure as a whole. However, it is generally convenient to compute the individual
element stiffness matrices using a local scheme, and then to have the computer convert to global
numbers when assembling the individual matrices.

Example 6

The assembly process is at the heart of the finite element method, and it is worthwhile to do a simple
case by hand to see how it really works. Consider the two-element truss problem of Fig. 7, with the
nodes being assigned arbitrary “global” numbers from 1 to 3. Since each node can in general move in
two directions, there are 3× 2 = 6 total degrees of freedom in the problem. The global stiffness matrix
will then be a 6 × 6 array relating the six displacements to the six externally applied forces. Only one
of the displacements is unknown in this case, since all but the vertical displacement of node 2 (degree of
freedom number 4) is constrained to be zero. Figure 15 shows a workable listing of the global numbers,
and also “local” numbers for each individual element.
Using the local numbers, the 4×4 element stiffness matrix of each of the two elements can be evaluated

according to Eqn. 10. The inclination angle is calculated from the nodal coordinates as

θ = tan−1
y2 − y1
x2 − x1

The resulting matrix for element 1 is:
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Figure 15: Global and local numbering for the two-element truss.

k(1) =



25.00 −43.30 −25.00 43.30
−43.30 75.00 43.30 −75.00
−25.00 43.30 25.00 −43.30
43.30 −75.00 −43.30 75.00


× 103

and for element 2:

k(2) =



25.00 43.30 −25.00 −43.30
43.30 75.00 −43.30 −75.00
−25.00 −43.30 25.00 43.30
−43.30 −75.00 43.30 75.00


× 103

(It is important the units be consistent; here lengths are in inches, forces in pounds, and moduli in psi.
The modulus of both elements is E = 10 Mpsi and both have area A = 0.1 in2.) These matrices have
rows and columns numbered from 1 to 4, corresponding to the local degrees of freedom of the element.
However, each of the local degrees of freedom can be matched to one of the global degrees of the overall
problem. By inspection of Fig. 15, we can form the following table that maps local to global numbers:

local global, global,
element 1 element 2

1 1 3
2 2 4
3 3 5
4 4 6

Using this table, we see for instance that the second degree of freedom for element 2 is the fourth degree
of freedom in the global numbering system, and the third local degree of freedom corresponds to the fifth
global degree of freedom. Hence the value in the second row and third column of the element stiffness

matrix of element 2, denoted k
(2)
23 , should be added into the position in the fourth row and fifth column

of the 6× 6 global stiffness matrix. We write this as

k
(2)
23 −→ K4,5

Each of the sixteen positions in the stiffness matrix of each of the two elements must be added into the
global matrix according to the mapping given by the table. This gives the result

K =




k
(1)
11 k

(1)
12 k

(1)
13 k

(1)
14 0 0

k
(1)
21 k

(1)
22 k

(1)
23 k

(1)
24 0 0

k
(1)
31 k

(1)
32 k

(1)
33 + k

(2)
11 k

(1)
34 + k

(2)
12 k

(2)
13 k

(2)
14

k
(1)
41 k

(1)
42 k

(1)
43 + k

(2)
21 k

(1)
44 + k

(2)
22 k

(2)
23 k

(2)
24

0 0 k
(2)
31 k

(2)
32 k

(2)
33 k

(2)
34

0 0 k
(2)
41 k

(2)
42 k

(2)
43 k

(2)
44




This matrix premultiplies the vector of nodal displacements according to Eqn. 9 to yield the vector of
externally applied nodal forces. The full system equations, taking into account the known forces and
displacements, are then
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103




25.0 −43.3 −25.0 43.3 0.0 0.00
−43.3 75.0 43.3 −75.0 0.0 0.00
−25.0 43.3 50.0 0.0 −25.0 −43.30
43.3 −75.0 0.0 150.0 −43.3 −75.00
0.0 0.0 −25.0 −43.3 25.0 43.30
0.0 0.0 −43.3 −75.0 43.3 75.00







0
0
0
u4
0
0



=




f1
f2
f3
−1732
f5
f5




Note that either the force or the displacement for each degree of freedom is known, with the accompanying
displacement or force being unknown. Here only one of the displacements (u4) is unknown, but in most
problems the unknown displacements far outnumber the unknown forces. Note also that only those
elements that are physically connected to a given node can contribute a force to that node. In most
cases, this results in the global stiffness matrix containing many zeroes corresponding to nodal pairs that
are not spanned by an element. Effective computer implementations will take advantage of the matrix
sparseness to conserve memory and reduce execution time.
In larger problems the matrix equations are solved for the unknown displacements and forces by

Gaussian reduction or other techniques. In this two-element problem, the solution for the single unknown
displacement can be written down almost from inspection. Multiplying out the fourth row of the system,
we have

0 + 0 + 0 + 150× 103u4 + 0 + 0 = −1732

u4 = −1732/150× 10
3 = −0.01155 in

Now any of the unknown forces can be obtained directly. Multiplying out the first row for instance gives

0 + 0 + 0 + (43.4)(−0.0115)× 103 + 0 + 0 = f1

f1 = −500 lb

The negative sign here indicates the horizontal force on global node #1 is to the left, opposite the direction
assumed in Fig. 15.

The process of cycling through each element to form the element stiffness matrix, assembling
the element matrix into the correct positions in the global matrix, solving the equations for
displacements and then back-multiplying to compute the forces, and printing the results can be
automated to make a very versatile computer code.
Larger-scale truss (and other) finite element analysis are best done with a dedicated com-

puter code, and an excellent one for learning the method is available from the web at www-
cse.ucsd.edu/users/atkinson/felt/. This code, named felt, was authored by Jason Gobat and
Darren Atkinson for educational use, and incorporates a number of novel features to promote
user-friendliness. Complete information describing this code, as well as the C-language source
and a number of trial runs and auxiliary code modules is available via their web pages. If you
have access to X-window workstations, a graphical shell named velvet is available as well.

Example 7

To illustrate how this code operates for a somewhat larger problem, consider the six-element truss of
Fig. 4, analyzed earlier both by the joint-at-a-time free body analysis approach and by Castigliano’s
method. The truss is redrawn in Fig. 16 by the velvet graphical interface.
The input dataset, which can be written manually or developed graphically in velvet, employs

parsing techniques to simplify what can be a very tedious and error-prone step in finite element analysis.
The dataset for this 6-element truss is:
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Figure 16: The six-element truss.

problem description

nodes=5 elements=6

nodes

1 x=0 y=100 z=0 constraint=pin

2 x=100 y=100 z=0 constraint=planar

3 x=200 y=100 z=0 force=P

4 x=0 y=0 z=0 constraint=pin

5 x=100 y=0 z=0 constraint=planar

truss elements

1 nodes=[1,2] material=steel

2 nodes=[2,3]

3 nodes=[4,2]

4 nodes=[2,5]

5 nodes=[5,3]

6 nodes=[4,5]

material properties

steel E=3e+07 A=0.5

distributed loads

constraints

free Tx=u Ty=u Tz=u Rx=u Ry=u Rz=u

pin Tx=c Ty=c Tz=c Rx=u Ry=u Rz=u

planar Tx=u Ty=u Tz=c Rx=u Ry=u Rz=u

forces

P Fy=-1000

end
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The meaning of these lines should be fairly evident on inspection, although the felt documentation
should be consulted for more detail. The output produced by felt for these data is:

** **

Nodal Displacements

-----------------------------------------------------------------------------

Node # DOF 1 DOF 2 DOF 3 DOF 4 DOF 5 DOF 6

-----------------------------------------------------------------------------

1 0 0 0 0 0 0

2 0.013333 -0.03219 0 0 0 0

3 0.02 -0.084379 0 0 0 0

4 0 0 0 0 0 0

5 -0.0066667 -0.038856 0 0 0 0

Element Stresses

-------------------------------------------------------------------------------

1: 4000

2: 2000

3: -2828.4

4: 2000

5: -2828.4

6: -2000

Reaction Forces

-----------------------------------

Node # DOF Reaction Force

-----------------------------------

1 Tx -2000

1 Ty 0

1 Tz 0

2 Tz 0

3 Tz 0

4 Tx 2000

4 Ty 1000

4 Tz 0

5 Tz 0

Material Usage Summary

--------------------------

Material: steel

Number: 6

Length: 682.8427

Mass: 0.0000

Total mass: 0.0000

Note that the vertical displacement of node 3 (the DOF 2 value) is -0.0844, the same value obtained
earlier in Example 3. Figure 17 shows the velvet graphical output for the truss deflections (greatly
magnified).

Problems

1. A rigid beam of length L rests on two supports that resist vertical motion, and is loaded
by a vertical force F a distance a from the left support. Draw a free body diagram for
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Figure 17: The 6-element truss in its original and deformed shape.

the beam, replacing the supports by the reaction forces R1 and R2 that they exert on the
beam. Solve for the reaction forces in terms of F , a, and L.

Prob. 1

2. A third support is added to the beam of the previous problem. Draw the free-body diagram
for this case, and write the equilibrium equations available to solve for the reaction forces
at each support. Is it possible to solve for all the reaction forces?

Prob. 2

3. The handles of a pair of pliers are sqeezed with a force F . Draw a free-body diagram for
one of the pliers’ arms. What is the force exerted on an object gripped between the pliers
faces?

4. An object of weight W is suspended from a frame as shown. What is the tension in the
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Prob. 3

restraining cable AB?

Prob. 4

5. (a) – (h) Determine the force in each element of the trusses drawn below.

6. (a) – (h) Using geometrical considerations, determine the deflection of the loading point
(the point at which the load is applied, in the direction of the load) for the trusses in
Prob. 5. All elements are constructed of 20 mm diameter round carbon steel rods.

7. (a) – (h) Same as Prob. 6, but using Castigliano’s theorem.

8. (a) – (h) Same as Prob. 6, but using finite element analysis.

9. Find the element forces and deflection at the loading point for the truss shown, using the
method of your own choice.

10. (a) – (c) Write out the global stiffness matrices for the trusses listed below, and solve for
the unknown forces and displacements.

11. Two truss elements of equal initial length L0 are connected horizontally. Assuming the
elements remain linearly elastic at all strains, determine the downward deflection y as a
function of a load F applied transversely to the joint.
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Prob. 5

Prob. 9

Prob. 10

Prob. 11
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Introduction

A good deal of the Mechanics of Materials can be introduced entirely within the confines of
uniaxially stressed structural elements, and this was the goal of the previous modules. But of
course the real world is three-dimensional, and we need to extend these concepts accordingly.
We now take the next step, and consider those structures in which the loading is still simple, but
where the stresses and strains now require a second dimension for their description. Both for
their value in demonstrating two-dimensional effects and also for their practical use in mechanical
design, we turn to a slightly more complicated structural type: the thin-walled pressure vessel.

Structures such as pipes or bottles capable of holding internal pressure have been very
important in the history of science and technology. Although the ancient Romans had developed
municipal engineering to a high order in many ways, the very need for their impressive system
of large aqueducts for carrying water was due to their not yet having pipes that could maintain
internal pressure. Water can flow uphill when driven by the hydraulic pressure of the reservoir
at a higher elevation, but without a pressure-containing pipe an aqueduct must be constructed
so the water can run downhill all the way from the reservoir to the destination.

Airplane cabins are another familiar example of pressure-containing structures. They illus-
trate very dramatically the importance of proper design, since the atmosphere in the cabin has
enough energy associated with its relative pressurization compared to the thin air outside that
catastrophic crack growth is a real possibility. A number of fatal commercial tragedies have
resulted from this, particularly famous ones being the Comet aircraft that disintegrated in flight
in the 1950’s1 and the loss of a 5-meter section of the roof in the first-class section of an Aloha
Airlines B737 in April 19882

In the sections to follow, we will outline the means of determining stresses and deformations
in structures such as these, since this is a vital first step in designing against failure.

Stresses

In two dimensions, the state of stress at a point is conveniently illustrated by drawing four
perpendicular lines that we can view as representing four adjacent planes of atoms taken from
an arbitrary position within the material. The planes on this “stress square” shown in Fig. 1 can
be identified by the orientations of their normals; the upper horizontal plane is a +y plane, since

1T. Bishop, “Fatigue and the Comet Disasters,” Metal Progress, Vol. 67, pp. 79–85, May 1955.
2E.E. Murphy, “Aging Aircraft: Too Old to Fly?” IEEE Spectrum, pp. 28–31, June 1989.
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its normal points in the +y direction. The vertical plane on the right is a +x plane. Similarly,
the left vertical and lower horizontal planes are −y and −x, respectively.

Figure 1: State of stress in two dimensions: the stress square.

The sign convention in common use regards tensile stresses as positive and compressive
stresses as negative. A positive tensile stress acting in the x direction is drawn on the +x face
as an arrow pointed in the +x direction. But for the stress square to be in equilibrium, this
arrow must be balanced by another acting on the −x face and pointed in the −x direction. Of
course, these are not two separate stresses, but simply indicate the stress state is one of uniaxial
tension. A positive stress is therefore indicated by a + arrow on a + face, or a − arrow on a −
face. Compressive stresses are the reverse: a − arrow on a + face or a + arrow on a − face. A
stress state with both positive and negative components is shown in Fig. 2.

Figure 2: The sign convention for normal stresses.

Consider now a simple spherical vessel of radius r and wall thickness b, such as a round
balloon. An internal pressure p induces equal biaxial tangential tensile stresses in the walls,
which can be denoted using spherical rθφ coordinates as σθ and σφ.

Figure 3: Wall stresses in a spherical pressure vessel.

The magnitude of these stresses can be determined by considering a free body diagram of
half the pressure vessel, including its pressurized internal fluid (see Fig. 3). The fluid itself is
assumed to have negligible weight. The internal pressure generates a force of pA = p(πr2) acting
on the fluid, which is balanced by the force obtained by multiplying the wall stress times its
area, σφ(2πrb). Equating these:

p(πr2) = σφ(2πrb)
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σφ =
pr

2b
(1)

Note that this is a statically determined result, with no dependence on the material properties.
Further, note that the stresses in any two orthogonal circumferential directions are the same;
i.e. σφ = σθ.

The accuracy of this result depends on the vessel being “thin-walled,” i.e. r � b. At the
surfaces of the vessel wall, a radial stress σr must be present to balance the pressure there. But
the inner-surface radial stress is equal to p, while the circumferential stresses are p times the
ratio (r/2b). When this ratio is large, the radial stresses can be neglected in comparison with
the circumferential stresses.

Figure 4: Free-body diagram for axial stress in a closed-end vessel.

The stresses σz in the axial direction of a cylindrical pressure vessel with closed ends are
found using this same approach as seen in Fig. 4, and yielding the same answer:

p(πr2) = σz(2πr)b

σz =
pr

2b
(2)

Figure 5: Hoop stresses in a cylindrical pressure vessel.

However, a different view is needed to obtain the circumferential or “hoop” stresses σθ.
Considering an axial section of unit length, the force balance for Fig. 5 gives

2σθ(b · 1) = p(2r · 1)

σθ =
pr

b
(3)

Note the hoop stresses are twice the axial stresses. This result — different stresses in differ-
ent directions — occurs more often than not in engineering structures, and shows one of the
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compelling advantages for engineered materials that can be made stronger in one direction than
another (the property of anisotropy). If a pressure vessel constructed of conventional isotropic
material is made thick enough to keep the hoop stresses below yield, it will be twice as strong
as it needs to be in the axial direction. In applications placing a premium on weight this may
well be something to avoid.

Example 1

Figure 6: Filament-wound cylindrical pressure vessel.

Consider a cylindrical pressure vessel to be constructed by filament winding, in which fibers are laid
down at a prescribed helical angle α (see Fig. 6). Taking a free body of unit axial dimension along which
n fibers transmitting tension T are present, the circumferential distance cut by these same n fibers is
then tanα. To balance the hoop and axial stresses, the fiber tensions must satisfy the relations

hoop : nT sinα =
pr

b
(1)(b)

axial : nT cosα =
pr

2b
(tanα)(b)

Dividing the first of these expressions by the second and rearranging, we have

tan2 α = 2, α = 54.7◦

This is the “magic angle” for filament wound vessels, at which the fibers are inclined just enough to-

ward the circumferential direction to make the vessel twice as strong circumferentially as it is axially.

Firefighting hoses are also braided at this same angle, since otherwise the nozzle would jump forward or

backward when the valve is opened and the fibers try to align themselves along the correct direction.

Deformation: the Poisson effect

When a pressure vessel has open ends, such as with a pipe connecting one chamber with another,
there will be no axial stress since there are no end caps for the fluid to push against. Then only
the hoop stress σθ = pr/b exists, and the corresponding hoop strain is given by Hooke’s Law as:

εθ =
σθ
E

=
pr

bE

Since this strain is the change in circumference δC divided by the original circumference C = 2πr
we can write:

δC = Cεθ = 2πr
pr

bE
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The change in circumference and the corresponding change in radius δr are related by δr =
δC/2π, so the radial expansion is:

δr =
pr2

bE
(4)

This is analogous to the expression δ = PL/AE for the elongation of a uniaxial tensile specimen.

Example 2

Consider a compound cylinder, one having a cylinder of brass fitted snugly inside another of steel as
shown in Fig. 7 and subjected to an internal pressure of p = 2 MPa.

Figure 7: A compound pressure vessel.

When the pressure is put inside the inner cylinder, it will naturally try to expand. But the outer
cylinder pushes back so as to limit this expansion, and a “contact pressure” pc develops at the interface
between the two cylinders. The inner cylinder now expands according to the difference p − pc, while
the outer cylinder expands as demanded by pc alone. But since the two cylinders are obviously going to
remain in contact, it should be clear that the radial expansions of the inner and outer cylinders must be
the same, and we can write

δb = δs −→
(p− pc)r

2
b

Ebbb
=

pcr
2
s

Esbs

where the a and s subscripts refer to the brass and steel cylinders respectively.
Substituting numerical values and solving for the unknown contact pressure pc:

pc = 976 KPa

Now knowing pc, we can calculate the radial expansions and the stresses if desired. For instance, the
hoop stress in the inner brass cylinder is

σθ,b =
(p− pc)rb

bb
= 62.5 MPa (= 906 psi)

Note that the stress is no longer independent of the material properties (Eb and Es), depending as it

does on the contact pressure pc which in turn depends on the material stiffnesses. This loss of statical

determinacy occurs here because the problem has a mixture of some load boundary values (the internal

pressure) and some displacement boundary values (the constraint that both cylinders have the same

radial displacement.)

If a cylindrical vessel has closed ends, both axial and hoop stresses appear together, as given
by Eqns. 2 and 3. Now the deformations are somewhat subtle, since a positive (tensile) strain
in one direction will also contribute a negative (compressive) strain in the other direction, just
as stretching a rubber band to make it longer in one direction makes it thinner in the other
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directions (see Fig. 8). This lateral contraction accompanying a longitudinal extension is called
the Poisson effect,3 and the Poisson’s ratio is a material property defined as

ν =
−εlateral
εlongitudinal

(5)

where the minus sign accounts for the sign change between the lateral and longitudinal strains.
The stress-strain, or “constitutive,” law of the material must be extended to include these effects,
since the strain in any given direction is influenced by not only the stress in that direction, but
also by the Poisson strains contributed by the stresses in the other two directions.

Figure 8: The Poisson effect.

A material subjected only to a stress σx in the x direction will experience a strain in that
direction given by εx = σx/E. A stress σy acting alone in the y direction will induce an x-
direction strain given from the definition of Poisson’s ratio of εx = −νεy = −ν(σy/E). If the
material is subjected to both stresses σx and σy at once, the effects can be superimposed (since
the governing equations are linear) to give:

εx =
σx
E
−
νσy
E

=
1

E
(σx − νσy) (6)

Similarly for a strain in the y direction:

εy =
σy
E
−
νσx
E

=
1

E
(σy − νσx) (7)

The material is in a state of plane stress if no stress components act in the third dimension
(the z direction, here). This occurs commonly in thin sheets loaded in their plane. The z

components of stress vanish at the surfaces because there are no forces acting externally in that
direction to balance them, and these components do not have sufficient specimen distance in the
thin through-thickness dimension to build up to appreciable levels. However, a state of plane
stress is not a state of plane strain. The sheet will experience a strain in the z direction equal
to the Poisson strain contributed by the x and y stresses:

εz = −
ν

E
(σx + σy) (8)

In the case of a closed-end cylindrical pressure vessels, Eqn. 6 or 7 can be used directly to
give the hoop strain as

εθ =
1

E
(σθ − νσz) =

1

E

(
pr

b
− ν

pr

2b

)

3After the French mathematician Simeon Denis Poisson, (1781–1840).

6



=
pr

bE

(
1−

ν

2

)

The radial expansion is then

δr = rεθ =
pr2

bE

(
1−

ν

2

)
(9)

Note that the radial expansion is reduced by the Poisson term; the axial deformation contributes
a shortening in the radial direction.

Example 3

It is common to build pressure vessels by using bolts to hold end plates on an open-ended cylinder, as
shown in Fig. 9. Here let’s say for example the cylinder is made of copper alloy, with radius R = 5′′,
length L = 10′′ and wall thickness bc = 0.1′′. Rigid plates are clamped to the ends by nuts threaded on
four 3/8′′ diameter steel bolts, each having 15 threads per inch. Each of the nuts is given an additional
1/2 turn beyond the just-snug point, and we wish to estimate the internal pressure that will just cause
incipient leakage from the vessel.

Figure 9: A bolt-clamped pressure vessel.

As pressure p inside the cylinder increases, a force F = p(πR2) is exerted on the end plates, and this
is reacted equally by the four restraining bolts; each thus feels a force Fb given by

Fb =
p(πR2)

4

The bolts then stretch by an amount δb given by:

δb =
FbL

AbEb

It’s tempting to say that the vessel will start to leak when the bolts have stretched by an amount equal to
the original tightening; i.e. 1/2 turn/15 turns per inch. But as p increases, the cylinder itself is deforming
as well; it experiences a radial expansion according to Eqn. 4. The radial expansion by itself doesn’t
cause leakage, but it is accompanied by a Poisson contraction δc in the axial direction. This means the
bolts don’t have to stretch as far before the restraining plates are lifted clear. (Just as leakage begins, the
plates are no longer pushing on the cylinder, so the axial loading of the plates on the cylinder becomes
zero and is not needed in the analysis.)
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The relations governing leakage, in addition to the above expressions for δb and Fb are therefore:

δb + δc =
1

2
×

1

15

where here the subscripts b and c refer to the bolts and the cylinder respectively. The axial deformation
δc of the cylinder is just L times the axial strain εz, which in turn is given by an expression analogous to
Eqn. 7:

δc = εzL =
L

Ec
[σz − νσθ]

Since σz becomes zero just as the plate lifts off and σθ = pR/bc, this becomes

δc =
L

Ec

νpR

bc

Combining the above relations and solving for p, we have

p =
2AbEbEcbc

15RL (π REcbc + 4 ν AbEb)

On substituting the geometrical and materials numerical values, this gives

p = 496 psi

The Poisson’s ratio is a dimensionless parameter that provides a good deal of insight into
the nature of the material. The major classes of engineered structural materials fall neatly into
order when ranked by Poisson’s ratio:

Material Poisson’s
Class Ratio ν

Ceramics 0.2
Metals 0.3
Plastics 0.4
Rubber 0.5

(The values here are approximate.) It will be noted that the most brittle materials have the
lowest Poisson’s ratio, and that the materials appear to become generally more flexible as the
Poisson’s ratio increases. The ability of a material to contract laterally as it is extended longi-
tudinally is related directly to its molecular mobility, with rubber being liquid-like and ceramics
being very tightly bonded.

The Poisson’s ratio is also related to the compressibility of the material. The bulk modulus
K, also called the modulus of compressibility, is the ratio of the hydrostatic pressure p needed
for a unit relative decrease in volume ∆V/V :

K =
−p

∆V/V
(10)

where the minus sign indicates that a compressive pressure (traditionally considered positive)
produces a negative volume change. It can be shown that for isotropic materials the bulk
modulus is related to the elastic modulus and the Poisson’s ratio as

K =
E

3(1 − 2ν)
(11)
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This expression becomes unbounded as ν approaches 0.5, so that rubber is essentially incom-
pressible. Further, ν cannot be larger than 0.5, since that would mean volume would increase on
the application of positive pressure. A ceramic at the lower end of Poisson’s ratios, by contrast,
is so tightly bonded that it is unable to rearrange itself to “fill the holes” that are created when
a specimen is pulled in tension; it has no choice but to suffer a volume increase. Paradoxically,
the tightly bonded ceramics have lower bulk moduli than the very mobile elastomers.

Problems

1. A closed-end cylindrical pressure vessel constructed of carbon steel has a wall thickness of
0.075′′, a diameter of 6′′, and a length of 30′′. What are the hoop and axial stresses σθ, σz
when the cylinder carries an internal pressure of 1500 psi? What is the radial displacement
δr?

2. What will be the safe pressure of the cylinder in the previous problem, using a factor of
safety of two?

3. A compound pressure vessel with dimensions as shown is constructed of an aluminum inner
layer and a carbon-overwrapped outer layer. Determine the circumferential stresses (σθ)
in the two layers when the internal pressure is 15 MPa. The modulus of the graphite layer
in the circumferential direction is 15.5 GPa.

Prob. 3

4. A copper cylinder is fitted snugly inside a steel one as shown. What is the contact pressure
generated between the two cylinders if the temperature is increased by 10◦C? What if the
copper cylinder is on the outside?

Prob. 4

5. Three cylinders are fitted together to make a compound pressure vessel. The inner cylinder
is of carbon steel with a thickness of 2 mm, the central cylinder is of copper alloy with
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a thickness of 4 mm, and the outer cylinder is of aluminum with a thickness of 2 mm.
The inside radius of the inner cylinder is 300 mm, and the internal pressure is 1.4 MPa.
Determine the radial displacement and circumfrential stress in the inner cylinder.

6. A pressure vessel is constructed with an open-ended steel cylinder of diameter 6′′, length
8′′, and wall thickness 0.375′′. The ends are sealed with rigid end plates held by four
1/4′′ diameter bolts. The bolts have 18 threads per inch, and the retaining nuts have
been tightened 1/4 turn beyond their just-snug point before pressure is applied. Find the
internal pressure that will just cause incipient leakage from the vessel.

7. An aluminum cylinder, with 1.5′′ inside radius and thickness 0.1′′, is to be fitted inside a
steel cylinder of thickness 0.25′′. The inner radius of the steel cylinder is 0.005′′ smaller
than the outer radius of the aluminum cylinder; this is called an interference fit. In order
to fit the two cylinders together initially, the inner cylinder is shrunk by cooling. By
how much should the temperature of the aluminum cylinder be lowered in order to fit
it inside the steel cylinder? Once the assembled compound cylinder has warmed to room
temperature, how much contact pressure is developed between the aluminum and the steel?

8. Assuming the material in a spherical rubber balloon can be modeled as linearly elastic
with modulus E and Poisson’s ratio ν = 0.5, show that the internal pressure p needed to
expand the balloon varies with the radial expansion ratio λr = r/r0 as

pr0
4Eb0

=
1

λ2r
−

1

λ3r

where b0 is the initial wall thickness. Plot this function and determine its critical values.

9. Repeat the previous problem, but using the constitutive relation for rubber:

tσx =
E

3

(
λ2x −

1

λ2xλ
2
y

)

10. What pressure is needed to expand a balloon, initially 3′′ in diameter and with a wall
thickness of 0.1′′, to a diameter of 30′′? The balloon is constructed of a rubber with
a specific gravity of 0.9 and a molecular weight between crosslinks of 3000 g/mol. The
temperature is 20◦.

11. After the balloon of the previous problem has been inflated, the temperature is increased
by 25C. How do the pressure and radius change?
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SHEAR AND TORSION
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Cambridge, MA 02139
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Introduction

Torsionally loaded shafts are among the most commonly used structures in engineering. For
instance, the drive shaft of a standard rear-wheel drive automobile, depicted in Fig. 1, serves
primarily to transmit torsion. These shafts are almost always hollow and circular in cross
section, transmitting power from the transmission to the differential joint at which the rotation
is diverted to the drive wheels. As in the case of pressure vessels, it is important to be aware
of design methods for such structures purely for their inherent usefulness. However, we study
them here also because they illustrate the role of shearing stresses and strains.

Figure 1: A drive shaft.

Shearing stresses and strains

Not all deformation is elongational or compressive, and we need to extend our concept of strain
to include “shearing,” or “distortional,” effects. To illustrate the nature of shearing distortions,
first consider a square grid inscribed on a tensile specimen as depicted in Fig. 2(a). Upon
uniaxial loading, the grid would be deformed so as to increase the length of the lines in the
tensile loading direction and contract the lines perpendicular to the loading direction. However,
the lines remain perpendicular to one another. These are termed normal strains, since planes
normal to the loading direction are moving apart.
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Figure 2: (a) Normal and (b) shearing deformations.

Now consider the case illustrated in Fig. 2(b), in which the load P is applied transversely to
the specimen. Here the horizontal lines tend to slide relative to one another, with line lengths
of the originally square grid remaining unchanged. The vertical lines tilt to accommodate this
motion, so the originally right angles between the lines are distorted. Such a loading is termed
direct shear. Analogously to our definition of normal stress as force per unit area1, or σ = P/A,
we write the shear stress τ as

τ =
P

A

This expression is identical to the expression for normal stress, but the different symbol τ reminds
us that the loading is transverse rather than extensional.

Example 1

Figure 3: Tongue-and-groove adhesive joint.

Two timbers, of cross-sectional dimension b × h, are to be glued together using a tongue-and-groove
joint as shown in Fig. 3, and we wish to estimate the depth d of the glue joint so as to make the joint
approximately as strong as the timber itself.
The axial load P on the timber acts to shear the glue joint, and the shear stress in the joint is just

the load divided by the total glue area:

τ =
P

2bd

If the bond fails when τ reaches a maximum value τf , the load at failure will be Pf = (2bd)τf . The load
needed to fracture the timber in tension is Pf = bhσf , where σf is the ultimate tensile strength of the
timber. Hence if the glue joint and the timber are to be equally strong we have

(2bd)τf = bhσf → d =
hσf

2τf

1See Module 1, Introduction to Elastic Response
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Normal stresses act to pull parallel planes within the material apart or push them closer
together, while shear stresses act to slide planes along one another. Normal stresses promote
crack formation and growth, while shear stresses underlie yield and plastic slip. The shear stress
can be depicted on the stress square as shown in Fig. 4(a); it is traditional to use a half-arrowhead
to distinguish shear stress from normal stress. The yx subscript indicates the stress is on the y
plane in the x direction.

Figure 4: Shear stress.

The τyx arrow on the +y plane must be accompanied by one in the opposite direction on
the −y plane, in order to maintain horizontal equilibrium. But these two arrows by themselves
would tend to cause a clockwise rotation, and to maintain moment equilibrium we must also add
two vertical arrows as shown in Fig. 4(b); these are labeled τxy, since they are on x planes in the
y direction. For rotational equilibrium, the magnitudes of the horizontal and vertical stresses
must be equal:

τyx = τxy (1)

Hence any shearing that tends to cause tangential sliding of horizontal planes is accompanied
by an equal tendency to slide vertical planes as well. Note that all of these are positive by our
earlier convention of + arrows on + faces being positive. A positive state of shear stress, then,
has arrows meeting at the upper right and lower left of the stress square. Conversely, arrows in
a negative state of shear meet at the lower right and upper left.

Figure 5: Shear strain.

The strain accompanying the shear stress τxy is a shear strain denoted γxy. This quantity
is a deformation per unit length just as was the normal strain ε, but now the displacement is
transverse to the length over which it is distributed (see Fig. 5). This is also the distortion or
change in the right angle:

δ

L
= tan γ ≈ γ (2)

This angular distortion is found experimentally to be linearly proportional to the shear stress
at sufficiently small loads, and the shearing counterpart of Hooke’s Law can be written as

τxy = Gγxy (3)
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where G is a material property called the shear modulus. for isotropic materials (properties same
in all directions), there is no Poisson-type effect to consider in shear, so that the shear strain
is not influenced by the presence of normal stresses. Similarly, application of a shearing stress
has no influence on the normal strains. For plane stress situations (no normal or shearing stress
components in the z direction), the constitutive equations as developed so far can be written:

εx =
1
E (σx − νσy)

εy =
1
E (σy − νσx)
γxy =

1
Gτxy

(4)

It will be shown later that for isotropic materials, only two of the material constants here are
independent, and that

G =
E

2(1 + ν)
(5)

Hence if any two of the three properties E, G, or ν, are known, the other is determined.

Statics - Twisting Moments

Twisting moments, or torques, are forces acting through distances (“lever arms”) so as to pro-
mote rotation. The simple example is that of using a wrench to tighten a nut on a bolt as shown
in Fig. 6: if the bolt, wrench, and force are all perpendicular to one another, the moment is
just the force F times the length l of the wrench: T = F · l. This relation will suffice when the
geometry of torsional loading is simple as in this case, when the torque is applied “straight”.

Figure 6: Simple torque: T = F × l.

Often, however, the geometry of the applied moment is a bit more complicated. Consider a
not-uncommon case where for instance a spark plug must be loosened and there just isn’t room
to put a wrench on it properly. Here a swiveled socket wrench might be needed, which can result
in the lever arm not being perpendicular to the spark plug axis, and the applied force (from
your hand) not being perpendicular to the lever arm. Vector algebra can make the geometrical
calculations easier in such cases. Here the moment vector around a point O is obtained by
crossing the vector representation of the lever arm r from O with the force vector F:

T = r×F (6)

This vector is in a direction given by the right hand rule, and is normal to the plane containing
the point O and the force vector. The torque tending to loosen the spark plug is then the
component of this moment vector along the plug axis:
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T = i · (r× F) (7)

where i is a unit vector along the axis. The result, a torque or twisting moment around an axis,
is a scalar quantity.

Example 2

Figure 7: Working on your good old car - trying to get the spark plug out.

We wish to find the effective twisting moment on a spark plug, where the force applied to a swivel wrench
that is skewed away from the plug axis as shown in Fig. 7. An x′y′z′ Cartesian coordinate system is
established with z′ being the spark plug axis; the free end of the wrench is 2′′ above the x′y′ plane
perpendicular to the plug axis, and 12′′ away from the plug along the x′ axis. A 15 lb force is applied to
the free end at a skewed angle of 25◦ vertical and 20◦ horizontal.
The force vector applied to the free end of the wrench is

F = 15(cos 25 sin 20 i+ cos 25 cos 20 j+ sin 25k)

The vector from the axis of rotation to the applied force is

r = 12 i+ 0 j+ 2k

where i, j, k, are the unit vectors along the x, y, z axes. The moment vector around the point O is then

TO = r× F = (−25.55i− 66.77j+ 153.3k)

and the scalar moment along the axis z′ is

Tz′ = k · (r× F) = 153.3 in− lb

This is the torque that will loosen the spark plug, if you’re luckier than I am with cars.

Shafts in torsion are used in almost all rotating machinery, as in our earlier example of a
drive shaft transmitting the torque of an automobile engine to the wheels. When the car is
operating at constant speed (not accelerating), the torque on a shaft is related to its rotational
speed ω and the power W being transmitted:

W = T ω (8)

5



Geared transmissions are usually necessary to keep the engine speed in reasonable bounds
as the car speeds up, and the gearing must be considered in determining the torques applied to
the shafts.

Example 3

Figure 8: Two-gear assembly.

Consider a simple two-shaft gearing as shown in Fig. 8, with one end of shaft A clamped and the free end
of shaft B loaded with a moment T . Drawing free-body diagrams for the two shafts separately, we see
the force F transmitted at the gear periphery is just that which keeps shaft B in rotational equilibrium:

F · rB = T

This same force acts on the periphery of gear A, so the torque TA experienced by shaft A is

TA = F · rA = T ·
rA

rB

Torsional Stresses and Displacements

Figure 9: Poker-chip visualization of torsional deformation.

The stresses and deformations induced in a circular shaft by a twisting moment can be
found by what is sometimes called the direct method of stress analysis. Here an expression of
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the geometrical form of displacement in the structure is proposed, after which the kinematic,
constitutive, and equilibrium equations are applied sequentially to develop expressions for the
strains and stresses. In the case of simple twisting of a circular shaft, the geometric statement is
simply that the circular symmetry of the shaft is maintained, which implies in turn that plane
cross sections remain plane, without warping. As depicted in Fig. 9, the deformation is like a
stack of poker chips that rotate relative to one another while remaining flat. The sequence of
direct analysis then takes the following form:

1. Geometrical statement: To quantify the geometry of deformation, consider an increment
of length dz from the shaft as seen in Fig. 10, in which the top rotates relative to the
bottom by an increment of angle dθ. The relative tangential displacement of the top of a
vertical line drawn at a distance r from the center is then:

δ = r dθ (9)

Figure 10: Incremental deformation in torsion.

2. Kinematic or strain-displacement equation: The geometry of deformation fits exactly our
earlier description of shear strain, so we can write:

γzθ =
δ

dz
= r
dθ

dz
(10)

The subscript indicates a shearing of the z plane (the plane normal to the z axis) in the
θ direction. As with the shear stresses, γzθ = γθz, so the order of subscripts is arbitrary.

3. Constitutive equation: If the material is in its linear elastic regime, the shear stress is given
directly from Hooke’s Law as:

τθz = Gγθz = Gr
dθ

dz
(11)

The sign convention here is that positive twisting moments (moment vector along the +z
axis) produce positive shear stresses and strains. However, it is probably easier simply to
intuit in which direction the applied moment will tend to slip adjacent horizontal planes.
Here the upper (+z) plane is clearly being twisted to the right relative to the lower (−z)
plane, so the upper arrow points to the right. The other three arrows are then determined
as well.

7



4. Equilibrium equation: In order to maintain rotational equilibrium, the sum of the moments
contributed by the shear stress acting on each differential area dA on the cross section must
balance the applied moment T as shown in Fig. 11:

T =

∫
A
τθzr dA =

∫
A
Gr
dθ

dz
r dA = G

dθ

dz

∫
A
r2 dA

Figure 11: Torque balance.

The quantity
∫
r2 dA is the polar moment of inertia J , which for a hollow circular cross

section is calculated as

J =

∫ Ro
Ri

r2 2πr dr =
π(R4o −R

4
i )

2
(12)

where Ri and Ro are the inside and outside radii. For solid shafts, Ri = 0. The quantity
dθ/dz can now be found as

dθ

dz
=
T

GJ
→ θ =

∫
z

T

JG
dz

Since in the simple twisting case under consideration the quantities T, J,G are constant
along z, the angle of twist can be written as

dθ

dz
= constant =

θ

L

θ =
TL

GJ
(13)

This is analogous to the expression δ = PL/AE for the elongation of a uniaxial tensile
specimen.

5. An explicit formula for the stress can be obtained by using this in Eqn. 11:

τθz = Gr
dθ

dz
= Gr

θ

L
=
Gr

L

TL

GJ

τθz =
Tr

J
(14)
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Note that the material property G has canceled from this final expression for stress, so
that the the stresses are independent of the choice of material. Earlier, we have noted that
stresses are independent of materials properties in certain pressure vessels and truss elements,
and this was due to those structures being statically determinate. The shaft in torsion is not
statically indeterminate, however; we had to use geometrical considerations and a statement of
material linear elastic response as well as static equilibrium in obtaining the result. Since the
material properties do not appear in the resulting equation for stress, it is easy to forget that
the derivation depended on geometrical and material linearity. It is always important to keep in
mind the assumptions used in derivations such as this, and be on guard against using the result
in instances for which the assumptions are not justified.
For instance, we might twist a shaft until it breaks at a final torque of T = Tf , and then use

Eqn. 14 to compute an apparent ultimate shear strength: τf = Tfr/J . However, the material
may very well have been stressed beyond its elastic limit in this test, and the assumption of
material linearity may not have been valid at failure. The resulting value of τf obtained from
the elastic analysis is therefore fictitious unless proven otherwise, and could be substantially
different than the actual stress. The fictitious value might be used, however, to estimate failure
torques in shafts of the same material but of different sizes, since the actual failure stress would
scale with the fictitious stress in that case. The fictitious failure stress calculated using the
elastic analysis is often called the modulus of rupture in torsion.
Eqn. 14 shows one reason why most drive shafts are hollow, since there isn’t much point in

using material at the center where the stresses are zero. Also, for a given quantity of material
the designer will want to maximize the moment of inertia by placing the material as far from
the center as possible. This is a powerful tool, since J varies as the fourth power of the radius.

Example 4

An automobile engine is delivering 100 hp (horsepower) at 1800 rpm (revolutions per minute) to the
drive shaft, and we wish to compute the shearing stress. From Eqn. 8, the torque on the shaft is

T =
W

ω
=
100 hp

(
1

1.341×10−3

)
N·m
s·hp

1800 revmin2π
rad
rev

(
1
60

)
min
s

= 396 N ·m

The present drive shaft is a solid rod with a circular cross section and a diameter of d = 10 mm.
Using Eqn. 14, the maximum stress occurs at the outer surface of the rod as is

τθz =
Tr

J
, r = d/2, J = π(d/2)4/2

τθz = 252 MPa

Now consider what the shear stress would be if the shaft were made annular rather than solid, keeping
the amount of material the same. The outer-surface shear stress for an annular shaft with outer radius
ro and inner radius ri is

τθz =
Tro

J
, J =

π

2

(
r4o − r

4
i

)
To keep the amount of material in the annular shaft the same as in the solid one, the cross-sectional

areas must be the same. Since the cross-sectional area of the solid shaft is A0 = πr
2, the inner radius ri

of an annular shaft with outer radius ro and area A0 is found as

A0 = π
(
r2o − r

2
i

)
→ ri =

√
r2o − (A0/π)
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Evaluating these equations using the same torque and with ro = 30 mm, we find ri = 28.2 mm (a 1.8

mm wall thickness) and a stress of τθz = 44.5 MPa. This is an 82% reduction in stress. The value of r

in the elastic shear stress formula went up when we went to the annular rather than solid shaft, but this

was more than offset by the increase in moment of inertia J , which varies as r4.

Example 5

Figure 12: Rotations in the two-gear assembly.

Just as with trusses, the angular displacements in systems of torsion rods may be found from direct
geometrical considerations. In the case of the two-rod geared system described earlier, the angle of twist
of rod A is

θA =

(
L

GJ

)
A

TA =

(
L

GJ

)
A

T ·
rA

rB

This rotation will be experienced by gear A as well, so a point on its periphery will sweep through an arc
S of

S = θArA =

(
L

GJ

)
A

T ·
rA

rB
· rA

Since gears A and B are connected at their peripheries, gear B will rotate through an angle of

θgearB =
S

rB
=

(
L

GJ

)
A

T ·
rA

rB
·
rA

rB

(See Fig. 11). Finally, the total angular displacement at the end of rod B is the rotation of gear B plus
the twist of rod B itself:

θ = θgearB + θrodB =

(
L

GJ

)
A

T

(
rA

rB

)2
+

(
L

GJ

)
B

T
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Energy method for rotational displacement

The angular deformation may also be found using Castigliano’s Theorem2, and in some problems
this approach may be easier. The strain energy per unit volume in a material subjected to elastic
shearing stresses τ and strains γ arising from simple torsion is:

U∗ =

∫
τ dγ =

1

2
τγ =

τ2

2G
=
1

2G

(
Tr

J

)2

This is then integrated over the specimen volume to obtain the total energy:

U =

∫
V
U∗ dV =

∫
L

∫
A

1

2G

(
Tr

J

)2
dAdz =

∫
L

T 2

2GJ2

∫
A
r2 dA

U =

∫
L

T 2

2GJ
dz (15)

If T , G, and J are constant along the length z, this becomes simply

U =
T 2L

2GJ
(16)

which is analogous to the expression U = P 2L/2AE for tensile specimens.
In torsion, the angle θ is the generalized displacement congruent to the applied moment T ,

so Castigliano’s theorem is applied for a single torsion rod as

θ =
∂U

∂T
=
TL

GJ

as before.

Example 6

Consider the two shafts geared together discussed earlier (Fig. 11). The energy method requires no
geometrical reasoning, and follows immediately once the torques transmitted by the two shafts is known.
Since the torques are constant along the lengths, we can write

U =
∑
i

(
T 2L

2GJ

)
i

=

(
L

2GJ

)
A

(
T
rA

rB

)2
+

(
L

2GJ

)
B

T 2

θ =
∂U

∂T
=

(
L

GJ

)
A

(
T ·
rA

rB

)(
rA

rB

)
+

(
L

GJ

)
B

T

Noncircular sections: the Prandtl membrane analogy

Shafts with noncircular sections are not uncommon. Although a circular shape is optimal from
a stress analysis view, square or prismatic shafts may be easier to produce. Also, round shafts
often have keyways or other geometrical features needed in order to join them to gears. All
of this makes it necessary to be able to cope with noncircular sections. We will outline one
means of doing this here, partly for its inherent usefulness and partly to introduce a type of

2Castigliano’s Theorem is introduced in the Module 5, Trusses.
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experimental stress analysis. Later modules will expand on these methods, and will present a
more complete treatment of the underlying mathematical theory.
The lack of axial symmetry in noncircular sections renders the direct approach that led to

Eqn. 14 invalid, and a thorough treatment must attack the differential governing equations of
the problem mathematically. These equations will be discussed in later modules, but suffice it
to say that they can be difficult to solve in closed form for arbitrarily shaped cross sections. The
advent of finite element and other computer methods to solve these equations numerically has
removed this difficulty to some degree, but one important limitation of numerical solutions is
that they usually fail to provide intuitive insight as to why the stress distributions are the way
they are: they fail to provide hints as to how the stresses might be modified favorably by design
changes, and this intuition is one of the designer’s most important tools.
In an elegant insight, Prandtl3 pointed out that the stress distribution in torsion can be

described by a “Poisson” differential equation, identical in form to that describing the deflection
of a flexible membrane supported and pressurized from below4. This provides the basis of the
Prandtl membrane analogy, which was used for many years to provide a form of experimen-
tal stress analysis for noncircular shafts in torsion. Although this experimental use has been
supplanted by the more convenient computer methods, the analogy provides a visualization of
torsionally induced stresses that can provide the sort of design insight we seek.
The analogy works such that the shear stresses in a torsionally loaded shaft of arbitrary cross

section are proportional to the slope of a suitably inflated flexible membrane. The membrane
is clamped so that its edges follow a shape similar to that of the noncircular section, and then
displaced by air pressure. Visualize a horizontal sheet of metal with a circular hole in it, a sheet
of rubber placed below the hole, and the rubber now made to bulge upward by pressure acting
from beneath the plate (see Fig. 13). The bulge will be steepest at the edges and horizontal at
its center; i.e. its slope will be zero at the center and largest at the edges, just as the stresses in
a twisted circular shaft.

Figure 13: Membrane inflated through a circular hole.

It is not difficult to visualize that if the hole were square as in Fig. 14 rather than round,
the membrane would be forced to lie flat (have zero slope) in the corners, and would have the
steepest slopes at the midpoints of the outside edges. This is just what the stresses do. One
good reason for not using square sections for torsion rods, then, is that the corners carry no
stress and are therefore wasted material. The designer could remove them without consequence,
the decision just being whether the cost of making circular rather than square shafts is more or
less than the cost of the wasted material. To generalize the lesson in stress analysis, a protruding
angle is not dangerous in terms of stress, only wasteful of material.
But conversely, an entrant angle can be extremely dangerous. A sharp notch cut into the

3Ludwig Prandtl (1875–1953) is best known for his pioneering work in aerodynamics.
4J.P. Den Hartog, Advanced Strength of Materials, McGraw-Hill, New York, 1952
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Figure 14: Membrane inflated through a square hole.

shaft is like a knife edge cutting into the rubber membrane, causing the rubber to be almost
vertical. Such notches or keyways are notorious stress risers, very often acting as the origination
sites for fatigue cracks. They may be necessary in some cases, but the designer must be painfully
aware of their consequences.

Problems

1. A torsion bar 1.5 m in length and 30 mm in diameter is clamped at one end, and the free
end is twisted through an angle of 10◦. Find the maximum torsional shear stress induced
in the bar.

Prob. 1

2. The torsion bar of Prob. 1 fails when the applied torque is 1500 N-m. What is the modulus
of rupture in torsion? Is this the same as the material’s maximum shear stress?

3. A solid steel drive shaft is to be capable of transmitting 50 hp at 500 rpm. What should
its diameter be if the maximum torsional shear stress is to be kept less that half the tensile
yield strength?

4. How much power could the shaft of Prob. 3 transmit (at the same maximum torsional
shear stress) if the same quantity of material were used in an annular rather than a solid
shaft? Take the inside diameter to be half the outside diameter.

5. Two shafts, each 1 ft long and 1 in diameter, are connected by a 2:1 gearing, and the free
end is loaded with a 100 ft-lb torque. Find the angle of twist at the loaded end.

6. A shaft of length L, diameter d, and shear modulusG is loaded with a uniformly distributed
twisting moment of T0 (N-m/m). (The twisting moment T (x) at a distance x from the
free end is therefore T0x.) Find the angle of twist at the free end.

7. A composite shaft 3 ft in length is constructed by assembling an aluminum rod, 2 in
diameter, over which is bonded an annular steel cylinder of 0.5 in wall thickness. Determine
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Prob. 5

Prob. 6

the maximum torsional shear stress when the composite cylinder is subjected to a torque
of 10,000 in-lb.

8. Sketch the shape of a membrane inflated through a round section containing an entrant
keyway shape.
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September 19, 2000

Introduction

The kinematic or strain-displacement equations describe how the strains – the stretching and
distortion – within a loaded body relate to the body’s displacements. The displacement com-
ponents in the x, y, and z directions are denoted by the vector u ≡ ui ≡ (u, v,w), and are
functions of position within the body: u = u(x, y, z). If all points within the material experi-
ence the same displacement (u = constant), the structure moves as a rigid body, but does not
stretch or deform internally. For stretching to occur, points within the body must experience
different displacements.

Infinitesimal strain

Figure 1: Incremental deformation.

Consider two points A and B separated initially by a small distance dx as shown in Fig. 1, and
experiencing motion in the x direction. If the displacement at point A is uA, the displacement
at B can be expressed by a Taylor’s series expansion of u(x) around the point x = A:

uB = uA + du = uA +
∂u

∂x
dx

where here the expansion has been truncated after the second term. The differential motion δ
between the two points is then

δ = uB − uA =
(
uA +

∂u

∂x
dx

)
− uA =

∂u

∂x
dx

In our concept of stretching as being the differential displacement per unit length, the x com-
ponent of strain is then
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εx =
δ

dx
=
∂u

∂x
(1)

Hence the strain is a displacement gradient. Applying similar reasoning to differential motion
in the y direction, the y-component of strain is the gradient of the vertical displacement v with
respect to y:

εy =
∂v

∂y
(2)

Figure 2: Shearing distortion.

The distortion of the material, which can be described as the change in originally right
angles, is the sum of the tilts imparted to vertical and horizontal lines. As shown in Fig. 2,
the tilt of an originally vertical line is the relative horizontal displacement of two nearby points
along the line:

δ = uB − uA =
(
uA +

∂u

∂y
dy

)
− uA =

∂u

∂y
dy

The change in angle is then

γ1 ≈ tan γ1 =
δ

dy
=
∂u

∂y

Similarly (see Fig. 3), the tilt γ2 of an originally horizontal line is the gradient of v with respect
to x. The shear strain in the xy plane is then

γxy = γ1 + γ2 =
∂v

∂x
+
∂u

∂y
(3)

This notation, using ε for normal strain and γ for shearing strain, is sometimes known as the
“classical” description of strain.

Matrix Formulation

The “indicial notation” described in the Module on Matrix and Index Notation provides a concise
method of writing out all the components of three-dimensional states of strain:

εij =
1

2

(
∂ui
∂xj
+
∂uj
∂xi

)
≡
1

2
(ui,j + uj,i) (4)
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Figure 3: Shearing strain.

where the comma denotes differentiation with respect to the following spatial variable. This
double-subscript index notation leads naturally to a matrix arrangement of the strain compo-
nents, in which the i-j component of the strain becomes the matrix element in the ith row and
the jth column:

εij =




∂u
∂x

1
2

(
∂u
∂y +

∂v
∂x

)
1
2

(
∂u
∂z +

∂w
∂x

)
1
2

(
∂u
∂y +

∂v
∂x

)
∂v
∂y

1
2

(
∂v
∂z +

∂w
∂y

)
1
2

(
∂w
∂x +

∂u
∂z

)
1
2

(
∂v
∂z +

∂w
∂y

)
∂w
∂z


 (5)

Note that the strain matrix is symmetric, i.e. εij = εji. This symmetry means that there are six
rather than nine independent strains, as might be expected in a 3×3 matrix. Also note that the
indicial description of strain yields the same result for the normal components as in the classical
description: ε11 = εx. However, the indicial components of shear strain are half their classical
counterparts: ε12 = γxy/2.
In still another useful notational scheme, the classical strain-displacement equations can be

written out in a vertical list, similar to a vector:




εx
εy
εz
γyz
γxz
γxy



=




∂u/∂x

∂v/∂y

∂w/∂z

∂v/∂z + ∂w/∂y
∂u/∂z + ∂w/∂x
∂u/∂y + ∂v/∂x




This vector-like arrangement of the strain components is for convenience only, and is sometimes
called a pseudovector. Strain is actually a second-rank tensor, like stress or moment of inertia,
and has mathematical properties very different than those of vectors. The ordering of the
elements in the pseudovector form is arbitrary, but it is conventional to list them as we have
here by moving down the diagonal of the strain matrix of Eqn. 5 from upper left to lower right,
then move up the third column, and finally move one column to the left on the first row; this
gives the ordering 1,1; 2,2; 3,3; 2,3; 1,3; 1,2.
Following the rules of matrix multiplication, the strain pseudovector can also be written in
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terms of the displacement vector as




εx
εy
εz
γyz
γxz
γxy



=




∂/∂x 0 0
0 ∂/∂y 0
0 0 ∂/∂z

0 ∂/∂z ∂/∂y

∂/∂z 0 ∂/∂x

∂/∂y ∂/∂x 0






u

v

w


 (6)

The matrix in brackets above, whose elements are differential operators, can be abbreviated as
L:

L =




∂/∂x 0 0
0 ∂/∂y 0
0 0 ∂/∂y

0 ∂/∂z ∂/∂y

∂/∂z 0 ∂/∂x

∂/∂y ∂/∂x 0




(7)

The strain-displacement equations can then be written in the concise “pseudovector-matrix”
form:

ε = Lu (8)

Equations such as this must be used in a well-defined context, as they apply only when the
somewhat arbitrary pseudovector listing of the strain components is used.

Volumetric strain

Since the normal strain is just the change in length per unit of original length, the new length
L′ after straining is found as

ε =
L′ − L0
L0

⇒ L′ = (1 + ε)L0 (9)

If a cubical volume element, originally of dimension abc, is subjected to normal strains in all
three directions, the change in the element’s volume is

∆V

V
=
a′b′c′ − abc

abc
=
a(1 + εx) b(1 + εy) c(1 + εz)− abc

abc

= (1 + εx) (1 + εy) (1 + εz)− 1 ≈ εx + εy + εz (10)

where products of strains are neglected in comparison with individual values. The volumetric
strain is therefore the sum of the normal strains, i.e. the sum of the diagonal elements in the
strain matrix (this is also called the trace of the matrix, or Tr[ε]). In index notation, this can
be written simply

∆V

V
= εkk

This is known as the volumetric, or “dilatational” component of the strain.
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Example 1

To illustrate how volumetric strain is calculated, consider a thin sheet of steel subjected to strains in its
plane given by εx = 3, εy = −4, and γxy = 6 (all in µin/in). The sheet is not in plane strain, since it can
undergo a Poisson strain in the z direction given by εz = −ν(εx + εy) = −0.3(3 − 4) = 0.3. The total
state of strain can therefore be written as the matrix

[ε] =


 3 6 0
6 −4 0
0 0 0.3


× 10−6

where the brackets on the [ε] symbol emphasize that the matrix rather than pseudovector form of the
strain is being used. The volumetric strain is:

∆V

V
= (3− 4 + 0.3)× 10−6 = −0.7× 10−6

Engineers often refer to “microinches” of strain; they really mean microinches per inch. In the case of

volumetric strain, the corresponding (but awkward) unit would be micro-cubic-inches per cubic inch.

Finite strain

The infinitesimal strain-displacement relations given by Eqns. 3.1–3.3 are used in the vast major-
ity of mechanical analyses, but they do not describe stretching accurately when the displacement
gradients become large. This often occurs when polymers (especially elastomers) are being con-
sidered. Large strains also occur during deformation processing operations, such as stamping of
steel automotive body panels. The kinematics of large displacement or strain can be complicated
and subtle, but the following section will outline a simple description of Lagrangian finite strain
to illustrate some of the concepts involved.
Consider two orthogonal lines OB and OA as shown in Fig. 4, originally of length dx and

dy, along the x-y axes, where for convenience we set dx = dy = 1. After strain, the endpoints of
these lines move to new positions A1O1B1 as shown. We will describe these new positions using
the coordinate scheme of the original x-y axes, although we could also allow the new positions
to define a new set of axes. In following the motion of the lines with respect to the original
positions, we are using the so-called Lagrangian viewpoint. We could alternately have used the
final positions as our reference; this is the Eulerian view often used in fluid mechanics.
After straining, the distance dx becomes

(dx)′ =

(
1 +
∂u

∂x

)
dx

Using our earlier “small” thinking, the x-direction strain would be just ∂u/∂x. But when the
strains become larger, we must also consider that the upward motion of point B1 relative to O1,
that is ∂v/∂x, also helps stretch the line OB. Considering both these effects, the Pythagorean
theorem gives the new length O1B1 as

O1B1 =

√(
1 +
∂u

∂x

)2
+

(
∂v

∂x

)2
We now define our Lagrangian strain as
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Figure 4: Finite displacements.

εx =
O1B1 −OB

OB
= O1B1 − 1

=

√
1 + 2

∂u

∂x
+

(
∂u

∂x

)2
+

(
∂v

∂x

)2
− 1

Using the series expansion
√
1 + x = 1 + x/2 + x2/8 + · · · and neglecting terms beyond first

order, this becomes

εx ≈

{
1 +
1

2

[
2
∂u

∂x
+

(
∂u

∂x

)2
+

(
∂v

∂x

)2]}
− 1

=
∂u

∂x
+
1

2

[(
∂u

∂x

)2
+

(
∂v

∂x

)2]
(11)

Similarly, we can show

εy =
∂v

∂y
+
1

2

[(
∂v

∂y

)2
+

(
∂u

∂y

)2]
(12)

γxy =
∂u

∂y
+
∂v

∂x
+
∂u

∂y

∂u

∂x
+
∂v

∂y

∂v

∂x
(13)

When the strains are sufficiently small that the quadratic terms are negligible compared with
the linear ones, these reduce to the infinitesimal-strain expressions shown earlier.

Example 2

The displacement function u(x) for a tensile specimen of uniform cross section and length L, fixed at
one end and subjected to a displacement δ at the other, is just the linear relation

u(x) =
( x
L

)
δ

The Lagrangian strain is then given by Eqn. 11 as
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εx =
δ

L
+
1

2

(
δ

L

)2
The first term is the familiar small-strain expression, with the second nonlinear term becoming more

important as δ becomes larger. When δ = L, i.e. the conventional strain is 100%, there is a 50%

difference between the conventional and Lagrangian strain measures.

The Lagrangian strain components can be generalized using index notation as

εij =
1

2
(ui,j + uj,i + ur,i ur,j).

A pseudovector form is also convenient occasionally:



εx
εy
γxy


 =




u,x
v,y

u,y + v,x


+

1

2


 u,x v,x 0 0
0 0 u,y v,y
u,y v,y u,x v,x





u,x
v,x
u,y
v,y




=




 ∂/∂x 0

0 ∂/∂y
∂/∂y ∂/∂x


+ 1

2


 u,x v,x 0 0
0 0 u,y v,y
u,y v,y u,x v,x





∂/∂x 0
0 ∂/∂x
∂/∂y 0
0 ∂/∂y





{
u
v

}

which can be abbreviated

ε = [L+A(u)]u (14)

The matrix A(u) contains the nonlinear effect of large strain, and becomes negligible when
strains are small.

Problems

1. Write out the abbreviated strain-displacement equation ε = Lu (Eqn. 8) for two dimen-
sions.

2. Write out the components of the Lagrangian strain tensor in three dimensions:

εij =
1

2
(ui,j + uj,i + ur,i ur,j)

3. Show that for small strains the fractional volume change is the trace of the infinitesimal
strain tensor:

∆V

V
≡ εkk = εx + εy + εz

4. When the material is incompressible, show the extension ratios are related by

λxλyλz = 1
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5. Show that the kinematic (strain-displacement) relations in for polar coordinates can be
written

εr =
∂ur
∂r

εθ =
1

r

∂uθ
∂θ
+
ur
r

γrθ =
1

r

∂ur
∂θ
+
∂uθ
∂r
−
uθ
r
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Introduction

The kinematic relations described in Module 8 are purely geometric, and do not involve consid-
erations of material behavior. The equilibrium relations to be discussed in this module have this
same independence from the material. They are simply Newton’s law of motion, stating that
in the absence of acceleration all of the forces acting on a body (or a piece of it) must balance.
This allows us to state how the stress within a body, but evaluated just below the surface, is
related to the external force applied to the surface. It also governs how the stress varies from
position to position within the body.

Cauchy stress

Figure 1: Traction vector.

In earlier modules, we expressed the normal stress as force per unit area acting perpendicu-
larly to a selected area, and a shear stress was a force per unit area acting transversely to the
area. To generalize this concept, consider the situation depicted in Fig. 1, in which a traction
vector T acts on an arbitrary plane within or on the external boundary of the body, and at an
arbitrary direction with respect to the orientation of the plane. The traction is a simple force
vector having magnitude and direction, but its magnitude is expressed in terms of force per unit
of area:

T = lim
∆A→0

(
∆F

∆A

)
(1)
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where ∆A is the magnitude of the area on which ∆F acts. The Cauchy1 stresses, which are
a generalization of our earlier definitions of stress, are the forces per unit area acting on the
Cartesian x, y, and z planes to balance the traction. In two dimensions this balance can be
written by drawing a simple free body diagram with the traction vector acting on an area of
arbitrary size A (Fig. 2), remembering to obtain the forces by multiplying by the appropriate
area.

σx(A cos θ) + τxy(A sin θ) = TxA

τxy(A cos θ) + σy(A sin θ) = TyA

Canceling the factor A, this can be written in matrix form as

[
σx τxy
τxy σy

]{
cos θ
sin θ

}
=

{
Tx
Ty

}
(2)

Figure 2: Cauchy stress.

Example 1

Figure 3: Constant pressure on internal circular boundary.

Consider a circular cavity containing an internal pressure p. The components of the traction vector are
then Tx = −p cos θ, Ty = −p sin θ. The Cartesian Cauchy stresses in the material at the boundary must
then satisfy the relations

σx cos θ + τxy sin θ = −p cos θ

1Baron Augustin-Louis Cauchy (1789–1857) was a prolific French engineer and mathematician.
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τxy cos θ + σy sin θ = −p sin θ

At θ = 0, σx = −p, σy = τxy = 0; at θ = π/2, σy = −p, σx = τxy = 0. The shear stress τxy vanishes

for θ = 0 or π/2; in Module 10 it will be seen that the normal stresses σx and σy are therefore principal

stresses at those points.

The vector (cos θ, sin θ) on the left hand side of Eqn. 2 is also the vector n̂ of direction cosines
of the normal to the plane on which the traction acts, and serves to define the orientation of this
plane. This matrix equation, which is sometimes called Cauchy’s relation, can be abbreviated
as

[σ] n̂ = T (3)

The brackets here serve as a reminder that the stress is being written as the square matrix of
Eqn. 2 rather than in pseudovector form. This relation serves to define the stress concept as an
entity that relates the traction (a vector) acting on an arbitrary surface to the orientation of the
surface (another vector). The stress is therefore of a higher degree of abstraction than a vector,
and is technically a second-rank tensor. The difference between vectors (first-rank tensors) and
second-rank tensors shows up in how they transform with respect to coordinate rotations, which
is treated in Module 10. As illustrated by the previous example, Cauchy’s relation serves both
to define the stress and to compute its magnitude at boundaries where the tractions are known.

Figure 4: Cartesian Cauchy stress components in three dimensions.

In three dimensions, the matrix form of the stress state shown in Fig. 4 is the symmetric
3× 3 array obtained by an obvious extension of the one in Eqn. 2:

[σ] = σij =


 σx τxy τxz
τxy σy τyz
τxz τyz σz


 (4)

The element in the ith row and the jth column of this matrix is the stress on the ith face in the
jth direction. Moment equilibrium requires that the stress matrix be symmetric, so the order of
subscripts of the off-diagonal shearing stresses is immaterial.
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Differential governing equations

Determining the variation of the stress components as functions of position within the interior of
a body is obviously a principal goal in stress analysis. This is a type of boundary value problem
often encountered in the theory of differential equations, in which the gradients of the variables,
rather than the explicit variables themselves, are specified. In the case of stress, the gradients
are governed by conditions of static equilibrium: the stresses cannot change arbitrarily between
two points A and B, or the material between those two points may not be in equilibrium.

Figure 5: Traction vector T acting on differential area dA with direction cosines n̂.

To develop this idea formally, we require that the integrated value of the surface traction T
over the surface A of an arbitrary volume element dV within the material (see Fig. 5) must sum
to zero in order to maintain static equilibrium :

0 =

∫
A
T dA =

∫
A
[σ] n̂ dA

Here we assume the lack of gravitational, centripetal, or other “body” forces acting on material
within the volume. The surface integral in this relation can be converted to a volume integral
by Gauss’ divergence theorem2: ∫

V
∇ [σ] dV = 0

Since the volume V is arbitrary, this requires that the integrand be zero:

∇ [σ] = 0 (5)

For Cartesian problems in three dimensions, this expands to:

∂σx
∂x +

∂τxy
∂y +

∂τxz
∂z = 0

∂τxy
∂x +

∂σy
∂y +

∂τyz
∂z = 0

∂τxz
∂x +

∂τyz
∂y +

∂σz
∂x = 0

(6)

Using index notation, these can be written:

σij,j = 0 (7)

2Gauss’ Theorem states that
∫
A
Xn̂ dA =

∫
S
∇X dV where X is a scalar, vector, or tensor quantity.

4



Or in pseudovector-matrix form, we can write



∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0







σx
σy
σz
τyz
τxz

τxy



=



0
0
0


 (8)

Noting that the differential operator matrix in the brackets is just the transform of the one that
appeared in Eqn. 7 of Module 8, we can write this as:

LTσ = 0 (9)

Example 2

It isn’t hard to come up with functions of stress that satisfy the equilibrium equations; any constant
will do, since the stress gradients will then be identically zero. The catch is that they must satisfy the
boundary conditions as well, and this complicates things considerably. Later modules will outline several
approaches to solving the equations directly, but in some simple cases a solution can be seen by inspection.

Figure 6: A tensile specimen.

Consider a tensile specimen subjected to a load P as shown in Fig. 6. A trial solution that certainly
satisfies the equilibrium equations is

[σ] =


 c 0 0
0 0 0
0 0 0




where c is a constant we must choose so as to satisfy the boundary conditions. To maintain horizontal

equilibrium in the free-body diagram of Fig. 6(b), it is immediately obvious that cA = P , or σx = c = P/A.

This familiar relation was used in Module 1 to define the stress, but we see here that it can be viewed as

a consequence of equilibrium considerations rather than a basic definition.

Problems

1. Determine whether the following stress state satisfies equilibrium:

[σ] =

[
2x3y2 −2x2y3

−2x2y3 xy4

]

2. Develop the two-dimensional form of the Cartesian equilibrium equations by drawing a
free-body diagram of an infinitesimal section:
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Prob. 2

3. Use the free body diagram of the previous problem to show that τxy = τyx.

4. Use a free-body diagram approach to show that in polar coordinates the equilibrium equa-
tions are

∂σr
∂r
+
1

r

∂τrθ
∂θ
+
σr − σθ
r

= 0

∂τrθ
∂r
+
1

r

∂σθ
∂θ
+ 2
τrθ
r
= 0

5. Develop the above equations for equilibrium in polar coordinates by transforming the
Cartesian equations using

x = r cos θ

y = r sin θ

6. The Airy stress function φ(x, y) is defined such that the Cartesian Cauchy stresses are

σx =
∂2φ

∂y2
, σy =

∂2φ

∂x2
, τxy = −

∂2φ

∂x∂y

Show that the stresses obtained from this procedure satisfy the equilibrium equations.
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Transformation of Stresses and Strains
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Introduction

One of the most common problems in mechanics of materials involves transformation of axes.
For instance, we may know the stresses acting on xy planes, but are really more interested in
the stresses acting on planes oriented at, say, 30◦ to the x axis as seen in Fig. 1, perhaps because
these are close-packed atomic planes on which sliding is prone to occur, or is the angle at which
two pieces of lumber are glued together in a “scarf” joint. We seek a means to transform the
stresses to these new x′y′ planes.

Figure 1: Rotation of axes in two dimensions.

These transformations are vital in analyses of stress and strain, both because they are needed
to compute critical values of these entities and also because the tensorial nature of stress and
strain is most clearly seen in their transformation properties. Other entities, such as moment of
inertia and curvature, also transform in a manner similar to stress and strain. All of these are
second-rank tensors, an important concept that will be outlined later in this module.

Direct approach

The rules for stress transformations can be developed directly from considerations of static
equilibrium. For illustration, consider the case of uniaxial tension shown in Fig. 2 in which all
stresses other than σy are zero. A free body diagram is then constructed in which the specimen
is “cut” along the inclined plane on which the stresses, labeled σy′ and τx′y′ , are desired. The
key here is to note that the area on which these transformed stresses act is different than the
area normal to the y axis, so that both the areas and the forces acting on them need to be
“transformed.” Balancing forces in the y′ direction (the direction normal to the inclined plane):
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Figure 2: An inclined plane in a tensile specimen.

(σyA) cos θ = σy′

(
A

cos θ

)

σy′ = σy cos
2 θ (1)

Similarly, a force balance in the tangential direction gives

τx′y′ = σy sin θ cos θ (2)

Example 1

Consider a unidirectionally reinforced composite ply with strengths σ̂1 in the fiber direction, σ̂2 in the
transverse direction, and τ̂12 in shear. As the angle θ between the fiber direction and an applied tensile
stress σy is increased, the stress in the fiber direction will decrease according to Eqn. 1. If the ply were
to fail by fiber fracture alone, the stress σy,b needed to cause failure would increase with misalignment
according to σy,b = σ̂1/ cos

2 θ.
However, the shear stresses as given by Eqn. 2 increase with θ, so the σy stress needed for shear

failure drops. The strength σy,b is the smaller of the stresses needed to cause fiber-direction or shear
failure, so the strength becomes limited by shear after only a few degrees of misalignment. In fact, a 15◦

off-axis tensile specimen has been proposed as a means of measuring intralaminar shear strength. When
the orientation angle approaches 90◦, failure is dominated by the transverse strength. The experimental
data shown in Fig. 3 are for glass-epoxy composites1, which show good but not exact agreement with
these simple expressions.

A similar approach, but generalized to include stresses σx and τxy on the original xy planes
as shown in Fig. 4 (see Prob. 2) gives:

σx′ = σx cos
2 θ + σy sin

2 θ + 2τxy sin θ cos θ
σy′ = σx sin

2 θ + σy cos
2 θ − 2τxy sin θ cos θ

τx′y′ = (σy − σx) sin θ cos θ + τxy(cos2 θ − sin
2 θ)

(3)

These relations can be written in pseudovector-matrix form as


σx′

σy′

τx′y′


 =


 c2 s2 2sc

s2 c2 −2sc
−sc sc c2 − s2






σx
σy
τxy


 (4)

1R.M. Jones, Mechanics of Composite Materials, McGraw-Hill, 1975.
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Figure 3: Stress applied at an angle to the fibers in a one-dimensional ply.

Figure 4: Stresses on inclined plane.

where c = cos θ and s = sin θ. This can be abbreviated as

σ′ = Aσ (5)

where A is the transformation matrix in brackets above. This expression would be valid for
three dimensional as well as two dimensional stress states, although the particular form of A
given in Eqn. 4 is valid in two dimensions only (plane stress), and for Cartesian coordinates.
Using either mathematical or geometric arguments (see Probs. 3 and 4), it can be shown

that the components of infinitesimal strain transform by almost the same relations:


εx′

εy′
1
2γx′y′


 = A




εx
εy
1
2γxy


 (6)

The factor of 1/2 on the shear components arises from the classical definition of shear strain,
which is twice the tensorial shear strain. This introduces some awkwardness into the transfor-
mation relations, some of which can be reduced by defining the Reuter’s matrix as

[R] =


 1 0 00 1 0
0 0 2


 or [R]−1 =


 1 0 00 1 0
0 0 1

2


 (7)

We can now write:


εx′

εy′

γx′y′


 = R




εx′

εy′
1
2γx′y′


 = RA




εx
εy
1
2γxy


 = RAR−1




εx
εy
γxy



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Or

ε′ = RAR−1ε (8)

As can be verified by expanding this relation, the transformation equations for strain can also
be obtained from the stress transformation equations (e.g. Eqn. 3) by replacing σ with ε and τ
with γ/2:

εx′ = εx cos
2 θ + εy sin

2 θ + γxy sin θ cos θ
εy′ = εx sin

2 θ + εy cos
2 θ − γxy sin θ cos θ

γx′y′ = 2(εy − εx) sin θ cos θ + γxy(cos2 θ − sin
2 θ)

(9)

Example 2

Consider the biaxial strain state

ε =




εx′

εy′

γx′y′


 =



0.01
−0.01
0




The state of strain ε′ referred to axes rotated by θ = 45◦ from the x-y axes can be computed by matrix
multiplication as:

A =


 c2 s2 2sc

s2 c2 −2sc
−sc sc c2 − s2


 =


 0.5 0.5 1.0
0.5 0.5 −1.0
−0.5 0.5 0.0




Then

ε′ = RAR−1ε

=


 1.0 0.0 0.00.0 1.0 0.0
0.0 0.0 2.0




 0.5 0.5 1.0
0.5 0.5 −1.0
−0.5 0.5 0.0




 1.0 0.0 0.00.0 1.0 0.0
0.0 0.0 0.5


 =




0.00
0.00
−0.02




Obviously, the matrix multiplication method is tedious unless matrix-handling software is available, in

which case it becomes very convenient.

Mohr’s circle

Everyday experience with such commonplace occurrences as pushing objects at an angle gives
us all a certain intuitive sense of how vector transformations work. Second-rank tensor trans-
formations seem more abstract at first, and a device to help visualize them is of great value. As
it happens, the transformation equations have a famous (among engineers) graphical interpre-
tation known as Mohr’s circle2. The Mohr procedure is justified mathematically by using the
trigonometric double-angle relations to show that Eqns. 3 have a circular representation (see
Prob. 5), but it can probably best be learned simply by memorizing the following recipe3:

2Presented in 1900 by the German engineer Otto Mohr (1835–1918).
3An interactive web demonstration of Mohr’s circle construction is available at

<http://web.mit.edu/course/3/3.11/www/java/mohr.html>.
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1. Draw the stress square, noting the values on the x and y faces; Fig. 5(a) shows a hypo-
thetical case for illustration. For the purpose of Mohr’s circle only, regard a shear stress
acting in a clockwise-rotation sense as being positive, and counter-clockwise as negative.
The shear stresses on the x and y faces must then have opposite signs. The normal stresses
are positive in tension and negative in compression, as usual.

Figure 5: Stress square (a) and Mohr’s circle (b) for σx = +5, σy = −3, τxy = +4. (c) Stress
state on inclined plane.

2. Construct a graph with τ as the ordinate (y axis) and σ as abscissa, and plot the stresses
on the x and y faces of the stress square as two points on this graph. Since the shear
stresses on these two faces are the negative of one another, one of these points will be
above the σ-axis exactly as far as the other is below. It is helpful to label the two points
as x and y.

3. Connect these two points with a straight line. It will cross the σ axis at the line’s midpoint.
This point will be at (σx + σy)/2, which in our illustration is [5 + (−3)]/2 = 1.

4. Place the point of a compass at the line’s midpoint, and set the pencil at the end of the
line. Draw a circle with the line as a diameter. The completed circle for our illustrative
stress state is shown in Fig. 5(b).

5. To determine the stresses on a stress square that has been rotated through an angle θ
with respect to the original square, rotate the diametral line in the same direction through
twice this angle; i.e. 2θ. The new end points of the line can now be labeled x′ and y′, and
their σ-τ values are the stresses on the rotated x′-y′ axes as shown in Fig. 5(c).

There is nothing mysterious or magical about the Mohr’s circle; it is simply a device to help
visualize how stresses and other second-rank tensors change when the axes are rotated.
It is clear in looking at the Mohr’s circle in Fig. 5(c) that there is something special about

axis rotations that cause the diametral line to become either horizontal or vertical. In the first
case, the normal stresses assume maximal values and the shear stresses are zero. These normal
stresses are known as the principal stresses, σp1 and σp2, and the planes on which they act are
the principal planes. If the material is prone to fail by tensile cracking, it will do so by cracking
along the principal planes when the value of σp1 exceeds the tensile strength.

Example 3

It is instructive to use a Mohr’s circle construction to predict how a piece of blackboard chalk will break
in torsion, and then verify it in practice. The torsion produces a state of pure shear as shown in Fig. 6,
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which causes the principal planes to appear at ±45◦ to the chalk’s long axis. The crack will appear
transverse to the principal tensile stress, producing a spiral-like failure surface. (As the crack progresses
into the chalk, the state of pure shear is replaced by a more complicated stress distribution, so the last
part of the failure surface deviates from this ideal path to one running along the axial direction.) This
is the same type of fracture that occurred all too often in skiers’ femurs, before the advent of modern
safety bindings.

Figure 6: Mohr’s circle for simple torsion.

Figure 7: Principal stresses on Mohr’s circle.

By direct Pythagorean construction as shown in Fig. 7, the Mohr’s circle shows that the
angle from the x-y axes to the principal planes is

tan 2θp =
τxy

(σx − σy)/2
(10)

and the values of the principal stresses are

σp1,p1 =
σx + σy
2

±

√(
σx − σy
2

)2
+ τ2xy (11)

where the first term above is the σ-coordinate of the circle’s center, and the second is its radius.
When the Mohr’s circle diametral line is vertical, the shear stresses become maximum, equal

in magnitude to the radius of the circle:
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τmax =

√(
σx − σy
2

)2
+ τ2xy =

σp1 − σp2
2

(12)

The points of maximum shear are 90◦ away from the principal stress points on the Mohr’s circle,
so on the actual specimen the planes of maximum shear are 45◦ from the principal planes. The
molecular sliding associated with yield is driven by shear, and usually takes place on the planes
of maximum shear. A tensile specimen has principal planes along and transverse to its loading
direction, so shear slippage will occur on planes ±45◦ from the loading direction. These slip
planes can often be observed as “shear bands” on the specimen.
Note that normal stresses may appear on the planes of maximum shear, so the situation

is not quite the converse of the principal planes, on which the shear stresses vanish while the
normal stresses are maximum. If the normal stresses happen to vanish on the planes of maximum
shear, the stress state is said to be one of “pure shear,” such as is induced by simple torsion.
A state of pure shear is therefore one for which a rotation of axes exists such that the normal
stresses vanish, which is possible only if the center of the Mohr’s circle is at the origin, i.e.
(σx + σy)/2 = 0. More generally, a state of pure shear is one in which the trace of the stress
(and strain) matrix vanishes.

Example 4

Figure 8: Strain and stress Mohr’s circles for simple shear.

Mohr’s circles can be drawn for strains as well as stresses, with shear strain plotted on the ordinate and
normal strain on the abscissa. However, the ordinate must be γ/2 rather than just γ, due to the way
classical infinitesimal strains are defined. Consider a state of pure shear with strain γ and stress τ as
shown in Fig. 8, such as might be produced by placing a circular shaft in torsion. A Mohr’s circle for
strain quickly shows the principal strain, on a plane 45◦ away, is given by ε1 = γ/2. Hooke’s law for shear
gives τ = Gγ, so ε1 = τ/2G. The principal strain is also related to the principal stresses by

ε1 =
1

E
(σ1 − νσ2)

The Mohr’s circle for stress gives σ1 = −σ2 = τ , so this can be written

τ

2G
=
1

E
[τ − ν(−τ)]

Canceling τ and rearranging, we have the relation among elastic constants stated earlier without proof:

G =
E

2(1 + ν)
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General approach

Figure 9: Transformation of vectors.

Another approach to the stress transformation equations, capable of easy extension to three
dimensions, starts with the familiar relations by which vectors are transformed in two dimensions
(see Fig. 9):

Tx′ = Tx cos θ + Ty sin θ

Ty′ = −Tx sin θ + Ty cos θ

In matrix form, this is {
Tx′

Ty′

}
=

[
cos θ sin θ
− sin θ cos θ

]{
Tx
Ty

}

or

T′ = aT (13)

where a is another transformation matrix that serves to transform the vector components in the
original coordinate system to those in the primed system. In index-notation terms, this could
also be denoted aij, so that

T ′i = aijTj

The individual elements of aij are the cosines of the angles between the i
th primed axis and the

jth unprimed axis.
It can be shown by direct examination that the a matrix has the useful property that its

inverse equals its transpose; i.e., a−1 = aT. We can multiply Eqn. 13 by aT to give

aTT′ = (aTa)T = T (14)

so the transformation can go from primed to unprimed, or the reverse.
These relations can be extended to yield an expression for transformation of stresses (or

strains, or moments of inertia, or other similar quantities). Recall Cauchy’s relation in matrix
form:

[σ]n̂ = T

Using Eqn. 14 to transform the n̂ and T vectors into their primed counterparts, we have
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[σ]aTn̂′ = aTT′

Multiplying through by a:

(a[σ]aT)n̂′ = (aaT)T′ = T′

This is just Cauchy’s relation again, but in the primed coordinate frame. The quantity in
parentheses must therefore be [σ′]:

[σ′] = a[σ]aT (15)

Therefore, transformation of stresses and can be done by pre- and postmultiplying by the same
transformation matrix applicable to vector transformation. This can also be written out using
index notation, which provides another illustration of the transformation differences between
scalars (zero-rank tensors), vectors (first-rank tensors), and second-rank tensors:

rank 0: b′ = b
rank 1: T ′i = aijTj
rank 2: σ′ij = aijaklσkl

(16)

In practical work, it is not always a simple matter to write down the nine elements of the
a matrix needed in Eqn. 15. The squares of the components of n̂ for any given plane must
sum to unity, and in order for the three planes of the transformed stress cube to be mutually
perpendicular the dot product between any two plane normals must vanish. So not just any nine
numbers will make sense. Obtaining a is made much easier by using “Euler angles” to describe
axis transformations in three dimensions.

Figure 10: Transformation in terms of Euler angles.

As shown in Fig. 10, the final transformed axes are visualized as being achieved in three
steps: first, rotate the original x-y-z axes by an angle ψ (psi) around the z-axis to obtain a
new frame we may call x′-y′-z. Next, rotate this new frame by an angle θ about the x′ axis to
obtain another frame we can call x′-y′′-z′. Finally, rotate this frame by an angle φ (phi) around
the z′ axis to obtain the final frame x′′-y′′′-z′. These three transformations correspond to the
transformation matrix

a =


 cosψ sinψ 0
− sinψ cosψ 0
0 0 1




 1 0 0
0 cos θ sin θ
0 − sin θ cos θ




 cosφ sinφ 0
− sinφ cosφ 0
0 0 1



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This multiplication would certainly be a pain if done manually, but is a natural for a computa-
tional approach.

Example 5

The output below shows a computer evaluation of a three-dimensional stress transformation, in this
case using MapleTM symbolic mathematics software.

# read linear algebra library

> with(linalg):

# Define Euler-angle transformation matrices:

> a1:=array(1..3,1..3,[[cos(psi),sin(psi),0],[-sin(psi),cos(psi),0],[0,0

> ,1]]);

[cos(psi) sin(psi) 0]

a1 := [-sin(psi) cos(psi) 0]

[ 0 0 1]

> a2:=array(1..3,1..3,[[1,0,0],[0,cos(theta),sin(theta)],[0,-sin(theta),

> cos(theta)]]);

[1 0 0 ]

a2 := [0 cos(theta) sin(theta)]

[0 -sin(theta) cos(theta)]

> a3:=array(1..3,1..3,[[cos(phi),sin(phi),0],[-sin(phi),cos(phi),0],[0,0

> ,1]]);

[cos(phi) sin(phi) 0]

a3 := [-sin(phi) cos(phi) 0]

[ 0 0 1]

# Overall transformation matrix (multiply individual Euler matrices):

> a:=a1&*a2&*a3;

a := (a1 &* a2) &* a3

# Set precision and read in Euler angles (converted to radians); here

# we are rotating 30 degrees around the z axis only.

> Digits:=4;psi:=0;theta:=30*(Pi/180);phi:=0;

Digits := 4

psi := 0

theta := 1/6 Pi

phi := 0

# Display transformation matrix for these angles: "evalf" evaluates the

# matrix element, and "map" applies the evaluation to each element of

# the matrix.

> aa:=map(evalf,evalm(a));

[1. 0. 0. ]

aa := [0. .8660 .5000]

[0. -.5000 .8660]

# Define the stress matrix in the unprimed frame:

> sigma:=array(1..3,1..3,[[1,2,3],[2,4,5],[3,5,6]]);

[1 2 3]

sigma := [2 4 5]

[3 5 6]

# The stress matrix in the primed frame is then given by Eqn. 15:

> ’sigma_prime’=map(evalf,evalm(aa&*sigma&*transpose(aa)));

[ 1. 3.232 1.598]

sigma_prime = [3.232 8.830 3.366]

[1.598 3.366 1.170]
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Principal stresses and planes in three dimensions

Figure 11: Traction vector normal to principal plane.

The Mohr’s circle procedure is not capable of finding principal stresses for three-dimensional
stress states, and a more general method is needed. In three dimensions, we seek orientations
of axes such that no shear stresses appear, leaving only normal stresses in three orthogonal
directions. The vanishing of shear stresses on a plane means that the stress vector T is normal
to the plane, illustrated in two dimensions in Fig. 11. The traction vector can therefore be
written as

T = σpn̂

where σp is a simple scalar quantity, the magnitude of the stress vector. Using this in Cauchy’s
relation:

σn̂ = T = σpn̂

(σ − σpI) n̂ = 0 (17)

Here I is the unit matrix. This system will have a nontrivial solution (n̂ 6= 0) only if its
determinant is zero:

|σ − σpI| =

∣∣∣∣∣∣∣
σx − σp τxy τxz
τxy σy − σp τyz
τxz τyz σz − σp

∣∣∣∣∣∣∣ = 0
Expanding the determinant yields a cubic polynomial equation in σp:

f(σp) = σ
3
p − I1σ

2
p + I2σp − I3 = 0 (18)

This is the characteristic equation for stress, where the coefficients are

I1 = σx + σy + σz = σkk (19)

I2 = σxσy + σxσz + σyσz − τ
2
xy − τ

2
yz − τ

2
xz =

1

2
(σiiσjj − σijσij) (20)
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I3 = det |σ| =
1

3
σijσjkσki (21)

These I parameters are known as the invariants of the stress state; they do not change with
transformation of the coordinates and can be used to characterize the overall nature of the
stress. For instance I1, which has been identified earlier as the trace of the stress matrix, will be
seen in a later section to be a measure of the tendency of the stress state to induce hydrostatic
dilation or compression. We have already noted that the stress state is one of pure shear if its
trace vanishes.
Since the characteristic equation is cubic in σp, it will have three roots, and it can be shown

that all three roots must be real. These roots are just the principal stresses σp1, σp2, and σp3.

Example 6

Consider a state of simple shear with τxy = 1 and all other stresses zero:

[σ] =


 0 1 0
1 0 0
0 0 0




The invariants are

I1 = 0, I2 = −1, I3 = 0

and the characteristic equation is

σ3p − σp = 0

This equation has roots of (-1,0,1) corresponding to principal stresses σp1 = 1, σp2 = 0, σp3 = −1,
and is plotted in Fig. 12. This is the same stress state considered in Example 4, and the roots of the
characteristic equation agree with the principal values shown by the Mohr’s circle.

Figure 12: The characteristic equation for τxy = 1, all other stresses zero.
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Problems

1. Develop an expression for the stress needed to cause transverse failure in a unidirectionally
oriented composite as a function of the angle between the load direction and the fiber
direction, and show this function in a plot of strength versus θ.

2. Use a free-body force balance to derive the two-dimensional Cartesian stress transformation
equations as

σx′ = σx cos
2 θ + σy sin

2 θ + 2τxy sin θ cos θ
σy′ = σx sin

2 θ + σy cos
2 θ − 2τxy sin θ cos θ

τx′y′ = (σy − σx) sin θ cos θ + τxy(cos2 θ − sin
2 θ)

Or




σx′

σy′

τx′y′


 =


 c2 s2 2sc

s2 c2 −2sc
−sc sc c2 − s2






σx
σy
τxy




where c = cos θ and s = sin θ.

Prob. 2

3. Develop mathematical relations for displacements and gradients along transformed axes
of the form

u′ = u cos θ + v sin θ

∂

∂x′
=

∂

∂x
·
∂x

∂x′
+

∂

∂y
·
∂y

∂x′
=

∂

∂x
· cos θ +

∂

∂y
· sin θ

with analogous expressions for v′ and ∂/∂y′. Use these to obtain the strain transformation
equations (Eqn. 6).

4. Consider a line segment AB of length ds2 = dx2 + dy2, oriented at an angle θ from the
Cartesian x− y axes as shown. Let the differential displacement of end B relative to end
A be

du =
∂u

∂x
dx+

∂u

∂y
dy
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dv =
∂v

∂x
dx+

∂v

∂y
dy

Use this geometry to derive the strain transformation equations (Eqn. 6), where the x′

axis is along line AB.

Prob. 4

5. Employ double-angle trigonometric relations to show that the two-dimensional Cartesian
stress transformation equations can be written in the form

σx′ = σx+σy
2 +σx−σy2 cos 2θ + τxy sin 2θ

τx′y′ = −σx−σy2 sin 2θ + τxy cos 2θ

σy′ =
σx+σy
2 +

σx−σy
2 cos 2θ − τxy sin 2θ

Use these relations to justify the Mohr’s circle construction.

6. Use matrix multiplication (Eqns. 5 or 8) to transform the following stress and strain states
to axes rotated by θ = 30◦ from the original x-y axes.

(a)

σ =



1.0
−2.0
3.0




(b)

ε =



0.01
−0.02
0.03




7. Sketch the Mohr’s circles for each of the stress states shown in the figure below.

8. Construct Mohr’s circle solutions for the transformations of Prob. 6.

9. Draw the Mohr’s circles and determine the magnitudes of the principal stresses for the
following stress states. Denote the principal stress state on a suitably rotated stress square.

(a) σx = 30 MPa, σy = −10 MPa, τxy = 25 MPa.

(b) σx = −30 MPa, σy = −90 MPa, τxy = −40 MPa.

(c) σx = −10 MPa, σy = 20 MPa, τxy = −15 MPa.

14



Prob. 7

10. Show that the values of principal stresses given by Mohr’s circle agree with those ob-
tained mathematically by setting to zero the derivatives of the stress with respect to the
transformation angle.

11. For the 3-dimensional stress state σx = 25, σy = −15, σz = −30, τyz = 20, τxz = 10,
τxy = 30 (all in MPa):

(a) Determine the stress state for Euler angles ψ = 20◦, θ = 30◦, φ = 25◦.

(b) Plot the characteristic equation.

(c) Determine the principal stresses.
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Constitutive Equations
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Introduction

The modules on kinematics (Module 8), equilibrium (Module 9), and tensor transformations
(Module 10) contain concepts vital to Mechanics of Materials, but they do not provide insight on
the role of the material itself. The kinematic equations relate strains to displacement gradients,
and the equilibrium equations relate stress to the applied tractions on loaded boundaries and also
govern the relations among stress gradients within the material. In three dimensions there are
six kinematic equations and three equilibrum equations, for a total of nine. However, there are
fifteen variables: three displacements, six strains, and six stresses. We need six more equations,
and these are provided by the material’s consitutive relations: six expressions relating the stresses
to the strains. These are a sort of mechanical equation of state, and describe how the material
is constituted mechanically.
With these constitutive relations, the vital role of the material is reasserted: The elastic

constants that appear in this module are material properties, subject to control by processing
and microstructural modification as outlined in Module 2. This is an important tool for the
engineer, and points up the necessity of considering design of the material as well as with the
material.

Isotropic elastic materials

In the general case of a linear relation between components of the strain and stress tensors, we
might propose a statement of the form

εij = Sijkl σkl

where the Sijkl is a fourth-rank tensor. This constitutes a sequence of nine equations, since each
component of εij is a linear combination of all the components of σij . For instance:

ε23 = S2311 σ11 + S2312 σ12 + · · ·+ S2333 ε33

Based on each of the indices of Sijkl taking on values from 1 to 3, we might expect a total of 81
independent components in S. However, both εij and σij are symmetric, with six rather than
nine independent components each. This reduces the number of S components to 36, as can be
seen from a linear relation between the pseudovector forms of the strain and stress:
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


εx
εy
εz
γyz
γxz
γxy



=




S11 S12 · · · S16
S21 S22 · · · S26
...

...
. . .

...
S61 S26 · · · S66







σx
σy
σz
τyz
τxz

τxy




(1)

It can be shown1 that the S matrix in this form is also symmetric. It therefore it contains only
21 independent elements, as can be seen by counting the elements in the upper right triangle of
the matrix, including the diagonal elements (1 + 2 + 3 + 4 + 5 + 6 = 21).
If the material exhibits symmetry in its elastic response, the number of independent elements

in the S matrix can be reduced still further. In the simplest case of an isotropic material, whose
stiffnesses are the same in all directions, only two elements are independent. We have earlier
shown that in two dimensions the relations between strains and stresses in isotropic materials
can be written as

εx =
1
E (σx − νσy)

εy =
1
E (σy − νσx)

γxy =
1
Gτxy

(2)

along with the relation

G =
E

2(1 + ν)

Extending this to three dimensions, the pseudovector-matrix form of Eqn. 1 for isotropic mate-
rials is




εx
εy
εz
γyz
γxz
γxy



=




1
E

−ν
E

−ν
E 0 0 0

−ν
E

1
E

−ν
E 0 0 0

−ν
E

−ν
E

1
E 0 0 0

0 0 0 1
G 0 0

0 0 0 0 1
G 0

0 0 0 0 0 1
G







σx
σy
σz
τyz
τxz

τxy




(3)

The quantity in brackets is called the compliance matrix of the material, denoted S or Sij. It
is important to grasp the physical significance of its various terms. Directly from the rules of
matrix multiplication, the element in the ith row and jth column of Sij is the contribution of the
jth stress to the ith strain. For instance the component in the 1,2 position is the contribution
of the y-direction stress to the x-direction strain: multiplying σy by 1/E gives the y-direction
strain generated by σy, and then multiplying this by −ν gives the Poisson strain induced in
the x direction. The zero elements show the lack of coupling between the normal and shearing
components.
The isotropic constitutive law can also be written using index notation as (see Prob. 1)

εij =
1 + ν

E
σij −

ν

E
δijσkk (4)

where here the indicial form of strain is used and G has been eliminated using G = E/2(1 + ν)
The symbol δij is the Kroenecker delta, described in the Module on Matrix and Index Notation.

1G.M. Mase, Schaum’s Outline of Theory and Problems of Continuum Mechanics, McGraw-Hill, 1970.
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If we wish to write the stresses in terms of the strains, Eqns. 3 can be inverted. In cases of
plane stress (σz = τxz = τyz = 0), this yields




σx
σy
τxy


 =

E

1− ν2



1 ν 0
ν 1 0
0 0 (1− ν)/2






εx
εy
γxy


 (5)

where again G has been replaced by E/2(1 + ν). Or, in abbreviated notation:

σ = Dε (6)

where D = S−1 is the stiffness matrix.

Hydrostatic and distortional components

Figure 1: Hydrostatic compression.

A state of hydrostatic compression, depicted in Fig. 1, is one in which no shear stresses exist
and where all the normal stresses are equal to the hydrostatic pressure:

σx = σy = σz = −p

where the minus sign indicates that compression is conventionally positive for pressure but
negative for stress. For this stress state it is obviously true that

1

3
(σx + σy + σz) =

1

3
σkk = −p

so that the hydrostatic pressure is the negative mean normal stress. This quantity is just one
third of the stress invariant I1, which is a reflection of hydrostatic pressure being the same in
all directions, not varying with axis rotations.
In many cases other than direct hydrostatic compression, it is still convenient to “dissociate”

the hydrostatic (or “dilatational”) component from the stress tensor:

σij =
1

3
σkkδij +Σij (7)

Here Σij is what is left over from σij after the hydrostatic component is subtracted. The Σij
tensor can be shown to represent a state of pure shear, i.e. there exists an axis transformation
such that all normal stresses vanish (see Prob. 5). The Σij is called the distortional, or deviatoric,
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component of the stress. Hence all stress states can be thought of as having two components as
shown in Fig. 2, one purely extensional and one purely distortional. This concept is convenient
because the material responds to these stress components is very different ways. For instance,
plastic and viscous flow is driven dominantly by distortional components, with the hydrostatic
component causing only elastic deformation.

Figure 2: Dilatational and deviatoric components of the stress tensor.

Example 1

Consider the stress state

σ =


 5 6 7
6 8 9
7 9 2


 , GPa

The mean normal stress is σkk/3 = (5 + 8 + 2)/3 = 5, so the stress decomposition is

σ =
1

3
σkkδij +Σij =


 5 0 0
0 5 0
0 0 5


+

 0 6 7
6 3 9
7 9 −3




It is not obvious that the deviatoric component given in the second matrix represents pure shear, since
there are nonzero components on its diagonal. However, a stress transformation using Euler angles
ψ = φ = 0, θ = −9.22◦ gives the stress state

Σ′ =


 0.00 4.80 7.874.80 0.00 9.49
7.87 9.49 0.00




The hydrostatic component of stress is related to the volumetric strain through the modulus
of compressibility (−p = K∆V/V ), so

1

3
σkk = K εkk (8)

Similarly to the stress, the strain can also be dissociated as

εij =
1

3
εkkδij + eij

where eij is the deviatoric component of strain. The deviatoric components of stress and strain
are related by the material’s shear modulus:

Σij = 2Geij (9)
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where the factor 2 is needed because tensor descriptions of strain are half the classical strains
for which values of G have been tabulated. Writing the constitutive equations in the form of
Eqns. 8 and 9 produces a simple form without the coupling terms in the conventional E-ν form.

Example 2

Using the stress state of the previous example along with the elastic constants for steel (E = 207 GPa, ν =
0.3,K = E/3(1 − 2ν) = 173 GPa, G = E/2(1 + ν) = 79.6 Gpa), the dilatational and distortional
components of strain are

δijεkk =
δijσkk

3K
=


 0.0289 0 0

0 0.0289 0
0 0 0.0289




eij =
Σij
2G
=


 0 0.0378 0.0441
0.0378 0.0189 0.0567
0.0441 0.0567 −0.0189




The total strain is then

εij =
1

3
εkkδij + eij =


 0.00960 0.0378 0.0441
0.0378 0.0285 0.0567
0.0441 0.0567 −0.00930




If we evaluate the total strain using Eqn. 4, we have

εij =
1 + ν

E
σij −

ν

E
δijσkk =


 0.00965 0.0377 0.0440
0.0377 0.0285 0.0565
0.0440 0.0565 −0.00915




These results are the same, differing only by roundoff error.

Finite strain model

When deformations become large, geometrical as well as material nonlinearities can arise that
are important in many practical problems. In these cases the analyst must employ not only a
different strain measure, such as the Lagrangian strain described in Module 8, but also different
stress measures (the “Second Piola-Kirchoff stress” replaces the Cauchy stress when Lagrangian
strain is used) and different stress-strain constitutive laws as well. A treatment of these for-
mulations is beyond the scope of these modules, but a simple nonlinear stress-strain model
for rubbery materials will be outlined here to illustrate some aspects of finite strain analysis.
The text by Bathe2 provides a more extensive discussion of this area, including finite element
implementations.
In the case of small displacements, the strain εx is given by the expression:

εx =
1

E
[σx − ν(σy + σz)]

For the case of elastomers with ν = 0.5, this can be rewritten in terms of the mean stress
σm = (σx + σy + σz)/3 as:

2εx =
3

E
(σx − σm)

2K.-J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982.
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For the large-strain case, the following analogous stress-strain relation has been proposed:

λ2x = 1 + 2εx =
3

E
(σx − σ

∗
m) (10)

where here εx is the Lagrangian strain and σ
∗
m is a parameter not necessarily equal to σm.

The σ∗m parameter can be found for the case of uniaxial tension by considering the transverse
contractions λy = λz:

λ2y =
3

E
(σy − σ

∗
m)

Since for rubber λxλyλz = 1, λ
2
y = 1/λx. Making this substitution and solving for σ

∗
m:

σ∗m =
−Eλ2y
3
=
−E

3λx

Substituting this back into Eqn. 10,

λ2x =
3

E

[
σx −

E

3λx

]

Solving for σx,

σx =
E

3

(
λ2x −

1

λx

)

Here the stress σx = F/A is the “true” stress based on the actual (contracted) cross-sectional
area. The “engineering” stress σe = F/A0 based on the original area A0 = Aλx is:

σe =
σx
λx
= G

(
λx −

1

λ2x

)

where G = E/2(1 + ν) = E/3 for ν = 1/2. This result is the same as that obtained in Module
2 by considering the force arising from the reduced entropy as molecular segments spanning
crosslink sites are extended. It appears here from a simple hypothesis of stress-strain response,
using a suitable measure of finite strain.

Anisotropic materials

Figure 3: An orthotropic material.

If the material has a texture like wood or unidirectionally-reinforced fiber composites as
shown in Fig. 3, the modulus E1 in the fiber direction will typically be larger than those in the
transverse directions (E2 and E3). When E1 6= E2 6= E3, the material is said to be orthotropic.
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It is common, however, for the properties in the plane transverse to the fiber direction to be
isotropic to a good approximation (E2 = E3); such a material is called transversely isotropic.
The elastic constitutive laws must be modified to account for this anisotropy, and the following
form is an extension of Eqn. 3 for transversely isotropic materials:




ε1
ε2
γ12


 =



1/E1 −ν21/E2 0
−ν12/E1 1/E2 0
0 0 1/G12






σ1
σ2
τ12


 (11)

The parameter ν12 is the principal Poisson’s ratio; it is the ratio of the strain induced in the
2-direction by a strain applied in the 1-direction. This parameter is not limited to values less
than 0.5 as in isotropic materials. Conversely, ν21 gives the strain induced in the 1-direction by
a strain applied in the 2-direction. Since the 2-direction (transverse to the fibers) usually has
much less stiffness than the 1-direction, it should be clear that a given strain in the 1-direction
will usually develop a much larger strain in the 2-direction than will the same strain in the
2-direction induce a strain in the 1-direction. Hence we will usually have ν12 > ν21. There are
five constants in the above equation (E1, E2, ν12, ν21 and G12). However, only four of them are
independent; since the S matrix is symmetric, ν21/E2 = ν12/E1.
A table of elastic constants and other properties for widely used anisotropic materials can

be found in the Module on Composite Ply Properties.
The simple form of Eqn. 11, with zeroes in the terms representing coupling between normal

and shearing components, is obtained only when the axes are aligned along the principal material
directions; i.e. along and transverse to the fiber axes. If the axes are oriented along some other
direction, all terms of the compliance matrix will be populated, and the symmetry of the material
will not be evident. If for instance the fiber direction is off-axis from the loading direction, the
material will develop shear strain as the fibers try to orient along the loading direction as shown
in Fig. 4. There will therefore be a coupling between a normal stress and a shearing strain,
which never occurs in an isotropic material.

Figure 4: Shear-normal coupling.

The transformation law for compliance can be developed from the transformation laws for
strains and stresses, using the procedures described in Module 10 (Transformations). By suc-
cessive transformations, the pseudovector form for strain in an arbitrary x-y direction shown in
Fig. 5 is related to strain in the 1-2 (principal material) directions, then to the stresses in the 1-2
directions, and finally to the stresses in the x-y directions. The final grouping of transformation
matrices relating the x-y strains to the x-y stresses is then the transformed compliance matrix
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Figure 5: Axis transformation for constitutive equations.

in the x-y direction:




εx
εy
γxy


 = R




εx
εy
1
2γxy


 = RA

−1




ε1
ε2
1
2γ12


 = RA

−1R−1




ε1
ε2
γ12




= RA−1R−1S




σ1
σ2
τ12


 = RA

−1R−1SA




σx
σy
τxy


 ≡ S




σx
σy
τxy




where S is the transformed compliance matrix relative to x-y axes. Here A is the transformation
matrix, and R is the Reuter’s matrix defined in the Module on Tensor Transformations. The
inverse of S is D, the stiffness matrix relative to x-y axes:

S = RA−1R−1SA, D = S
−1

(12)

Example 3

Consider a ply of Kevlar-epoxy composite with a stiffnesses E1 = 82, E2 = 4, G12 = 2.8 (all GPa) and
ν12 = 0.25. The compliance matrix S in the 1-2 (material) direction is:

S =


 1/E1 −ν21/E2 0
−ν12/E1 1/E2 0
0 0 1/G12


 =


 .1220× 10−10 −.3050× 10−11 0
−.3050× 10−11 .2500× 10−9 0

0 0 .3571× 10−9




If the ply is oriented with the fiber direction (the “1” direction) at θ = 30◦ from the x-y axes, the
appropriate transformation matrix is

A =


 c2 s2 2sc

s2 c2 −2sc
−sc sc c2 − s2


 =


 .7500 .2500 .8660

.2500 .7500 −.8660
−.4330 .4330 .5000




The compliance matrix relative to the x-y axes is then

S = RA−1R−1SA =


 .8830× 10−10 −.1970× 10−10 −.1222× 10−9

−.1971× 10−10 .2072× 10−9 −.8371× 10−10

−.1222× 10−9 −.8369× 10−10 −.2905× 10−9




Note that this matrix is symmetric (to within numerical roundoff error), but that nonzero coupling
values exist. A user not aware of the internal composition of the material would consider it completely
anisotropic.
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The apparent engineering constants that would be observed if the ply were tested in the x-y rather

than 1-2 directions can be found directly from the trasnformed S matrix. For instance, the apparent

elastic modulus in the x direction is Ex = 1/S1,1 = 1/(.8830× 10−10) = 11.33 GPa.

Problems

1. Expand the indicial forms of the governing equations for solid elasticity in three dimensions:

equilibrium : σij,j = 0

kinematic : εij = (ui,j + uj,i)/2

constitutive : εij =
1 + ν

E
σij −

ν

E
δijσkk + αδij∆T

where α is the coefficient of linear thermal expansion and ∆T is a temperature change.

2. (a) Write out the compliance matrix S of Eqn. 3 for polycarbonate using data in the
Module on Material Properties.

(b) Use matrix inversion to obtain the stiffness matrix D.

(c) Use matrix multiplication to obtain the stresses needed to induce the strains

ε =




εx
εy
εz
γyz
γxz
γxy



=




0.02
0.0
0.03
0.01
0.025
0.0




3. (a) Write out the compliance matrix S of Eqn.3 for an aluminum alloy using data in the
Module on Material Properties.

(b) Use matrix inversion to obtan the stiffness matrix D.

(c) Use matrix multiplication to obtain the stresses needed to induce the strains

ε =




εx
εy
εz
γyz
γxz
γxy



=




0.01
0.02
0.0
0.0
0.15
0.0




4. Given the stress tensor

σij =



1 2 3
2 4 5
3 5 7


 (MPa)

(a) Dissociate σij into deviatoric and dilatational parts Σij and (1/3)σkkδij .
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(b) Given G = 357 MPa and K = 1.67 GPa, obtain the deviatoric and dilatational strain
tensors eij and (1/3)εkkδij .

(c) Add the deviatoric and dilatational strain components obtained above to obtain the
total strain tensor εij.

(d) Compute the strain tensor εij using the alternate form of the elastic constitutive law
for isotropic elastic solids:

εij =
1 + ν

E
σij −

ν

E
δijσkk

Compare the result with that obtained in (c).

5. Provide an argument that any stress matrix having a zero trace can be transformed to one
having only zeroes on its diagonal; i.e. the deviatoric stress tensor Σij represents a state
of pure shear.

6. Write out the x-y two-dimensional compliance matrix S and stiffness matrix D (Eqn. 12)
for a single ply of graphite/epoxy composite with its fibers aligned along the x axes.

7. Write out the x-y two-dimensional compliance matrix S and stiffness matrix D (Eqn. 12)
for a single ply of graphite/epoxy composite with its fibers aligned 30◦from the x axis.
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Statics of Bending: Shear and Bending Moment Diagrams

David Roylance
Department of Materials Science and Engineering
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Cambridge, MA 02139
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Introduction

Beams are long and slender structural elements, differing from truss elements in that they are
called on to support transverse as well as axial loads. Their attachment points can also be
more complicated than those of truss elements: they may be bolted or welded together, so the
attachments can transmit bending moments or transverse forces into the beam. Beams are
among the most common of all structural elements, being the supporting frames of airplanes,
buildings, cars, people, and much else.
The nomenclature of beams is rather standard: as shown in Fig. 1, L is the length, or span;

b is the width, and h is the height (also called the depth). The cross-sectional shape need not
be rectangular, and often consists of a vertical web separating horizontal flanges at the top and
bottom of the beam1.

Figure 1: Beam nomenclature.

As will be seen in Modules 13 and 14, the stresses and deflections induced in a beam under
bending loads vary along the beam’s length and height. The first step in calculating these quan-
tities and their spatial variation consists of constructing shear and bending moment diagrams,
V (x) and M(x), which are the internal shearing forces and bending moments induced in the
beam, plotted along the beam’s length. The following sections will describe how these diagrams
are made.
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Figure 2: A cantilevered beam.

Free-body diagrams

As a simple starting example, consider a beam clamped (“cantilevered”) at one end and sub-
jected to a load P at the free end as shown in Fig. 2. A free body diagram of a section cut
transversely at position x shows that a shear force V and a moment M must exist on the cut
section to maintain equilibrium. We will show in Module 13 that these are the resultants of shear
and normal stresses that are set up on internal planes by the bending loads. As usual, we will
consider section areas whose normals point in the +x direction to be positive; then shear forces
pointing in the +y direction on +x faces will be considered positive. Moments whose vector
direction as given by the right-hand rule are in the +z direction (vector out of the plane of the
paper, or tending to cause counterclockwise rotation in the plane of the paper) will be positive
when acting on +x faces. Another way to recognize positive bending moments is that they cause
the bending shape to be concave upward. For this example beam, the statics equations give:

∑
Fy = 0 = V + P ⇒ V = constant = −P (1)

∑
M0 = 0 = −M + Px⇒M =M(x) = Px (2)

Note that the moment increases with distance from the loaded end, so the magnitude of the
maximum value of M compared with V increases as the beam becomes longer. This is true of
most beams, so shear effects are usually more important in beams with small length-to-height
ratios.

Figure 3: Shear and bending moment diagrams.

1There is a standardized protocol for denoting structural steel beams; for instance W 8 × 40 indicates a
wide-flange beam with a nominal depth of 8′′ and weighing 40 lb/ft of length
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As stated earlier, the stresses and deflections will be shown to be functions of V andM , so it
is important to be able to compute how these quantities vary along the beam’s length. Plots of
V (x) andM(x) are known as shear and bending moment diagrams, and it is necessary to obtain
them before the stresses can be determined. For the end-loaded cantilever, the diagrams shown
in Fig. 3 are obvious from Eqns. 1 and 2.

Figure 4: Wall reactions for the cantilevered beam.

It was easiest to analyze the cantilevered beam by beginning at the free end, but the choice
of origin is arbitrary. It is not always possible to guess the easiest way to proceed, so consider
what would have happened if the origin were placed at the wall as in Fig. 4. Now when a free
body diagram is constructed, forces must be placed at the origin to replace the reactions that
were imposed by the wall to keep the beam in equilibrium with the applied load. These reactions
can be determined from free-body diagrams of the beam as a whole (if the beam is statically
determinate), and must be found before the problem can proceed. For the beam of Fig. 4:

∑
Fy = 0 = −VR + P ⇒ VR = P

∑
Mo = 0 =MR − PL⇒MR = PL

The shear and bending moment at x are then

V (x) = VR = P = constant

M(x) =MR − VRx = PL− Px

This choice of origin produces some extra algebra, but the V (x) and M(x) diagrams shown in
Fig. 5 are the same as before (except for changes of sign): V is constant and equal to P , and M
varies linearly from zero at the free end to PL at the wall.

Distributed loads

Transverse loads may be applied to beams in a distributed rather than at-a-point manner as
depicted in Fig. 6, which might be visualized as sand piled on the beam. It is convenient to
describe these distributed loads in terms of force per unit length, so that q(x) dx would be the
load applied to a small section of length dx by a distributed load q(x). The shear force V (x) set
up in reaction to such a load is

V (x) = −
∫ x
x0

q(ξ) dξ (3)
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Figure 5: Alternative shear and bending moment diagrams for the cantilevered beam.

Figure 6: A distributed load and a free-body section.

where x0 is the value of x at which q(x) begins, and ξ is a dummy length variable that looks
backward from x. Hence V (x) is the area under the q(x) diagram up to position x. The moment
balance is obtained considering the increment of load q(ξ) dξ applied to a small width dξ of beam,
a distance ξ from point x. The incremental moment of this load around point x is q(ξ) ξ dξ, so
the moment M(x) is

M =

∫ x
x0

q(ξ) ξ dξ (4)

This can be related to the centroid of the area under the q(x) curve up to x, whose distance
from x is

ξ̄ =

∫
q(ξ) ξ dξ∫
q(ξ) dξ

Hence Eqn. 4 can be written

M = Qξ̄ (5)

where Q =
∫
q(ξ) dξ is the area. Therefore, the distributed load q(x) is statically equivalent to

a concentrated load of magnitude Q placed at the centroid of the area under the q(x) diagram.

Example 1

Consider a simply-supported beam carrying a triangular and a concentrated load as shown in Fig. 7. For
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Figure 7: Distributed and concentrated loads.

the purpose of determining the support reaction forces R1 and R2, the distributed triangular load can be
replaced by its static equivalent. The magnitude of this equivalent force is

Q =

∫ 2
0

(−600x) dx = −1200

The equivalent force acts through the centroid of the triangular area, which is is 2/3 of the distance from
its narrow end (see Prob. 1). The reaction R2 can now be found by taking moments around the left end:∑

MA = 0 = −500(1)− (1200)(2/3) +R2(2)→ R2 = 650

The other reaction can then be found from vertical equilibrium:∑
Fy = 0 = R1 − 500− 1200 + 650 = 1050

Successive integration method

Figure 8: Relations between distributed loads and internal shear forces and bending moments.

We have already noted in Eqn. 3 that the shear curve is the negative integral of the loading
curve. Another way of developing this is to consider a free body balance on a small increment
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of length dx over which the shear and moment changes from V and M to V + dV and M + dM
(see Fig. 8). The distributed load q(x) can be taken as constant over the small interval, so the
force balance is:

∑
Fy = 0 = V + dV + q dx− V = 0

dV

dx
= −q (6)

or

V (x) = −
∫
q(x) dx (7)

which is equivalent to Eqn. 3. A moment balance around the center of the increment gives

∑
Mo = (M + dM) + (V + dV )

dx

2
+ V
dx

2
−M

As the increment dx is reduced to the limit, the term containing the higher-order differential
dV dx vanishes in comparison with the others, leaving

dM

dx
= −V (8)

or

M(x) = −
∫
V (x) dx (9)

Hence the value of the shear curve at any axial location along the beam is equal to the negative
of the slope of the moment curve at that point, and the value of the moment curve at any point
is equal to the negative of the area under the shear curve up to that point.
The shear and moment curves can be obtained by successive integration of the q(x) distri-

bution, as illustrated in the following example.

Example 2

Consider a cantilevered beam subjected to a negative distributed load q(x) = −q0 =constant as shown
in Fig. 9; then

V (x) = −

∫
q(x) dx = q0x+ c1

where c1 is a constant of integration. A free body diagram of a small sliver of length near x = 0 shows
that V (0) = 0, so the c1 must be zero as well. The moment function is obtained by integrating again:

M(x) = −

∫
V (x) dx = −

1

2
q0x

2 + c2

where c2 is another constant of integration that is also zero, since M(0) = 0.

Admittedly, this problem was easy because we picked one with null boundary conditions, and
with only one loading segment. When concentrated or distributed loads are found at different
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Figure 9: Shear and moment distributions in a cantilevered beam.

positions along the beam, it is necessary to integrate over each section between loads separately.
Each integration will produce an unknown constant, and these must be determined by invoking
the continuity of slopes and deflections from section to section. This is a laborious process, but
one that can be made much easier using singularity functions that will be introduced shortly.
It is often possible to sketch V and M diagrams without actually drawing free body dia-

grams or writing equilibrium equations. This is made easier because the curves are integrals or
derivatives of one another, so graphical sketching can take advantage of relations among slopes
and areas.
These rules can be used to work gradually from the q(x) curve to V (x) and then to M(x).

Wherever a concentrated load appears on the beam, the V (x) curve must jump by that value,
but in the opposite direction; similarly, the M(x) curve must jump discontinuously wherever a
couple is applied to the beam.

Example 3

Figure 10: A simply supported beam.

To illustrate this process, consider a simply-supported beam of length L as shown in Fig. 10, loaded
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over half its length by a negative distributed load q = −q0. The solution for V (x) and M(x) takes the
following steps:

1. The reactions at the supports are found from static equilibrium. Replacing the distributed load
by a concentrated load Q = −q0(L/2) at the midpoint of the q distribution (Fig. 10(b))and taking
moments around A:

RBL =

(
q0L

2

)(
3L

4

)
⇒ RB =

3q0L

8

The reaction at the right end is then found from a vertical force balance:

RA =
q0L

2
−RB =

q0L

8

Note that only two equilibrium equations were available, since a horizontal force balance would
provide no relevant information. Hence the beam will be statically indeterminate if more than two
supports are present.

The q(x) diagram is then just the beam with the end reactions shown in Fig. 10(c).

2. Beginning the shear diagram at the left, V immediately jumps down to a value of −q0L/8 in
opposition to the discontinuously applied reaction force at A; it remains at this value until x = L/2
as shown in Fig. 10(d).

3. At x = L/2, the V (x) curve starts to rise with a constant slope of +q0 as the area under the q(x)
distribution begins to accumulate. When x = L, the shear curve will have risen by an amount
q0L/2, the total area under the q(x) curve; its value is then (−q0l/8) + (q0L/2) = (3q0L/8). The
shear curve then drops to zero in opposition to the reaction force RB = (3q0L/8). (The V and M
diagrams should always close, and this provides a check on the work.)

4. The moment diagram starts from zero as shown in Fig. 10(e), since there is no discontinuously
applied moment at the left end. It moves upward at a constant slope of +q0L/8, the value of the
shear diagram in the first half of the beam. When x = L/2, it will have risen to a value of q0L

2/16.

5. After x = L/2, the slope of the moment diagram starts to fall as the value of the shear diagram
rises. The moment diagram is now parabolic, always being one order higher than the shear diagram.
The shear diagram crosses the V = 0 axis at x = 5L/8, and at this point the slope of the moment
diagram will have dropped to zero. The maximum value of M is 9q0L

2/32, the total area under
the V curve up to this point.

6. After x = 5L/8, the moment diagram falls parabolically, reaching zero at x = L.

Singularity functions

This special family of functions provides an automatic way of handling the irregularities of
loading that usually occur in beam problems. They are much like conventional polynomial
factors, but with the property of being zero until “activated” at desired points along the beam.
The formal definition is

fn(x) = 〈x− a〉
n =

{
0, x < a
(x− a)n, x > a

(10)

where n = −2,−1, 0, 1, 2, · · ·. The function 〈x − a〉0 is a unit step function, 〈x − a〉−1 is a
concentrated load, and 〈x− a〉−2 is a concentrated couple. The first five of these functions are
sketched in Fig. 11.
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Figure 11: Singularity functions.

The singularity functions are integrated much like conventional polynomials:

∫ x
−∞
〈x− a〉n dx =

〈x− a〉n+1

n+ 1
n ≥ 0 (11)

However, there are special integration rules for the n = −1 and n = −2 members, and this
special handling is emphasized by using subscripts for the n index:∫ x

−∞
〈x− a〉−2 dx = 〈x− a〉−1 (12)

∫ x
−∞
〈x− a〉−1 dx = 〈x− a〉

0 (13)

Example 4

Applying singularity functions to the beam of Example 4.3, the loading function would be written

q(x) = +
q0L

8
〈x− 0〉−1 − q0〈x−

L

2
〉0

The reaction force at the right end could also be included, but it becomes activated only as the problem
is over. Integrating once:

V (x) = −

∫
q(x) dx = −

q0L

8
〈x〉0 + q0〈x−

L

2
〉1

The constant of integration is included automatically here, since the influence of the reaction at A has
been included explicitly. Integrating again:

M(x) = −

∫
V (x) dx =

q0L

8
〈x〉1 −

q0

2
〈x −

L

2
〉2

Examination of this result will show that it is the same as that developed previously.
MapleTM symbolic manipulation software provides an efficient means of plotting these functions. The

following shows how the moment equation of this example might be plotted, using the Heaviside function
to provide the singularity.
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# Define function sfn in terms of a and n

>sfn:=proc(a,n) (x-a)^n*Heaviside(x-a) end;

sfn := proc(a, n) (x - a)^n*Heaviside(x - a) end proc

# Input moment equation using singularity functions

>M(x):=(q*L/8)*sfn(0,1)-(q/2)*sfn(L/2,2);

M(x) := 1/8 q L x Heaviside(x)

2

- 1/2 q (x - 1/2 L) Heaviside(x - 1/2 L)

# Provide numerical values for q and L:

>q:=1: L:=10:

# Plot function

>plot(M(x),x=0..10);

Figure 12: Maple singularity plot

Problems

1. (a)–(c) Locate the magnitude and position of the force equivalent to the loading distribu-
tions shown here.

2. (a)–(c) Determine the reaction forces at the supports of the cases in Prob. 1.

3. (a)–(h) Sketch the shear and bending moment diagrams for the load cases shown here.

4. (a)–(h) Write singularity-function expressions for the shear and bending moment distribu-
tions for the cases in Prob. 3.

5. (a)–(h) Use Maple (or other) software to plot the shear and bending moment distributions
for the cases in Prob. 3, using the values (as needed) L = 25 in, a = 5 in, w = 10 lb/in, P =
150 lb.
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Prob. 1

Prob. 3

6. The transverse deflection of a beam under an axial load P is taken to be δ(y) = δ0 sin(yπ/L),
as shown here. Determine the bending moment M(y) along the beam.

7. Determine the bending moment M(θ) along the circular curved beam shown.
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Prob. 6

Prob. 7
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Introduction

Understanding of the stresses induced in beams by bending loads took many years to develop.
Galileo worked on this problem, but the theory as we use it today is usually credited principally
to the great mathematician Leonard Euler (1707–1783). As will be developed below, beams
develop normal stresses in the lengthwise direction that vary from a maximum in tension at
one surface, to zero at the beam’s midplane, to a maximum in compression at the opposite
surface. Shear stresses are also induced, although these are often negligible in comparision
with the normal stresses when the length-to-height ratio of the beam is large. The procedures
for calculating these stresses for various loading conditions and beam cross-section shapes are
perhaps the most important methods to be found in introductory Mechanics of Materials, and
will be developed in the sections to follow. This theory requires that the user be able to construct
shear and bending moment diagrams for the beam, as developed for instance in Module 12.

Normal Stresses

A beam subjected to a positive bending moment will tend to develop a concave-upward curva-
ture. Intuitively, this means the material near the top of the beam is placed in compression along
the x direction, with the lower region in tension. At the transition between the compressive and
tensile regions, the stress becomes zero; this is the neutral axis of the beam. If the material
tends to fail in tension, like chalk or glass, it will do so by crack initiation and growth from
the lower tensile surface. If the material is strong in tension but weak in compression, it will
fail at the top compressive surface; this might be observed in a piece of wood by a compressive
buckling of the outer fibers.
We seek an expression relating the magnitudes of these axial normal stresses to the shear

and bending moment within the beam, analogously to the shear stresses induced in a circular
shaft by torsion. In fact, the development of the needed relations follows exactly the same direct
approach as that used for torsion:

1. Geometrical statement: We begin by stating that originally transverse planes within the
beam remain planar under bending, but rotate through an angle θ about points on the
neutral axis as shown in Fig. 1. For small rotations, this angle is given approximately by
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the x-derivative of the beam’s vertical deflection function v(x)1:

u = −yv,x (1)

where the comma indicates differentiation with respect to the indicated variable (v,x ≡
dv/dx). Here y is measured positive upward from the neutral axis, whose location within
the beam has not yet been determined.

Figure 1: Geometry of beam bending.

2. Kinematic equation: The x-direction normal strain εx is then the gradient of the displace-
ment:

εx =
du

dx
= −yv,xx (2)

Note that the strains are zero at the neutral axis where y = 0, negative (compressive)
above the axis, and positive (tensile) below. They increase in magnitude linearly with y,
much as the shear strains increased linearly with r in a torsionally loaded circular shaft.
The quantity v,xx ≡ d2v/dx2 is the spatial rate of change of the slope of the beam deflection
curve, the “slope of the slope.” This is called the curvature of the beam.

3. Constitutive equation: The stresses are obtained directly from Hooke’s law as

σx = Eεx = −yEv,xx (3)

This restricts the applicability of this derivation to linear elastic materials. Hence the
axial normal stress, like the strain, increases linearly from zero at the neutral axis to a
maximum at the outer surfaces of the beam.

4. Equilibrium relations: Since there are no axial (x-direction) loads applied externally to the
beam, the total axial force generated by the normal σx stresses (shown in Fig. 2) must be
zero. This can be expressed as

1The exact expression for curvature is

dθ

ds
=

d2v/dx2

[1 + (dv/dx)2]3/2

This gives θ ≈ dv/dx when the squared derivative in the denominator is small compared to 1.
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∑
Fx = 0 =

∫
A
σx dA =

∫
A
−yEv,xx dA

which requires that

∫
A
y dA = 0

The distance ȳ from the neutral axis to the centroid of the cross-sectional area is

ȳ =

∫
A y dA∫
A dA

Hence ȳ = 0, i.e. the neutral axis is coincident with the centroid of the beam cross-sectional
area. This result is obvious on reflection, since the stresses increase at the same linear rate,
above the axis in compression and below the axis in tension. Only if the axis is exactly
at the centroidal position will these stresses balance to give zero net horizontal force and
keep the beam in horizontal equilibrium.

Figure 2: Moment and force equilibrium in the beam.

The normal stresses in compression and tension are balanced to give a zero net horizontal
force, but they also produce a net clockwise moment. This moment must equal the value
of M(x) at that value of x, as seen by taking a moment balance around point O:

∑
MO = 0 =M +

∫
A
σx · y dA

M =

∫
A
(yEv,xx) · y dA = Ev,xx

∫
A
y2 dA (4)

Figure 3: Moment of inertia for a rectangular section.
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The quantity
∫
y2 dA is the rectangular moment of inertia with respect to the centroidal

axis, denoted I. For a rectangular cross section of height h and width b as shown in Fig. 3
this is:

I =

∫ h/2
−h/2

y2 b dy =
bh3

12
(5)

Solving Eqn. 4 for v,xx, the beam curvature is

v,xx =
M

EI
(6)

5. An explicit formula for the stress can be obtained by using this in Eqn. 3:

σx = −yE
M

EI
=
−My

I
(7)

The final expression for stress, Eqn. 7, is similar to τθz = Tr/J for twisted circular shafts:
the stress varies linearly from zero at the neutral axis to a maximum at the outer surface, it
varies inversely with the moment of inertia of the cross section, and it is independent of the
material’s properties. Just as a designer will favor annular drive shafts to maximize the polar
moment of inertia J , beams are often made with wide flanges at the upper and lower surfaces
to increase I.

Example 1

Figure 4: A cantilevered T-beam.

Consider a cantilevered T-beam with dimensions as shown in Fig. 4, carrying a uniform loading of w
N/m. The maximum bending moment occurs at the wall, and is easily found to be Mmax = (wL)(L/2).
The stress is then given by Eqn. 7, which requires that we know the location of the neutral axis (since y
and I are measured from there).
The distance y from the bottom of the beam to the centroidal neutral axis can be found using the

“composite area theorem” (see Prob. 1). This theorem states that the distance from an arbitrary axis
to the centroid of an area made up of several subareas is the sum of the subareas times the distance to
their individual centroids, divided by the sum of the subareas( i.e. the total area):

y =

∑
iAiyi∑
iAi

For our example, this is
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y =
(d/2)(cd) + (d+ b/2)(ab)

cd+ ab

The moments of inertia of the individual parts of the compound area with respect to their own
centroids are just ab3/12 and cd3/12. These moments can be referenced to the horizontal axis through
the centroid of the compound area using the “parallel axis theorem” (see Prob. 3). This theorem states
that the moment of inertia Iz′ of an area A, relative to any arbitrary axis z

′ parallel to an axis through
the centroid but a distance d from it, is the moment of inertia relative to the centroidal axis Iz plus the
product of the area A and the square of the distance d:

Iz′ = Iz +Ad
2

For our example, this is

I(1) =
ab3

12
+ (ab)

(
d+
b

2
− y

)2

I(2) =
cd3

12
+ (cd)

(
d

2
− y

)2
The moment of inertia of the entire compound area, relative to its centroid, is then the sum of these two
contributions:

I = I(1) + I(2)

The maximum stress is then given by Eqn. 7 using this value of I and y = y/2 (the distance from the
neutral axis to the outer fibers), along with the maximum bending moment Mmax. The result of these
substitutions is

σx =

(
3 d2c+ 6 abd+ 3 ab2

)
wL2

2 c2d4 + 8 abcd3 + 12 ab2cd2 + 8 ab3cd+ 2 a2b4

In practice, each step would likely be reduced to a numerical value rather than working toward an

algebraic solution.

In pure bending (only bending moments applied, no transverse or longitudinal forces), the
only stress is σx as given by Eqn. 7. All other stresses are zero (σy = σz = τxy = τxz = τyz = 0).
However, strains other than εx are present, due to the Poisson effect. This does not generate
shear strain (γxy = γxz = γyz = 0), but the normal strains are

εx =
1

E
[σx − ν(σy + σz)] =

σx
E

εy =
1

E
[σy − ν(σx + σz)] = −ν

σx
E

εz =
1

E
[σz − ν(σx + σy)] = −ν

σx
E

The strains can also be written in terms of curvatures. From Eqn. 2, the curvature along the
beam is

v,xx = −
εx
y

This is accompanied by a curvature transverse to the beam axis given by
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v,zz = −
εz
y
=
νεx
y
= −νv,xx

This transverse curvature, shown in Fig. 5, is known as anticlastic curvature; it can be seen by
bending a “Pink Pearl” type eraser in the fingers.

Figure 5: Anticlastic curvature.

As with tension and torsion structures, bending problems can often be done more easily with
energy methods. Knowing the stress from Eqn. 7, the strain energy due to bending stress Ub
can be found by integrating the strain energy per unit volume U∗ = σ2/2E over the specimen
volume:

Ub =

∫
V
U∗ dV =

∫
L

∫
A

σ2x
2E
dAdL

=

∫
L

∫
A

1

2E

(
−My

I

)2
dAdL =

∫
L

M2

2EI2

∫
A
y2 dAdL

Since
∫
A y
2 dA = I, this becomes

Ub =

∫
L

M2 dL

2EI
(8)

If the bending moment is constant along the beam (definitely not the usual case), this becomes

U =
M2L

2EI

This is another analog to the expression for uniaxial tension, U = P 2L/2AE.

Buckling

Long slender columns placed in compression are prone to fail by buckling, in which the column
develops a kink somewhere along its length and quickly collapses unless the load is relaxed. This
is actually a bending phenomenon, driven by the bending moment that develops if and when
when the beam undergoes a transverse deflection. Consider a beam loaded in axial compression
and pinned at both ends as shown in Fig. 6. Now let the beam be made to deflect transversely
by an amount v, perhaps by an adventitious sideward load or even an irregularity in the beam’s
cross section. Positions along the beam will experience a moment given by
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M(x) = Pv(x) (9)

The beam’s own stiffness will act to restore the deflection and recover a straight shape, but the
effect of the bending moment is to deflect the beam more. It’s a battle over which influence wins
out. If the tendency of the bending moment to increase the deflection dominates over the ability
of the beam’s elastic stiffness to resist bending, the beam will become unstable, continuing to
bend at an accelerating rate until it fails.

Figure 6: Imminent buckling in a beam.

The bending moment is related to the beam curvature by Eqn. 6, so combining this with
Eqn. 9 gives

v,xx =
P

EI
v (10)

Of course, this governing equation is satisfied identically if v = 0, i.e. the beam is straight. We
wish to look beyond this trivial solution, and ask if the beam could adopt a bent shape that
would also satisfy the governing equation; this would imply that the stiffness is insufficient to
restore the unbent shape, so that the beam is beginning to buckle. Equation 10 will be satisfied
by functions that are proportional to their own second derivatives. Trigonometric functions have
this property, so candidate solutions will be of the form

v = c1 sin

√
P

EI
x+ c2 cos

√
P

EI
x

It is obvious that c2 must be zero, since the deflection must go to zero at x = 0 and L. Further,
the sine term must go to zero at these two positions as well, which requires that the length L
be exactly equal to a multiple of the half wavelength of the sine function:

√
P

EI
L = nπ, n = 1, 2, 3, · · ·

The lowest value of P leading to the deformed shape corresponds to n = 1; the critical buckling
load Pcr is then:

Pcr =
π2EI

L2
(11)

Note the dependency on L2, so the buckling load drops with the square of the length.
This strong dependency on length shows why crossbracing is so important in preventing

buckling. If a brace is added at the beam’s midpoint as shown in Fig. 7 to eliminate deflection
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there, the buckling shape is forced to adopt a wavelength of L rather than 2L. This is equivalent
to making the beam half as long, which increases the critical buckling load by a factor of four.

Figure 7: Effect of lateral support and end conditions on beam buckling.

Similar reasoning can be used to assess the result of having different support conditions. If
for instance the beam is cantilevered at one end but unsupported at the other, its buckling shape
will be a quarter sine wave. This is equivalent to making the beam twice as long as the case
with both ends pinned, so the buckling load will go down by a factor of four. Cantilevering both
ends forces a full-wave shape, with the same buckling load as the pinned beam with a midpoint
support.

Shear stresses

Transverse loads bend beams by inducing axial tensile and compressive normal strains in the
beam’s x-direction, as discussed above. In addition, they cause shear effects that tend to slide
vertical planes tangentially to one another as depicted in Fig. 8, much like sliding playing cards
past one another. The stresses τxy associated with this shearing effect add up to the vertical shear
force we have been calling V , and we now seek to understand how these stresses are distributed
over the beam’s cross section. The shear stress on vertical planes must be accompanied by an
equal stress on horizontal planes since τxy = τyx, and these horizontal shearing stresses must
become zero at the upper and lower surfaces of the beam unless a traction is applied there to
balance them. Hence they must reach a maximum somewhere within the beam.
The variation of this horizontal shear stress with vertical position y can be determined by

examining a free body of width dx cut from the beam a distance y above neutral axis as shown
in Fig. 9. The moment on the left vertical face is M(x), and on the right face it has increased
to M + dM . Since the horizontal normal stresses are directly proportional to the moment
(σx =My/I), any increment in moment dM over the distance dx produces an imbalance in the
horizontal force arising from the normal stresses. This imbalance must be compensated by a
shear stress τxy on the horizontal plane at y. The horizontal force balance is written as

τxy b dx =

∫
A′

dM ξ

I
dA′

8



Figure 8: Shearing displacements in beam bending.

Figure 9: Shear and bending moment in a differential length of beam.

where b is the width of the beam at y, ξ is a dummy height variable ranging from y to the outer
surface of the beam, and A′ is the cross-sectional area between the plane at y and the outer
surface. Using dM = V dx from Eqn. 8 of Module 12, this becomes

τxy =
V

Ib

∫
A′
ξ dA′ =

V Q

Ib
(12)

where here Q(y) =
∫
A′ ξ dA

′ = ξA′ is the first moment of the area above y about the neutral
axis.
The parameter Q(y) is notorious for confusing persons new to beam theory. To determine it

for a given height y relative to the neutral axis, begin by sketching the beam cross section, and
draw a horizontal line line at the position y at which Q is sought (Fig. 10 shows a rectangular
beam of of constant width b and height h for illustration). Note the area A′ between this line
and the outer surface (indicated by cross-hatching in Fig. 10). Now compute the distance ξ from
the neutral axis to the centroid of A′. The parameter Q(y) is the product of A′ and ξ; this is
the first moment of the area A′ with respect to the centroidal axis. For the rectangular beam,
it is

9



Figure 10: Section of a rectangular beam.

Q = A′ ξ =

[
b

(
h

2
− y

)] [
y +
1

2

(
h

2
− y

)]
=
b

2

(
h2

4
− y2

)

Note that Q(y), and therefore τxy(y) as well, is parabolic, being maximum at the neutral axis
(y = 0) and zero at the outer surface (y = h/2). Using I = bh3/12 for the rectangular beam,
the maximum shear stress as given by Eqn. 12 is

τxy,max = τxy|y=0 =
3V

2bh

(Keep in mind than the above two expressions for Q and τxy,max are for rectangular cross section
only; sections of other shapes will have different results.) These shear stresses are most important
in beams that are short relative to their height, since the bending moment usually increases with
length and the shear force does not (see Prob. 11). One standard test for interlaminar shear
strength2 is to place a short beam in bending and observe the load at which cracks develop along
the midplane.

Example 2

Since the normal stress is maximum where the horizontal shear stress is zero (at the outer fibers), and
the shear stress is maximum where the normal stress is zero (at the neutral axis), it is often possible to
consider them one at a time. However, the juncture of the web and the flange in I and T beams is often
a location of special interest, since here both stresses can take on substantial values.
Consider the T beam seen previously in Example 1, and examine the location at point A shown in

Fig. 11, in the web immediately below the flange. Here the width b in Eqn. 12 is the dimension labeled
c; since the beam is thin here the shear stress τxy will tend to be large, but it will drop dramatically
in the flange as the width jumps to the larger value a. The normal stress at point A is computed from
σx = My/I, using y = d − y. This value will be almost as large as the outer-fiber stress if the flange
thickness b is small compared with the web height d. The Mohr’s circle for the stress state at point A
would then have appreciable contributions from both σx and τxy, and can result in a principal stress
larger than at either the outer fibers or the neutral axis.
This problem provides a good review of the governing relations for normal and shear stresses in beams,

and is also a natural application for symbolic-manipulation computer methods. Using Maple software,
we might begin by computing the location of the centroidal axis:

2“Apparent Horizontal Shear Strength of Reinforced Plastics by Short Beam Method,” ASTM D2344, Amer-
ican Society for Testing and Materials.
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Figure 11: Section of T beam.

> ybar := ((d/2)*c*d) + ( (d+(b/2) )*a*b )/( c*d + a*b );

Here the “>” symbol is the Maple prompt, and the “;” is needed by Maple to end the command. The
maximum shear force and bending moment (present at the wall) are defined in terms of the distributed
load and the beam length as

> V := w*L;

> M := -(w*L)*(L/2);

For plotting purposes, it will be convenient to have a height variable Y measured from the bottom of the
section. The relations for normal stress, shear stress, and the first principal stress are functions of Y;
these are defined using the Maple “procedure” command:

> sigx := proc (Y) -M*(Y-ybar)/Iz end;

> tauxy := proc (Y) V*Q(Y)/(Iz*B(Y) ) end;

> sigp1 := proc (Y) (sigx(Y)/2) + sqrt( (sigx(Y)/2)^2 + (tauxy(Y))^2 ) end;

The moment of inertia Iz is computed as

> I1 := (a*b^3)/12 + a*b* (d+(b/2)-ybar)^2;

> I2 := (c*d^3)/12 + c*d* ((d/2)-ybar)^2;

> Iz := I1+I2;

The beam width B is defined to take the appropriate value depending on whether the variable Y is in the
web or the flange:

> B:= proc (Y) if Y<d then B:=c else B:=a fi end;

The command “fi” (“if” spelled backwards) is used to end an if-then loop. The function Q(Y) is defined
for the web and the flange separately:

> Q:= proc (Y) if Y<d then

> int( (yy-ybar)*c,yy=Y..d) + int( (yy-ybar)*a,yy=d..(d+b) )

> else

> int( (yy-ybar)*a,yy=Y.. (d+b) )

> fi end;

Here “int” is the Maple command for integration, and yy is used as the dummy height variable. The
numerical values of the various parameters are defined as

> a:=3: b:=1/4: c:=1/4: d:=3-b: L:=8: w:=100:
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Figure 12: Stresses at the web-flange junction in a short cantilevered T beam subjected to
uniform loading.

Finally, the stresses can be graphed using the Maple plot command

> plot({sigx,tauxy,sigp1},Y=0..3,sigx=-500..2500);

The resulting plot is shown in Fig. 12.

Example 3

In the previous example, we were interested in the variation of stress as a function of height in a beam of
irregular cross section. Another common design or analysis problem is that of the variation of stress not
only as a function of height but also of distance along the span dimension of the beam. The shear and
bending moments V (x) and M(x) vary along this dimension, and so naturally do the stresses σx(x, y)
and τxy(x, y) that depend on them according to Eqns. 7 and 12.

Figure 13: (a) Beam in four-point bending. (b) Free-body diagram.

Consider a short beam of rectangular cross section subjected to four-point loading as seen in Fig. 13.
The loading, shear, and bending moment functions are:
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q(x) = P 〈x〉−1 − P 〈x− a〉−1 − P 〈x− 2a〉−1 + P 〈x− 3a〉−1

V (x) = −

∫
q(x) dx = −P 〈x〉0 + P 〈x− a〉0 + P 〈x− 2a〉0 − P 〈x− 3a〉0

M(x) = −

∫
V (x) dx = P 〈x〉1 − P 〈x− a〉1 − P 〈x− 2a〉1 + P 〈x− 3a〉1

The shear and normal stresses can be determined as functions of x and y directly from these functions,
as well as such parameters as the principal stress. Since σy is zero everywhere, the principal stress is

σp1 =
σx

2
+

√(σx
2

)2
+ τ2xy

One way to visualize the x-y variation of σp1 is by means of a 3D surface plot, which can be prepared
easily by Maple. For the numerical values P = 100, a = h = 10, b = 3 , we could use the expressions
(Maple responses removed for brevity):

> # use Heaviside for singularity functions

> readlib(Heaviside);

> sfn := proc(x,a,n) (x-a)^n * Heaviside(x-a) end;

> # define shear and bending moment functions

> V:=(x)-> -P*sfn(x,0,0)+P*sfn(x,a,0)+P*sfn(x,2*a,0)-P*sfn(x,3*a,0);

> M:=(x)-> P*sfn(x,0,1)-P*sfn(x,a,1)-P*sfn(x,2*a,1)+P*sfn(x,3*a,1);

> # define shear stress function

> tau:=V(x)*Q/(Iz*b);

> Q:=(b/2)*( (h^2/4) -y^2);

> Iz:=b*h^3/12;

> # define normal stress function

> sig:=M(x)*y/Iz;

> # define principal stress

> sigp:= (sig/2) + sqrt( (sig/2)^2 + tau^2 );

> # define numerical parameters

> P:=100;a:=10;h:=10;b:=3;

> # make plot

> plot3d(sigp,x=0..3*a,y=-h/2 .. h/2);

The resulting plot is shown in Fig. 14. The dominance of the parabolic shear stress is evident near the
beam ends, since here the shear force is at its maximum value but the bending moment is small (plot the
shear and bending moment diagrams to confirm this). In the central part of the beam, where a < x < 2a,
the shear force vanishes and the principal stress is governed only by the normal stress σx, which varies
linearly from the beam’s neutral axis. The first principal stress is zero in the compressive lower part
of this section, since here the normal stress σx is negative and the right edge of the Mohr’s circle must
pass through the zero value of the other normal stress σy. Working through the plot of Fig. 14 is a good
review of the beam stress formulas.

Problems

1. Derive the composite area theorem for determining the centroid of a compound area.

y =

∑
iAiyi∑
iAi
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Figure 14: Variation of principal stress σp1 in four-point bending.

Prob. 2

2. (a)–(d) Locate the centroids of the areas shown.

3. Derive the “parallel-axis theorem” for moments of inertia of a plane area:

Ix = Ixg +Ay
2

Iy = Iyg +Ax
2

Prob. 3

4. (a)–(d) Determine the moment of inertia relative to the horizontal centroidal axis of the
areas shown.

14



Prob. 4

5. Show that the moment of inertia transforms with respect to axis rotations exactly as does
the stress:

Ix′ = Ix cos
2 θ + Iy sin

2 θ − 2Ixy sin θ cos θ

where Ix and Iy are the moments of inertia relative to the x and y axes respectively and
Ixy is the product of inertia defined as

Ixy =

∫
A
xy dA

6. (a)–(h) Determine the maxiumum normal stress σx in the beams shown here, using the
values (as needed) L = 25 in, a = 5 in, w = 10 lb/in, P = 150 lb. Assume a rectangular
cross-section of width b = 1 in and height h = 2 in.

Prob. 6

7. Justify the statement in ASTM test D790, “Standard Test Methods for Flexural Properties
of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” which reads:

When a beam of homogeneous, elastic material is tested in flexure as a simple
beam supported at two points and loaded at the midpoint, the maximum stress
in the outer fibers occurs at midspan. This stress may be calculated for any
point on the load-deflection curve by the following equation:
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S = 3PL/2bd2

where S = stress in the outer fibers at midspan, MPa; P = load at a given point
on the load-deflection curve; L = support span, mm; b = width of beam tested,
mm; and d = depth of beam tested, mm.

8. Justify the statement in ASTM test D790, “Standard Test Methods for Flexural Properties
of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” which reads:

The tangent modulus of elasticity, often called the ”modulus of elasticity,” is
the ratio, within the elastic limit of stress to corresponding strain and shall be
expressed in megapascals. It is calculated by drawing a tangent to the steepest
initial straight-line portion of the load-deflection curve and using [the expres-
sion:]

Eb = L
3m/4bd3

where Eb = modulus of elasticity in bending, MPa; L = support span, mm;
d = depth of beam tested, mm; and m = slope of the tangent to the initial
straight-line portion of the load-deflection curve, N/mm of deflection.

9. A rectangular beam is to be milled from circular stock as shown. What should be the
ratio of height to width (b/h) to as to minimize the stresses when the beam is put into
bending?

Prob. 9

10. (a)–(h) Determine the maxiumum shear τxy in the beams of Prob. 6, , using the values (as
needed) L = 25 in, a = 5 in, w = 10 lb/in, P = 150 lb. Assume a rectangular cross-section
of width b = 1 in and height h = 2 in.

11. Show that the ratio of maximum shearing stress to maximum normal stress in a beam
subjected to 3-point bending is

τ

σ
=
h

2L

Hence the importance of shear stress increases as the beam becomes shorter in comparison
with its height.
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Prob. 11

12. Read the ASTM test D4475, “Standard Test Method for Apparent Horizontal Shear
Strength of Pultruded Reinforced Plastic Rods By The Short-Beam Method,” and jus-
tify the expression given there for the apparent shear strength:

S = 0.849P/d2

where S = apparent shear strength, N/m2, (or psi); P = breaking load, N, (or lbf); and
d = diameter of specimen, m (or in.).

13. For the T beam shown here, with dimensions L = 3, a = 0.05, b = 0.005, c = 0.005, d = 0.7
(all in m) and a loading distribution of w = 5000 N/m, determine the principal and
maximum shearing stress at point A.

Prob. 13

14. Determine the maximum normal stress in a cantilevered beam of circular cross section
whose radius varies linearly from 4r0 to r0 in a distance L, loaded with a force P at the
free end.

Prob. 14

15. A carbon steel column has a length L = 1 m and a circular cross section of diameter d = 20
mm. Determine the critical buckling load Pc for the case of (a) both ends pinned, (b) one
end cantilevered, (c) both ends pinned but supported laterally at the midpoint.
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Prob. 15

16. A carbon steel column has a length L = 1 m and a circular cross section. Determine
the diameter d at which the column has an equal probablity of buckling or yielding in
compression.

18



Beam Displacements

David Roylance
Department of Materials Science and Engineering

Massachusetts Institute of Technology
Cambridge, MA 02139

November 30, 2000

Introduction

We want to be able to predict the deflection of beams in bending, because many applications
have limitations on the amount of deflection that can be tolerated. Another common need for
deflection analysis arises from materials testing, in which the transverse deflection induced by a
bending load is measured. If we know the relation expected between the load and the deflection,
we can “back out” the material properties (specifically the modulus) from the measurement. We
will show, for instance, that the deflection at the midpoint of a beam subjected to “three-point
bending” (beam loaded at its center and simply supported at its edges) is

δP =
PL3

48EI

where the length L and the moment of inertia I are geometrical parameters. If the ratio of δP
to P is measured experimentally, the modulus E can be determined. A stiffness measured this
way is called the flexural modulus.
There are a number of approaches to the beam deflection problem, and many texts spend

a good deal of print on this subject. The following treatment outlines only a few of the more
straightforward methods, more with a goal of understanding the general concepts than with
developing a lot of facility for doing them manually. In practice, design engineers will usually
consult handbook tabulations of deflection formulas as needed, so even before the computer age
many of these methods were a bit academic.

Multiple integration

In Module 12, we saw how two integrations of the loading function q(x) produces first the shear
function V (x) and then the moment function M(x):

V = −
∫
q(x) dx+ c1 (1)

M = −
∫
V (x) dx+ c2 (2)

where the constants of integration c1 and c2 are evaluated from suitable boundary conditions on
V andM . (If singularity functions are used, the boundary conditions are included explicitly and
the integration constants c1 and c2 are identically zero.) From Eqn. 6 in Module 13, the curvature
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v,xx(x) is just the moment divided by the section modulus EI. Another two integrations then
give

v,x(x) =
1

EI

∫
M(x) dx+ c3 (3)

v(x) =

∫
v,x(x) dx + c4 (4)

where c3 and c4 are determined from boundary conditions on slope or deflection.

Example 1

Figure 1: Three-point bending.

As an illustration of this process, consider the case of “three-point bending” shown in Fig. 1. This
geometry is often used in materials testing, as it avoids the need to clamp the specimen to the testing
apparatus. If the load P is applied at the midpoint, the reaction forces at A and B are equal to half the
applied load. The loading function is then

q(x) =
P

2
〈x〉−1 − P 〈x−

L

2
〉−1

Integrating according to the above scheme:

V (x) = −
P

2
〈x〉0 + P 〈x−

L

2
〉0

M(x) =
P

2
〈x〉1 − P 〈x−

L

2
〉1 (5)

EIv,x(x) =
P

4
〈x〉2 −

P

2
〈x −

L

2
〉2 + c3

From symmetry, the beam has zero slope at the midpoint. Hence v,x = 0 @ x = L/2, so c3 can be found
to be −PL2/16. Integrating again:

EIv(x) =
P

12
〈x〉3 −

P

6
〈x −

L

2
〉3 −

PL2x

16
+ c4

The deflection is zero at the left end, so c4 = 0. Rearranging, the beam deflection is given by
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v =
P

48EI

[
4x3 − 3L2x− 8〈x−

L

2
〉3
]

(6)

The maximum deflection occurs at x = L/2, which we can evaluate just before the singularity term
activates. Then

δmax =
PL3

48EI
(7)

This expression is much used in flexural testing, and is the example used to begin this module.

Before the loading function q(x) can be written, the reaction forces at the beam supports
must be determined. If the beam is statically determinate, as in the above example, this can
be done by invoking the equations of static equilibrium. Static determinacy means only two
reaction forces or moments can be present, since we have only a force balance in the direction
transverse to the beam axis and one moment equation available. A simply supported beam (one
resting on only two supports) or a simply cantilevered beam are examples of such determinate
beams; in the former case there is one reaction force at each support, and in the latter case there
is one transverse force and one moment at the clamped end.
Of course, there is no stringent engineering reason to limit the number of beam supports

to those sufficient for static equilibrium. Adding “extra” supports will limit deformations and
stresses, and this will often be worthwhile in spite of the extra construction expense. But the
analysis is now a bit more complicated, since not all of the unknown reactions can be found from
the equations of static equilibrium. In these statically indeterminate cases it will be necessary
to invoke geometrical constraints to develop enough equations to solve the problem.
This is done by writing the slope and deflection equations, carrying the unknown reaction

forces and moments as undetermined parameters. The slopes and deflections are then set to
their known values at the supports, and the resulting equations solved for the unknowns. If
for instance a beam is resting on three supports, there will be three unknown reaction forces,
and we will need a total of five equations: three for the unknown forces and two more for the
constants of integration that arise when the slope and deflection equations are written. Two
of these equations are given by static equilibrium, and three more are obtained by setting the
deflections at the supports to zero. The following example illustrates the procedure, which is
straightforward although tedious if done manually.

Example 2

Consider a triply-supported beam of length L = 15 as shown in Fig. 2, carrying a constant uniform load
of w = −10. There are not sufficient equilibrium equations to determine the reaction forces Ra, Rb, and
Rc, so these are left as unknowns while multiple integration is used to develop a deflection equation:

q(x) = Ra〈x〉−1 +Rb〈x− 7.5〉−1 +Rc〈x− 15〉−1 − 10〈x〉
0

V (x) = −

∫
q(x) dx = −Ra〈x〉

0 −Rb〈x − 7.5〉
0 −Rc〈x− 15〉

0 + 10〈x〉1

M(x) = −

∫
V (x) dx = Ra〈x〉

1 +Rb〈x− 7.5〉
1 +Rc〈x− 15〉

1 −
10

2
〈x〉2

EIy′(x) =

∫
M(x) dx =

Ra

2
〈x〉2 +

Rb

2
〈x− 7.5〉2 +

Rc

2
〈x− 15〉2 −

10

6
〈x〉3 + c1
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Figure 2: Uniformly loaded beam resting on three supports.

EIy(x) =

∫
EIy′(x) dx =

Ra

6
〈x〉3 +

Rb

6
〈x− 7.5〉3 +

Rc

6
〈x− 15〉3 −

10

24
〈x〉4 + c1x+ c2

These equations have 5 unknowns: Ra, Rb, Rc, c1, and c2. These must be obtained from the two
equilibrium equations ∑

Fy = 0 = Ra +Rb +Rc − qL∑
Ma = 0 = qL

L

2
−Rb

L

2
−RcL

and the three known zero displacements at the supports

y(0) = y(L/2) = y(L) = 0

Although the process is straightforward, there is a lot of algebra to wade through. Statically indeterminate
beams tend to generate tedious mathematics, but fortunately this can be reduced greatly by modern
software. Follow how easily this example is handled by the Maple V package (some of the Maple responses
removed for brevity):

> # read the library containing the Heaviside function

> readlib(Heaviside);

> # use the Heaviside function to define singularity functions;

> # sfn(x,a,n) is same is <x-a>^n

> sfn := proc(x,a,n) (x-a)^n * Heaviside(x-a) end;

> # define the deflection function:

> y := (x)-> (Ra/6)*sfn(x,0,3)+(Rb/6)*sfn(x,7.5,3)+(Rc/6)*sfn(x,15,3)

> -(10/24)*sfn(x,0,4)+c1*x+c2;

> # Now define the five constraint equations; first vertical equilibrium:

> eq1 := 0=Ra+Rb+Rc-(10*15);

> # rotational equilibrium:

> eq2 := 0=(10*15*7.5)-Rb*7.5-Rc*15;

> # Now the three zero displacements at the supports:

> eq3 := y(0)=0;

> eq4 := y(7.5)=0;

> eq5 := y(15)=0;

> # set precision; 4 digits is enough:
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> Digits:=4;

> # solve the 5 equations for the 5 unknowns:

> solve({eq1,eq2,eq3,eq4,eq5},{Ra,Rb,Rc,c1,c2});

{c2 = 0, c1 = -87.82, Rb = 93.78, Ra = 28.11, Rc = 28.11}

> # assign the known values for plotting purposes:

> c1:=-87.82;c2:=0;Ra:=28.11;Rb:=93.78;Rc:=28.11;

> # the equation of the deflection curve is:

> y(x);

3 3

4.686 x Heaviside(x) + 15.63 (x - 7.5) Heaviside(x - 7.5)

3 4

+ 4.686 (x - 15) Heaviside(x - 15) - 5/12 x Heaviside(x) - 87.82 x

> # plot the deflection curve:

> plot(y(x),x=0..15);

> # The maximum deflection occurs at the quarter points:

> y(15/4);

-164.7

The plot of the deflection curve is shown in Fig. 3.

Figure 3: Deflection curve EIy(x) for uniformly loaded triply-supported beam (Note difference
in horizontal and vertical scales).

Energy method

The strain energy in bending as given by Eqn. 8 of Module 13 can be used to find deflections,
and this may be more convenient than successive integration if the deflection at only a single
point is desired. Castigliano’s Theorem gives the deflection congruent to a load P as

δP =
∂U

∂P
=
∂

∂P

∫
L

M2 dx

2EI
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It is usually more convenient to do the differentiation before the integration, since this lowers
the order of the expression in the integrand:

δP =

∫
L

M

EI

∂M

∂P
dx

where here E and I are assumed not to vary with x.
The shear contribution to bending can be obtained similarly. Knowing the shear stress

τ = V Q/Ib (omitting the xy subscript on τ for now), the strain energy due to shear Us can be
written

Us =

∫
V

τ2

2G
dV =

∫
L

V 2

2GI

[∫
A

Q2

L2
dA

]
dx

The integral over the cross-sectional area A is a purely geometrical factor, and we can write

Us =

∫
L

V 2fs
2GA

dA (8)

where the fs is a dimensionless form factor for shear defined as

fs =
A

I2

∫
A

Q2

b2
dA (9)

Figure 4: Rectangular beam section.

Evaluating fs for rectangular sections for illustration (see Fig. 4), we have in that case

A = bh, I =
bh3

12

Q =

[
y +
(h/2) − y

2

] [
b

(
h

2
− y

)]

fs =
(bh)

(bh3/12)2

∫ h/2
−h/2

1

b2
Qdy =

6

5

Hence fs is the same for all rectangular sections, regardless of their particular dimensions.
Similarly, it can be shown (see Prob. 3) that for solid circular sections fs = 10/9 and for hollow
circular sections fs = 2.
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Example 3

If for instance we are seeking the deflection under the load P in the three-point bending example done
earlier, we can differentiate the moment given in Eqn. 5 to obtain

∂M

∂P
=
1

2
〈x〉1 − 〈x−

L

2
〉1

Then

δP =
1

EI

∫
L

(
P

2
〈x〉1 − P 〈x−

L

2
〉1
)(
1

2
〈x〉1 − 〈x−

L

2
〉1
)
dx

Expanding this and adjusting the limits of integration to account for singularity functions that have not
been activated:

δP =
P

EI

{∫ L
0

x2

4
dx+

∫ L
L/2

[
−x

(
x−
L

2

)
+

(
x−
L

2

)2]
dx

}

= −
PL3

48EI

as before.
The contribution of shear to the deflection can be found by using V = P/2 in the equation for strain

energy. For the case of a rectangular beam with fs = 6/5 we have:

Us =
(P/2)2(6/5)

2GA
L

δP,s =
∂Us

∂P
=
6PL

20GA

The shear contribution can be compared with the bending contribution by replacing A with 12I/h2 (since
A = bh and I = bh3/12). Then the ratio of the shear to bending contributions is

PLh2/40GI

PL3/24EI
=
3h2E

5L2G

Hence the importance of the shear term scales as (h/L)2, i.e. quadratically as the span-to-depth ratio.

The energy method is often convenient for systems having complicated geometries and com-
bined loading. For slender shafts transmitting axial, torsional, bending and shearing loads the
strain energy is

U =

∫
L

(
P 2

2EA
+
T 2

2GJ
+
M2

2EI
+
V 2fs
2GA

)
dx (10)

Example 4

Consider a cantilevered circular beam as shown in Fig. 5 that tapers from radius r1 to r2 over the length
L. We wish to determine the deflection caused by a force F applied to the free end of the beam, at an
angle θ from the horizontal. Turning to Maple to avoid the algebraic tedium, the dimensional parameters
needed in Eqn. 10 are defined as:
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Figure 5: Tapered circular beam.

> r := proc (x) r1 + (r2-r1)*(x/L) end;

> A := proc (r) Pi*(r(x))^2 end;

> Iz := proc (r) Pi*(r(x))^4 /4 end;

> Jp := proc (r) Pi*(r(x))^4 /2 end;

where r(x) is the radius, A(r) is the section area, Iz is the rectangular moment of inertia, and Jp is the
polar moment of inertia. The axial, bending, and shear loads are given in terms of F as

> P := F* cos(theta);

> V := F* sin(theta);

> M := proc (x) -F* sin(theta) * x end;

The strain energies corresponding to tension, bending and shear are

> U1 := P^2/(2*E*A(r));

> U2 := (M(x))^2/(2*E*Iz(r));

> U3 := V^2*(10/9)/(2*G*A(r));

> U := int( U1+U2+U3, x=0..L);

Finally, the deflection congruent to the load F is obtained by differentiating the total strain energy:

> dF := diff(U,F);

The result of these manipulations yields

δF =
LF

[
12L2G− 12GL2 cos2 θ + 9Gr22 cos

2 θ + 10 r22E − 10 r
2
2E cos

2 θ
]

9 r1 r32EπG

This displacement is in the direction of the applied force F ; the horizontal and vertical deflections of the
end of the beam are then

δx = δF cos θ

δy = δF sin θ

8



Superposition

In practice, many beams will be loaded in a complicated manner consisting of several concen-
trated or distributed loads acting at various locations along the beam. Although these multiple-
load cases can be solved from scratch using the methods described above, it is often easier to
solve the problem by superposing solutions of simpler problems whose solutions are tabulated.
Fig. 6 gives an abbreviated collection of deflection formulas1 that will suffice for many problems.
The superposition approach is valid since the governing equations are linear; hence the response
to a combination of loads is the sum of the responses that would be generated by each separate
load acting alone.

Figure 6: Deflections for cantilevered and simply-supported beams, under concentrated and
distributed loading.

Example 5

We wish to find the equation of the deflection curve for a simply-supported beam loaded in symmetric
four-point bending as shown in Fig. 7. From Fig. 6, the deflection of a beam with a single load at a

1A more exhaustive listing is available in W.C. Young, Roark’s Formulas for Stress and Strain, McGraw-Hill,
New York, 1989.
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Figure 7: Four-point bending.

distance a from the left end is δ(x) = Pb
6LEI

[
L
b
〈x − a〉3 − x3 +

(
L2 − b2

)
x
]
. Our present problem is just

two such loads acting simultaneously, so we have

δ(x) =
P (L− a)

6LEI

[
L

L− a
〈x− a〉3 − x3 +

(
L2 − (L − a)2

)
x

]

+
Pa

6LEI

[
L

a
〈x− (L− a)〉3 − x3 +

(
L2 − a2

)
x

]

In some cases the designer may not need the entire deflection curve, and superposition of
tabulated results for maximum deflection and slope is equally valid.

Problems

1. (a)–(h) Write expressions for the slope and deflection curves of the beams shown here.

Prob. 1

2. (a)–(h) Use MapleV (or other) software to plot the slope and deflection curves for the beams
in Prob. 1, using the values (as needed) L = 25 in, a = 15 in, w = 10 lb/in, P = 150 lb.

3. Show that the shape factor for shear for a circular cross section is
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fs =
A

I2

∫
A

Q

b2
dA =

10

9

4. (a)–(b) Determine the deflection curves for the beams shown here. Plot these curves for
the the values (as needed) L = 25 in, a = 5 in, w = 10 lb/in, P = 150 lb.

Prob. 4

5. (a) Determine the deflection of a coil spring under the influence of an axial force F ,
including the contribution of bending, direct shear, and torsional shear effects. Using
r = 1 mm and R = 10 mm, compute the relative magnitudes of the three contributions.

(b) Repeat the solution in (a), but take the axial load to be placed at the outer radius of
the coil.

Prob. 5

6. (a)–(c) Use the method of superposition to write expressions for the deflection curve δ(x)
for the cases shown here.

11



Prob. 6
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LAMINATED COMPOSITE PLATES

David Roylance
Department of Materials Science and Engineering
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Cambridge, MA 02139

February 10, 2000

Introduction

This document is intended to outline the mechanics of fiber-reinforced laminated plates, leading
to a computational scheme that relates the in-plane strain and curvature of a laminate to the
tractions and bending moments imposed on it. Although this is a small part of the overall field
of fiber-reinforced composites, or even of laminate theory, it is an important technique that
should be understood by all composites engineers.
In the sections to follow, we will review the constitutive relations for isotropic materials in

matrix form, then show that the extension to transversely isotropic composite laminae is very
straightforward. Since each ply in a laminate may be oriented arbitrarily, we will then show
how the elastic properties of the individual laminae can be transformed to a common direction.
Finally, we will balance the individual ply stresses against the applied tractions and moments
to develop matrix governing relations for the laminate as a whole.
The calculations for laminate mechanics are best done by computer, and algorithms are

outlined for elastic laminates, laminates exhibiting thermal expansion effects, and laminates
exhibiting viscoelastic response.

Isotropic linear elastic materials

As shown in elementary texts on Mechanics of Materials (cf. Roylance 19961), the Cartesian
strains resulting from a state of plane stress (σz = τxz = τyz = 0) are

εx =
1

E
(σx − νσy)

εy =
1

E
(σy − νσx)

γxy =
1

G
τxy

In plane stress there is also a strain in the z direction due to the Poisson effect: εz = −ν (σx + σy);
this strain component will be ignored in the sections to follow. In the above relations there are
three elastic constants: the Young’s modulus E, Poisson’s ratio ν, and the shear modulus

1See References listed at the end of this document.
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G. However, for isotropic materials there are only two independent elastic constants, and for
instance G can be obtained from E and ν as

G =
E

2(1 + ν)

Using matrix notation, these relations can be written as

εx
εx
γxy


 =


 1/E −ν/E 0
−ν/E 1/E 0
0 0 1/G





σx
σy
τxy


 (1)

The quantity in brackets is called the compliance matrix of the material, denoted S or Sij. It
is important to grasp the physical significance of its various terms. Directly from the rules of
matrix multiplication, the element in the ith row and jth column of Sij is the contribution of the
jth stress to the ith strain. For instance the component in the 1,2 position is the contribution
of the y-direction stress to the x-direction strain: multiplying σy by 1/E gives the y-direction
strain generated by σy, and then multiplying this by −ν gives the Poisson strain induced in
the x direction. The zero elements show the lack of coupling between the normal and shearing
components.
If we wish to write the stresses in terms of the strains, Eqn. 1 can be inverted to give:


σx
σy
τxy


 =

E

1− ν2


 1 ν 0
ν 1 0
0 0 (1− ν)/2





εx
εy
γxy


 (2)

where here G has been replaced by E/2(1 + ν). This relation can be abbreviated further as:

σ = Dε (3)

where D = S−1 is the stiffness matrix. Note that the Young’s modulus can be recovered by
taking the reciprocal of the 1,1 element of the compliance matrix S, but that the 1,1 position of
the stiffness matrix D contains Poisson effects and is not equal to E.

Anisotropic Materials

If the material has a texture like wood or unidirectionally-reinforced fiber composites as shown in
Fig. 1, the modulus E1 in the fiber direction will typically be larger than those in the transverse
directions (E2 and E3). When E1 6= E2 6= E3, the material is said to be orthotropic. It is
common, however, for the properties in the plane transverse to the fiber direction to be isotropic
to a good approximation (E2 = E3); such a material is called transversely isotropic. The elastic
constitutive laws must be modified to account for this anisotropy, and the following form is an
extension of the usual equations of isotropic elasticity to transversely isotropic materials:



ε1
ε2
γ12


 =


 1/E1 −ν21/E2 0
−ν12/E1 1/E2 0
0 0 1/G12





σ1
σ2
τ12


 (4)

The parameter ν12 is the principal Poisson’s ratio; it is the ratio of the strain induced in the
2-direction by a strain applied in the 1-direction. This parameter is not limited to values less
than 0.5 as in isotropic materials. Conversely, ν21 gives the strain induced in the 1-direction by
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. .

Figure 1: An orthotropic material.

a strain applied in the 2-direction. Since the 2-direction (transverse to the fibers) usually has
much less stiffness than the 1-direction, a given strain in the 1-direction will usually develop a
much larger strain in the 2-direction than will the same strain in the 2-direction induce a strain
in the 1-direction. Hence we will usually have ν12 > ν21. There are five constants in the above
equation (E1, E2, ν12, ν21 and G12). However, only four of them are independent; since the S
matrix is symmetric, we have ν21/E2 = ν12/E1.
The simple form of Eqn. 4, with zeroes in the terms representing coupling between normal

and shearing components, is obtained only when the axes are aligned along the principal material
directions; i.e. along and transverse to the fiber axes. If the axes are oriented along some other
direction, all terms of the compliance matrix will be populated, and the symmetry of the material
will not be evident. If for instance the fiber direction is off-axis from the loading direction, the
material will develop shear strain as the fibers try to orient along the loading direction. There
will therefore be a coupling between a normal stress and a shearing strain, which does not occur
in an isotropic material.

Transformation of Axes

It is important to be able to transform the axes to and from the “laboratory” x− y frame to a
natural material frame in which the axes might be labeled 1− 2 corresponding to the fiber and
transverse directions as shown in Fig. 2.

Figure 2: Rotation of axes.

As shown in elementary textbooks, the transformation law for Cartesian Cauchy stress can
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be written:

σ1 = σx cos
2 θ + σy sin

2 θ + 2τxy sin θ cos θ
σ2 = σx sin

2 θ + σy cos
2 θ − 2τxy sin θ cos θ

τ12 = (σy − σx) sin θ cos θ + τxy(cos2 θ − sin
2 θ)

(5)

Where θ is the angle from the x axis to the 1 (fiber) axis. These relations can be written in
matrix form as 


σ1
σ2
τ12


 =


 c

2 s2 2sc
s2 c2 −2sc
−sc sc c2 − s2





σx
σy
τxy


 (6)

where c = cos θ and s = sin θ. This can be abbreviated as

σ′ = Aσ (7)

where A is the transformation matrix in brackets above. This expression could be applied to
three-dimensional as well as two-dimensional stress states, although the particular form of A
given in Eqn. 6 is valid in two dimensions only (plane stress), and for Cartesian coordinates.
Using either mathematical or geometric arguments, it can be shown that the components of

infinitesimal strain transform by almost the same relations:

ε1
ε2
1
2γ12


 = A



εx
εy
1
2γxy


 (8)

The factor of 1/2 on the shear components arises from the classical definition of shear strain,
which is twice the tensorial shear strain. This introduces some awkwardness into the transfor-
mation relations, which can be reduced by introducing the Reuter’s matrix, defined as

[R] =


 1 0 00 1 0
0 0 2


 or [R]−1 =


 1 0 00 1 0
0 0 1

2


 (9)

We can now write:

ε1
ε2
γ12


 = R



ε1
ε2
1
2γ12


 = RA



εx
εy
1
2γxy


 = RAR−1



εx
εy
γxy




Or

ε′ = RAR−1ε (10)

The transformation law for compliance can now be developed from the transformation laws
for strains and stresses. By successive transformations, the strain in an arbitrary x-y direction
is related to strain in the 1-2 (principal material) directions, then to the stresses in the 1-2
directions, and finally to the stresses in the x-y directions. The final grouping of transformation
matrices relating the x-y strains to the x-y stresses is then the transformed compliance matrix
in the x-y direction:
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

εx
εy
γxy


 = R



εx
εy
1
2γxy


 = RA−1



ε1
ε2
1
2γ12


 = RA−1R−1



ε1
ε2
γ12




= RA−1R−1S



σ1
σ2
τ12


 = RA−1R−1SA



σx
σy
τxy


 ≡ S



σx
σy
τxy




where S is the transformed compliance matrix relative to x-y axes. The inverse of S is D, the
stiffness matrix relative to x-y axes:

S = RA−1R−1SA, D = S
−1

(11)

Example 1

Consider a ply of Kevlar-epoxy composite with a stiffnesses E1 = 82, E2 = 4, G12 = 2.8 (all GPa) and
ν12 = 0.25. oriented at 30

◦ from the x axis. The stiffness in the x direction can be found as the reciprocal
of the 1,1 element of the transformed compliance matrix S, as given by Eqn. 11. The following shows
how this can be done with Maple symbolic mathematics software (edited for brevity):

Read linear algebra package

> with(linalg):

Define compliance matrix

> S:=matrix(3,3,[[1/E[1],-nu[21]/E[2],0],[-nu[12]/E[1],1/E[2],0],[0,0,1/G[12]]]);

Numerical parameters for Kevlar-epoxy

> Digits:=4;unprotect(E);E[1]:=82e9;E[2]:=4e9;G[12]:=2.8e9;nu[12]:=.25;

nu[21]:=nu[12]*E[2]/E[1];

Compliance matrix evaluated

> S2:=map(eval,S);

S2 :=


 .1220 10−10 −.3050 10−11 0
−.3049 10−11 .2500 10−9 0

0 0 .3571 10−9




Transformation matrix

> A:=matrix(3,3,[[c^2,s^2,2*s*c],[s^2,c^2,-2*s*c],[-s*c,s*c,c^2-s^2]]);

Trigonometric relations and angle

> s:=sin(theta);c:=cos(theta);theta:=30*Pi/180;

Transformation matrix evaluated

> A2:=evalf(map(eval,A));

A2 :=


 .7500 .2500 .8660
.2500 .7500 −.8660
−.4330 .4330 .5000




Reuter’s matrix

> R:=matrix(3,3,[[1,0,0],[0,1,0],[0,0,2]]);

Transformed compliance matrix

> Sbar:=evalf(evalm( R &* inverse(A2) &* inverse(R) &* S2 &* A2 ));
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Sbar :=


 .8828 10−10 −.1968 10−10 −.1222 10−9

−.1969 10−10 .2071 10−9 −.8370 10−10

−.1222 10−9 −.8377 10−10 .2905 10−9




Stiffness in x-direction

> ’E[x]’=1/Sbar[1,1];

Ex = .1133 10
11

Note that the transformed compliance matrix is symmetric (to within numerical roundoff error), but
that nonzero coupling values exist. A user not aware of the internal composition of the material would
consider it completely anisotropic.

Laminated composite plates

One of the most common forms of fiber-reinforced composite materials is the crossplied laminate,
in which the fabricator “lays up” a sequence of unidirectionally reinforced “plies” as indicated in
Fig. 3. Each ply is typically a thin (approximately 0.2 mm) sheet of collimated fibers impregnated
with an uncured epoxy or other thermosetting polymer matrix material. The orientation of
each ply is arbitrary, and the layup sequence is tailored to achieve the properties desired of the
laminate. In this section we outline how such laminates are designed and analyzed.

Figure 3: A 3-ply symmetric laminate.

“Classical Laminate Theory” is an extension of the theory for bending of homogeneous plates,
but with an allowance for in-plane tractions in addition to bending moments, and for the varying
stiffness of each ply in the analysis. In general cases, the determination of the tractions and
moments at a given location will require a solution of the general equations for equilibrium and
displacement compatibility of plates. This theory is treated in a number of standard texts2, and
will not be discussed here.
We begin by assuming a knowledge of the tractions N and moments M applied to a plate

at a position x, y, as shown in Fig. 4:

N =



Nx
Ny
Nxy


 M =



Mx
My
Mxy


 (12)

2cf. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959.
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. .

Figure 4: Applied moments in plate bending.

It will be convenient to normalize these tractions and moments by the width of the plate, so they
have units of N/m and N-m/m, or simply N, respectively. Coordinates x and y are the directions
in the plane of the plate, and z is customarily taken as positive downward. The deflection in
the z direction is termed w, also taken as positive downward.

. .

Figure 5: Displacement of a point in a plate (from Powell, 1983).

Analogously with the Euler assumption for beams, the Kirshchoff assumption for plate bend-
ing takes initially straight vertical lines to remain straight but rotate around the midplane
(z = 0). As shown in Fig. 5, the horizontal displacements u and v in the x and y directions due
to rotation can be taken to a reasonable approximation from the rotation angle and distance
from midplane, and this rotational displacement is added to the midplane displacement (u0, v0):

u = u0 − z w0,x (13)

v = v0 − z w0,y (14)

The strains are just the gradients of the displacements; using matrix notation these can be
written

7



ε =



εx
εy
γxy


 =




u,x
v,y

u,y + v,x


 =




u0,x − z w0,xx
v0,y − z w0,yy

(u0,y + v0,x)− 2z w0,xy


 = ε0 + z κ (15)

where ε0 is the midplane strain and κ is the vector of second derivatives of the displacement,
called the curvature:

κ =



κx
κy
κxy


 =



−w0,xx
−w0,yy
−2w0,xy




The component κxy is a twisting curvature, stating how the x-direction midplane slope changes
with y (or equivalently how the y-direction slope changes with x).
The stresses relative to the x-y axes are now determined from the strains, and this must

take consideration that each ply will in general have a different stiffness, depending on its
own properties and also its orientation with respect to the x-y axes. This is accounted for by
computing the transformed stiffness matrix D as described in the previous section (Eqn. 11).
Recall that the ply stiffnesses as given by Eqn. 4 are those along the fiber and transverse
directions of that particular ply. The properties of each ply must be transformed to a common
x-y axes, chosen arbitrarily for the entire laminate. The stresses at any vertical position are
then:

σ = Dε = Dε0 + zDκ (16)

where here D is the transformed stiffness of the ply at the position at which the stresses are
being computed.
Each of these ply stresses must add to balance the traction per unit width N:

N =

∫ +h/2
−h/2

σ dz =
N∑
k=1

∫ zk+1
zk

σk dz (17)

where σk is the stress in the kth ply and zk is the distance from the laminate midplane to the
bottom of the kth ply. Using Eqn. 16 to write the stresses in terms of the mid-plane strains and
curvatures:

N =
N∑
k=1

(∫ zk+1
zk

Dε0 dz +

∫ zk+1
zk

Dκz dz

)
(18)

The curvature κ and midplane strain ε0 are constant throughout z, and the transformed stiffness
D does not change within a given ply. Removing these quantities from within the integrals:

N =
N∑
k=1

(
Dε0

∫ zk+1
zk

dz +Dκ

∫ zk+1
zk

z dz

)
(19)

After evaluating the integrals, this expression can be written in the compact form:

N = Aε0 + Bκ (20)

where A is an “extensional stiffness matrix” defined as:
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A =
N∑
k=1

D(zk+1 − zk) (21)

and B is a “coupling stiffness matrix” defined as:

B =
1

2

N∑
k=1

D(z2k+1 − z
2
k) (22)

The rationale for the names “extensional” and “coupling” is suggested by Eqn. 20. The A
matrix gives the influence of an extensional mid-plane strain ε0 on the inplane traction N, and
the B matrix gives the contribution of a curvature κ to the traction. It may not be obvious
why bending the plate will require an in-plane traction, or conversely why pulling the plate in
its plane will cause it to bend. But visualize the plate containing plies all of the same stiffness,
except for some very low-modulus plies somewhere above its midplane. When the plate is pulled,
the more compliant plies above the midplane will tend to stretch more than the stiffer plies below
the midplane. The top half of the laminate stretches more than the bottom half, so it takes on
a concave-downward curvature.
Similarly, the moment resultants per unit width must be balanced by the moments con-

tributed by the internal stresses:

M =

∫ +h/2
−h/2

σz dz = Bε0 +Dκ (23)

where D is a “bending stiffness matrix” defined as:

D =
1

3

N∑
k=1

D(z3k+1 − z
3
k) (24)

The complete set of relations between applied forces and moments, and the resulting mid-
plane strains and curvatures, can be summarized as a single matrix equation:

{
N
M

}
=

[
A B
B D

]{
ε0

κ

}
(25)

The A/B/B/D matrix in brackets is the laminate stiffness matrix, and its inverse will be the
laminate compliance matrix.
The presence of nonzero elements in the coupling matrix B indicates that the application of

an in-plane traction will lead to a curvature or warping of the plate, or that an applied bending
moment will also generate an extensional strain. These effects are usually undesirable. However,
they can be avoided by making the laminate symmetric about the midplane, as examination
of Eqn. 22 can reveal. (In some cases, this extension-curvature coupling can be used as an
interesting design feature. For instance, it is possible to design a composite propeller blade
whose angle of attack changes automatically with its rotational speed: increased speed increases
the in-plane centripetal loading, which induces a twist into the blade.)
The above relations provide a straightforward (although tedious, unless a computer is used)

means of determining stresses and displacements in laminated composites subjected to in-plane
traction or bending loads:
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1. For each material type in the stacking sequence, obtain by measurement or micromechan-
ical estimation the four independent anisotropic parameters appearing in Eqn. 4: (E1, E2,
ν12, and G12).

2. Using Eqn. 11, transform the compliance matrix for each ply from the ply’s principal
material directions to some convenient reference axes that will be used for the laminate as
a whole.

3. Invert the transformed compliance matrix to obtain the transformed (relative to x-y axes)
stiffness matrix D.

4. Add each ply’s contribution to the A, B and D matrices as prescribed by Eqns. 21, 22 and
24.

5. Input the prescribed tractions N and bending momentsM, and form the system equations
given by Eqn. 25.

6. Solve the resulting system for the unknown values of in-plane strain ε0 and curvature κ.

7. Use Eqn. 16 to determine the ply stresses for each ply in the laminate in terms of ε0, κ
and z. These will be the stresses relative to the x-y axes.

8. Use Eqn. 6 to transform the x-y stresses back to the principal material axes (parallel and
transverse to the fibers).

9. If desired, the individual ply stresses can be used in a suitable failure criterion to assess the
likelihood of that ply failing. The Tsai-Hill criterion is popularly used for this purpose:

(
σ1
σ̂1

)2
−
σ1σ2

σ̂21
+

(
σ2
σ̂2

)2
+

(
τ12
τ̂12

)2
= 1 (26)

Here σ̂1 and σ̂2 are the ply tensile strengths parallel to and along the fiber direction, and τ̂12
is the intralaminar ply strength. This criterion predicts failure whenever the left-hand-side
of the above equation equals or exceeds unity.

Example 2

The laminate analysis outlined above has been implemented in a code named plate, and this example
demonstrates the use of this code in determining the stiffness of a two-ply 0/90 layup of graphite/epoxy
composite. Here each of the two plies is given a thickness of 0.5, so the total laminate height will be
unity. The laminate theory assumes a unit width, so the overall stiffness and compliance matrices will
be based on a unit cross section.

> plate

assign properties for lamina type 1...

enter modulus in fiber direction...

(enter -1 to stop): 230e9

enter modulus in transverse direction: 6.6e9

enter principal Poisson ratio: .25

enter shear modulus: 4.8e9

enter ply thickness: .5

assign properties for lamina type 2...
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enter modulus in fiber direction...

(enter -1 to stop): -1

define layup sequence, starting at bottom...

(use negative material set number to stop)

enter material set number for ply number 1: 1

enter ply angle: 0

enter material set number for ply number 2: 1

enter ply angle: 90

enter material set number for ply number 3: -1

laminate stiffness matrix:

0.1185E+12 0.1653E+10 0.2942E+04 -0.2798D+11 0.0000D+00 0.7354D+03

0.1653E+10 0.1185E+12 0.1389E+06 0.0000D+00 0.2798D+11 0.3473D+05

0.2942E+04 0.1389E+06 0.4800E+10 0.7354D+03 0.3473D+05 0.0000D+00

-0.2798E+11 0.0000E+00 0.7354E+03 0.9876D+10 0.1377D+09 0.2451D+03

0.0000E+00 0.2798E+11 0.3473E+05 0.1377D+09 0.9876D+10 0.1158D+05

0.7354E+03 0.3473E+05 0.0000E+00 0.2451D+03 0.1158D+05 0.4000D+09

laminate compliance matrix:

0.2548E-10 -0.3554E-12 -0.1639E-16 0.7218D-10 0.7125D-19 -0.6022D-16

-0.3554E-12 0.2548E-10 -0.2150E-15 0.3253D-18 -0.7218D-10 -0.1228D-15

-0.1639E-16 -0.2150E-15 0.2083E-09 -0.6022D-16 -0.1228D-15 0.2228D-19

0.7218E-10 0.1084E-18 -0.6022E-16 0.3058D-09 -0.4265D-11 -0.1967D-15

0.6214E-22 -0.7218E-10 -0.1228E-15 -0.4265D-11 0.3058D-09 -0.2580D-14

-0.6022E-16 -0.1228E-15 0.2228E-19 -0.1967D-15 -0.2580D-14 0.2500D-08

Note that this unsymmetric laminate generates nonzero values in the coupling matrix B, as expected.
The stiffness is equal in the x and y directions, as can be seen by examing the 1,1 and 2,2 elements of
the laminate compliance matrix. The effective modulus is Ex = Ey = 1/0.2548 × 10−10 = 39.2 GPa.
However, the laminate is not isotropic, as can be found by rerunning plate with the 0/90 layup oriented
at a different angle from the x− y axes.

Temperature Effects

There are a number of improvements one might consider for the plate code described above:
it could be extended to include interlaminar shear stresses between plies, it could incorporate
a database of commercially available prepreg and core materials, or the user interface could
be made “friendlier” and graphically-oriented. Many such features are available in commercial
codes, or could be added by the user, and will not be discussed further here. However, thermal
expansion effects are so important in application that a laminate code almost must have this
feature to be usable, and the general approach will be outlined here.
In general, an increase in temperature ∆T causes a thermal expansion given by the well-

known relation εT = α∆T , where εT is the thermally-induced strain and α is the coefficient of
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linear thermal expansion. This thermal strain is obtained without needing to apply stress, so
that when Hooke’s law is used to compute the stress from the strain the thermal component is
subtracted first: σ = E(ε−α∆T ). The thermal expansion causes normal strain only, so shearing
components of strain are unaffected. Equation 3 can thus be extended as

σ = D (ε− εT )

where the thermal strain vector in the 1− 2 coordinate frame is

εT =



α1
α2
0


∆T

Here α1 and α2 are the anisotropic thermal expansion coefficients in the fiber and transverse
directions. Transforming to common x− y axes, this relation becomes:


σx
σy
τxy


 =


 D̄11 D̄12 D̄13D̄12 D̄22 D̄23
D̄13 D̄23 D̄33






 εxεy
γxy


−


 αxαy
αxy


∆T


 (27)

The subscripts on the D̄ elements refer to row and column positions within the stiffness matrix
rather than coordinate directions; the over-bar serves as a reminder that these elements refer to
x-y axes. The thermal expansion vector on the right-hand side (α = αx, αy, αxy) is essentially
a strain vector, and so can be obtained from (α1, α2, 0) as in Eqn. 10:

α =



αx
αy
αxy


 = RA−1R−1



α1
α2
0




Note that in the common x-y direction, thermal expansion induces both normal and shearing
strains.
The previous temperature-independent development can now be repeated, modified only by

carrying along the thermal expansion terms. As before, the strain vector for any position z from
the midplane is given in terms of the midplane strain ε0 and curvature κ by

ε = ε0 + zκ

The corresponding stress is then

σ = D̄(ε0 + zκ−α∆T )

Balancing the stresses against the applied tractions and moments as before:

N =

∫
σ dz = Aεo + Bκ−

∫
D̄α∆T dz

M =

∫
σz dz = Bεo +Dκ−

∫
D̄α∆T z dz

This result is identical to that of Eqns. 20 and 23, other than the addition of the integrals
representing the “thermal loads.” This permits temperature-dependent problems to be handled
by an “equivalent mechanical formulation;” the overall governing equations can be written as
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{
N̄
M̄

}
=

[
A B
B D

]{
ε0

κ

}
, or

{
ε0

κ

}
=

[
A B
B D

]−1{
N̄
M̄

}
(28)

where the “equivalent thermal loads” are given as

N̄ =N+

∫
D̄α∆T dz

M̄ =M+

∫
D̄α∆T z dz

The extension of the plate code to accommodate thermal effects thus consists of modifying the
6× 1 loading vector by adding the two 3× 1 vector integrals in the above expression.

Viscoelastic Effects

Since the matrix of many composite laminates is polymeric, the designer may need to consider
the possibility of viscoelastic stress relaxation or creep during loading. Any such effect will
probably not be large, since the fibers that bear most of the load are not usually viscoelastic.
Further, the matrix material is usually used well below its glass transition temperature, and will
act in a glassy elastic mode.
Some applications may not be so simple, however. If the laminate is used at elevated temper-

ature, and if stresses act in directions not supported by the reinforcing fibers, relaxation effects
may be observed. Figure 6 shows creep measured in a T300/5208 unidirectional graphite-epoxy
laminate3, loaded transversely to the fibers at 149◦C. Even in this almost-worst case scenario,
the creep strains are relatively small (less than 10% of the elastic strain), but Fig. 6 does show
that relaxation effects may be important in some situations.

Figure 6: Creep/creep-recovery response of graphite-epoxy laminate.

3M.E. Tuttle and H.F. Brinson, “Prediction of Long-Term Creep Compliance of General Composite Lami-
nates,” Experimental Mechanics, p. 89, March 1986.
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The Tuttle-Brinson paper cited above describes a time-stepping computational scheme that
can be used to model these viscoelastic laminate effects, and a simplified form of their method
will be outlined here. The viscoelastic creep strain occurring in a given ply during a time
increment dt can be calculated from the stress in the ply at that time, assuming the ply to be
free of adjoining plies; this gives an independent-ply creep strain. This strain will act to relax
the ply stress.
Of course, the plies are not free to strain arbitrarily, and the proper strain compatibility

can be reestablished by calculating the external loads that would produce elastic strains equal
to the independent-ply creep strains. These loads are summed over all plies in the laminate
to give an equivalent laminate creep load. This load is applied to the laminate to compute
a set of compatible strains and curvatures, termed the equivalent-laminate creep strain. This
strain is added to the initial elastic strain in computing the stress on a given ply, while the
independent-ply creep strain is subtracted.
The following list develops these steps in more detail:

1. The elastic mid-plane strains and curvatures are solved for the specified bending moments
and tractions, using the glassy moduli of the various plies. From Eqn. 25:

{
ε0

κ

}
=

[
A B
B D

]−1{
N
M

}

2. The elastic strain in each ply is then obtained from Eqn. 15. For the kth ply, with center
at coordinate z, this is:

εp e xy = ε
0 + zκ

where the p e xy subscript indicates ply, elastic, strain in the x-y direction. The elastic
ply strains relative to the 1-2 (fiber-transverse) directions are given by the transformation
of Eqn. 10:

εp e 12 = RAR
−1εp e xy

These first two steps are performed by the elastic plate code, and the adaptation to
viscoelastic response consists of adding the following steps.

3. The current ply stress σk 12 in the 1-2 directions is:

σk 12 = D [εp e 12 + (εp lc 12 − εp c 12)]

The quantity εp lc 12−εp c 12 is the difference between the equivalent laminate creep strain
and the independent-ply creep strain. The quantities εp lc 12 and εp c 12 are set to zero
initially, but are updated in steps 4 and 8 below to account for viscoelastic relaxation.

4. The current ply stress in then used in an appropriate viscoelastic model to compute the
creep that would occur if the ply were free to strain independently of the adjoining plies;
this is termed the independent ply creep strain. For a simple Voigt model, the current
value of creep strain can be updated from its value in the previous time step as:

εtp c 12 = σk 12 Cv
(
1− e−dt/τ

)
+ εt−1p c 12e

−dt/τ

where the superscripts on strain indicate values at the current and previous time steps.
Here Cv is the viscoelastic creep compliance and τ is a relaxation time. A creep strain
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equal to Cv will develop in addition to the initial elastic strain in the laminate, and a
fraction 2/e of this creep strain will develop in a time τ . Different values of Cv will be
used for the fiber, transverse, and shear strain components due to the anisotropy of the
ply.

5. The stresses in the 1-2 and x-y directions that would be needed to develop the independent-
ply creep strains if the ply were elastic are

σk 12 = Dεp c 12

σk xy = A
−1σk 12

6. These equivalent elastic ply stresses are summed over all plies in the laminate to build up
an equivalent laminate creep load. The contribution of the kth ply is:

Nc = Nc + tkσk xy

Mc =Mc + tkzσk xy,

where tk is the thickness of the k
th ply and z is its centerline coordinate.

7. An equivalent laminate creep strain is then computed from the elastic compliance matrix
and the equivalent laminate creep loads as

{
ε0lc
κlc

}
=

[
A B
B D

]−1{
Nc
Mc

}

8. The ply laminate creep strain in the x-y and 1-2 directions are

εp lc xy = ε
0
lc + zκlc

εp lc 12 = RAR
−1εp lc xy

9. Finally, the time is incremented (t← t+ dt) and another time cycle is computed starting
at step 3.

Example 3

As an illustration of the above algorithm, consider a simple model laminate with one isotropic ply.
The elastic constants are E = 100 (arbitrary units) and ν = 0.25, and a unit stress is applied in the
x-direction. The initial x-direction strain is therefore εx,0 = σx/E = 0.01. In this isotropic test case,
the code calculates the shear modulus as G = E/2(1 + ν). The creep strain is governed by a parameter
vfrac, which sets the Voigt creep compliance Cv to vfrac/E2 in the transverse direction, vfrac/G12 for
shear components, and zero in the fiber direction (assuming only elastic response along the fibers.)
Figure 7 shows the creep strain history of this laminate for a relaxation time of τ = 1000 s. The code

steps linearly in log time, in this case with four time steps per decade. The creep strain is the strain over
and beyond the initial elastic strain, which transitions from zero to Cvεx,0 = 5× 10−4 as time progresses
through the relaxation time.
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Figure 7: Creep strain history in model laminate.
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Problems

1. Write out the x-y two-dimensional compliance matrix S and stiffness matrix D (Eqn. 11) for a
single ply of graphite/epoxy composite with its fibers aligned along the x-y axes.

2. Write out the x-y two-dimensional compliance matrix S and stiffness matrix D (Eqn. 11) for a
single ply of graphite/epoxy composite with its fibers aligned 30◦from the x axis.

3. Plot the effective Young’s modulus, measured along the x− axis, of a single unidirectional ply of
graphite-epoxy composite as a function of the angle between the ply fiber direction and the x−
axis.

4. Using a programming language of your choice, write a laminate code similar to the plate code
mentioned in the text, and verify it by computing the laminate stiffness and compliance matrices
given in Ex. 2.

5. A (60◦/0◦/− 60◦)S layup (the S superscript indicates the plies are repeated to give a symmetric
laminate) is an example of what are called “quasi-isotropic” laminates, having equal stiffnesses
in the x and y directions, regardless of the laminate orientation. Verify that this is so for two
laminate orientations, one having the 0◦ plies oriented along the x axis and the other with the 0◦

plies oriented at 30◦from the x axis.
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Mechanical Properties of Composite Materials

The following table lists physical and mechanical property values for representative ply and
core materials widely used in fiber-reinforced composite laminates. Ply properties are taken
from F.P.Gerstle, “Composites,” Encyclopedia of Polymer Science and Engineering,Wiley, New
York, 1991, which should be consulted for data from a wider range of materials. See also
G. Lubin, Handbook of Composites, Van Nostrand, New York, 1982.

S-glass/ Kevlar/ HM Graphite/ Pine Rohacell 51
epoxy epoxy epoxy rigid foam

Elastic Properties:
E1, GPa 55 80 230 13.4 0.07
E2, GPa 16 5.5 6.6 0.55 0.07
G12, GPa 7.6 2.1 4.8 0.83 0.021
ν12 0.26 0.31 0.25 0.30

Tensile Strengths:
σ1, MPa 1800 2000 1100 78 1.9
σ2, Mpa 40 20 21 2.1 1.9
σ12, MPa 80 40 65 6.2 0.8

Compressive Strengths:
σ1, MPa 690 280 620 33 0.9
σ2, MPa 140 140 170 3.0 0.9

Physical Properties:
α1, 10

−6/◦C 2.1 −4.0 −0.7 33
α2, 10

−6/◦C 6.3 60 28 33
Volume fraction 0.7 0.54 0.7
Thickness, mm 0.15 0.13 0.13
Density, Mg/m3 2.0 1.38 1.63 0.55 0.05

17



Closed-Form Solutions

David Roylance
Department of Materials Science and Engineering

Massachusetts Institute of Technology
Cambridge, MA 02139

February 21, 2001

Introduction

During most of its historical development, the science of Mechanics of Materials relied principally
on closed-form (not computational) mathematical theorists. Much of their work represents
mathematical intuition and skill of a very high order, challenging even for advanced researchers
of today. This theory is taught primarily in graduate subjects, but is outlined here both to
provide some background that will be useful in the Module on Fracture and as a preliminary
introduction to these more advanced subjects.

Governing equations

We have earlier shown (see Module 9) how the spatial gradients of the six Cauchy stresses are
related by three equilibrium equations that can be written in pseudovector form as

LTσ = 0 (1)

These are augmented by six constitutive equations which can be written for linear elastic mate-
rials as (see Module 11)

σ = Dε (2)

and six kinematic or strain-displacement equations (Module 8)

ε = Lu (3)

These fifteen equations must be satisfied by the fifteen independent functions (three displace-
ments u, six strains ε, and six stresses σ). These functions must also satisfy boundary conditions
on displacement

u = û on Γu (4)

where Γu is the portion of the boundary on which the displacements u = û are prescribed. The
remainder of the boundary must then have prescribed tractions T = T̂ , on which the stresses
must satisfy Cauchy’s relation:

σn̂ = T̂ on ΓT (5)
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In the familiar cantilevered beam shown in Fig. 1, the region of the beam at the wall constitutes
Γu, having specified (zero) displacement and slope. All other points on the beam boundary
make up ΓT , with a load of P at the loading point A and a specified load of zero elsewhere.

Figure 1: Cantilevered beam.

With structures such as the beam that have simple geometries, solutions can be obtained
by the direct method we have used in earlier modules: an expression for the displacements is
written, from which the strains and stresses can be obtained, and the stresses then balanced
against the externally applied loads. (Problem 2 provides another example of this process.) In
situations not having this geometrical simplicity, the analyst must carry out a mathematical
solution, seeking functions of stress, strain and displacement that satisfy both the governing
equations and the boundary conditions.
Currently, practical problems are likely to be solved by computational approximation, but it

is almost always preferable to obtain a closed-form solution if at all possible. The mathematical
result will show the functional importance of the various parameters, such as loading condi-
tions or material properties, in a way a numerical solution cannot, and is therefore more useful
in guiding design decisions. For this reason, the designer should always begin an analysis of
load-bearing structures by searching for closed-form solutions of the given, or similar, problem.
Several compendia of such solutions are available, the book by Roark1 being a useful example.
However, there is always a danger in performing this sort of “handbook engineering” blindly,

and this section is intended partly to illustrate the mathematical concepts that underlie many
of these published solutions. It is probably true that most of the problems that can be solved
mathematically have already been completed; these are the classical problems of applied me-
chanics, and they often require a rather high level of mathematical sophistication. The classic
text by Timoshenko and Goodier2 is an excellent source for further reading in this area.

The Airy stress function

Expanding the kinematic or strain-displacement equations (Eqn. 3) in two dimensions gives the
familiar forms:

εx =
∂u

∂x

εy =
∂v

∂y
(6)

γxy =
∂v

∂x
+
∂u

∂y

1W.C. Young, Roark’s Formulas for Stress and Strain, McGraw-Hill, New York, 1989.
2S. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 1951.
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Since three strains (εx, εy, γxy) are written in terms of only two displacements (u, v), they cannot
be specified arbitrarily; a relation must exist between the three strains. If εx is differentiated
twice by dx, εy twice by dy, and γxy by dx and then dy we have directly

∂2εx
∂y2

+
∂2εy
∂x2

=
∂2γxy
∂x ∂y

(7)

In order for the displacements to be so differentiable, they must be continuous functions, which
means physically that the body must deform in a compatible manner, i.e. without developing
cracks or overlaps. For this reason Eqn. 7 is called the compatibility equation for strains, since
the continuity of the body is guaranteed if the strains satisfy it.
The compatibility equation can be written in terms of the stresses rather than the strains

by recalling the constitutive equations for elastic plane stress:

εx =
1

E
(σx − νσy)

εy =
1

E
(σy − νσx) (8)

γxy =
1

G
τxy =

2(1 + ν)

E
τxy

Substituting these in Eqn. 7 gives

∂2

∂y2
(σx − νσy) +

∂2

∂x2
(σy − νσx) = 2(1 + ν)

∂2τxy
∂x ∂y

(9)

Stresses satisfying this relation guarantee compatibility of strain.
The stresses must also satisfy the equilibrium equations, which in two dimensions can be

written

∂σx
∂x
+
∂τxy
∂y
= 0

∂τxy
∂x
+
∂σy
∂y
= 0 (10)

As a means of simplifying the search for functions whose derivatives obey these rules, G.B. Airy
(1801–1892) defined a stress function φ from which the stresses could be obtained by differenti-
ation:

σx =
∂2φ

∂y2

σy =
∂2φ

∂x2
(11)

τxy = −
∂2φ

∂x ∂y

Direct substitution will show that stresses obtained from this procedure will automatically satisfy
the equilibrium equations. This maneuver is essentially limited to two-dimensional problems,
but with that proviso it provides a great simplification in searching for valid functions for the
stresses.
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Now substituting these into Eqn. 9, we have

∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+
∂4φ

∂y4
≡ ∇2(∇2φ) ≡ ∇4φ = 0 (12)

Any function φ(x, y) that satisfies this relation will satisfy the governing relations for equilibrium,
geometric compatibility, and linear elasticity. Of course, many functions could be written that
satisfy the compatibility equation; for instance setting φ = 0 would always work. But to
make the solution correct for a particular stress analysis, the boundary conditions on stress and
displacement must be satisfied as well. This is usually a much more difficult undertaking, and
no general solution that works for all cases exists. It can be shown, however, that a solution
satisfying both the compatibility equation and the boundary conditions is unique; i.e. that it is
the only correct solution.

Stresses around a circular hole

Figure 2: Circular hole in a uniaxially stressed plate

To illustrate the use of the Airy function approach, we will outline the important work of
Kirsch3, who obtained a solution for the influence on the stresses of a hole placed in the material.
This is vitally important in analyzing such problems as rivet holes used in joining, and the effect
of a manufacturing void in initiating failure. Consider a thin sheet as illustrated in Fig. 2, infinite
in lateral dimensions but containing a circular hole of radius a, and subjected to a uniaxial stress
σ. Using circular r, θ coordinates centered on the hole, the compatibility equation for φ is

∇4φ =

(
∂2

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂θ2

)(
∂2φ

∂r2
+
1

r

∂φ

∂r
+
1

r2
∂2φ

∂θ2

)
= 0 (13)

In these circular coordinates, the stresses are obtained from φ as

σr =
1

r

∂φ

∂r
+
1

r2
∂2φ

∂θ2

σθ =
∂2φ

∂r2
(14)

τrθ = −
∂

∂r

(
1

r

∂φ

∂θ

)
3G. Kirsch, VDI, vol. 42, 1898; described in Timoshenko & Goodier, op. cit..
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We now seek a function φ(r, θ) that satisfies Eqn. 13 and also the boundary conditions of the
problem. On the periphery of the hole the radial and shearing stresses must vanish, since no
external tractions exist there:

σr = τrθ = 0, r = a (15)

Far from the hole, the stresses must become the far-field value σ; the Mohr procedure gives the
radial and tangential stress components in circular coordinates as

σr =
σ
2 (1 + cos 2θ)

σθ =
σ
2 (1− cos 2θ)

τrθ =
σ
2 sin 2θ


 r →∞ (16)

Since the normal stresses vary circumferentially as cos 2θ (removing temporarily the σ/2 factor)
and the shear stresses vary as sin 2θ, an acceptable stress function could be of the form

φ = f(r) cos 2θ (17)

When this is substituted into Eqn. 13, an ordinary differential equation in f(r) is obtained:

(
d2

dr2
+
1

r

d

dr
−
4

r2

)(
d2f

dr2
+
1

r

df

dr
−
4f

r2

)
= 0

This has the general solution

f(r) = Ar2 +Br4 +C
1

r2
+D (18)

The stress function obtained from Eqns. 17 and 18 is now used to write expressions for the
stresses according to Eqn. 14, and the constants determined using the boundary conditions in
Eqns. 15 and 16; this gives

A = −
σ

4
, B = 0, C = −

a4σ

4
, D =

a2σ

2

Substituting these values into the expressions for stress and replacing the σ/2 that was tem-
porarily removed, the final expressions for the stresses are

σr =
σ

2

(
1−

a2

r2

)
+
σ

2

(
1 +
3a4

r4
−
4a2

r2

)
cos 2θ

σθ =
σ

2

(
1 +

a2

r2

)
−
σ

2

(
1 +
3a4

r4

)
cos 2θ (19)

τrθ = −
σ

2

(
1−
3a4

r4
+
2a2

r2

)
sin 2θ

As seen in the plot of Fig. 3, the stress reaches a maximum value of (σθ)max = 3σ at the periphery
of the hole (r = a), at a diametral position transverse to the loading direction (θ = π/2). The
stress concentration factor, or SCF, for this problem is therefore 3. The x-direction stress falls
to zero at the position θ = π/2, r = a, as it must to satisfy the stress-free boundary condition
at the periphery of the hole.
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Figure 3: Stresses near circular hole. (a) Contours of σy (far-field stress applied in y-direction).
(b) Variation of σy and σx along θ = π/2 line.

Note that in the case of a circular hole the SCF does not depend on the size of the hole:
any hole, no matter how small, increases the local stresses near the hole by a factor of three.
This is a very serious consideration in the design of structures that must be drilled and riveted
in assembly. This is the case in construction of most jetliner fuselages, the skin of which must
withstand substantial stresses as the differential cabin pressure is cycled by approximately 10
psig during each flight. The high-stress region near the rivet holes has a dangerous propensity
to incubate fatigue cracks, and several catastrophic aircraft failures have been traced to exactly
this cause.
Note also that the stress concentration effect is confined to the region quite close to the hole,

with the stresses falling to their far-field values within three or so hole diameters. This is a
manifestation of St. Venant’s principle4, which is a common-sense statement that the influence
of a perturbation in the stress field is largely confined to the region of the disturbance. This
principle is extremely useful in engineering approximations, but of course the stress concentration
near the disturbance itself must be kept in mind.
When at the beginning of this section we took the size of the plate to be “infinite in lateral

extent,” we really meant that the stress conditions at the plate edges were far enough away from
the hole that they did not influence the stress state near the hole. With the Kirsch solution now
in hand, we can be more realistic about this: the plate must be three or so times larger than
the hole, or the Kirsch solution will be unreliable.

Complex functions

In many problems of practical interest, it is convenient to use stress functions as complex func-
tions of two variables. We will see that these have the ability to satisfy the governing equations
automatically, leaving only adjustments needed to match the boundary conditions. For this
reason, complex-variable methods play an important role in theoretical stress analysis, and even
in this introductory treatment we wish to illustrate the power of the method. To outline a few
necessary relations, consider z to be a complex number in Cartesian coordinates x and y or
polar coordinates r and θ as

z = x+ iy = reiθ (20)

4The French scientist Barré de Saint-Venant (1797–1886) is one of the great pioneers in mechanics of materials.
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where i =
√
−1. An analytic function f(z) is one whose derivatives depend on z only, and takes

the form

f(z) = α+ iβ (21)

where α and β are real functions of x and y. It is easily shown that α and β satisfy the
Cauchy-Riemann equations:

∂α

∂x
=
∂β

∂y

∂α

∂y
= −

∂β

∂x
(22)

If the first of these is differentiated with respect to x and the second with respect to y, and the
results added, we obtain

∂2α

∂x2
+
∂2α

∂y2
≡ ∇2α = 0 (23)

This is Laplace’s equation, and any function that satisfies this equation is termed a harmonic
function. Equivalently, α could have been eliminated in favor of β to give ∇2β = 0, so both the
real and imaginary parts of any complex function provide solutions to Laplace’s equation. Now
consider a function of the form xψ, where ψ is harmonic; it can be shown by direct differentiation
that

∇4(xψ) = 0 (24)

i.e. any function of the form xψ, where ψ is harmonic, satisfies Eqn. 12, and many thus be used
as a stress function. Similarly, it can be shown that yψ and (x2+y2)ψ = r2ψ are also suitable, as
is ψ itself. In general, a suitable stress function can be obtained from any two analytic functions
ψ and χ according to

φ = Re [(x− iy)ψ(z) + χ(z)] (25)

where “Re” indicates the real part of the complex expression. The stresses corresponding to this
function φ are obtained as

σx + σy = 4Reψ′(z)
σy − σx + 2 iτxy = 2 [zψ′′(z) + χ′′(z)]

(26)

where the primes indicate differentiation with respect to z and the overbar indicates the conjugate
function obtained by replacing i with −i; hence z = x− iy.

Stresses around an elliptical hole

In a development very important to the theory of fracture, Inglis5 used complex potential func-
tions to extend Kirsch’s work to treat the stress field around a plate containing an elliptical
rather than circular hole. This permits crack-like geometries to be treated by making the minor
axis of the ellipse small. It is convenient to work in elliptical α, β coordinates, as shown in Fig. 4,
defined as

x = c cosh α cos β, y = c sinh α sin β (27)

5C.E. Inglis, “Stresses in a Plate Due to the Presence of Cracks and Sharp Corners,” Transactions of the
Institution of Naval Architects, Vol. 55, London, 1913, pp. 219–230.
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Figure 4: Elliptical coordinates.

where c is a constant. If β is eliminated this is seen in turn to be equivalent to

x2

cosh2 α
+

y2

sinh2 α
= c2 (28)

On the boundary of the ellipse α = α0, so we can write

c cosh α0 = a, c sinh α0 = b (29)

where a and b are constants. On the boundary, then

x2

a2
+
y2

b2
= 1 (30)

which is recognized as the Cartesian equation of an ellipse, with a and b being the major and
minor radii . The elliptical coordinates can be written in terms of complex variables as

z = c cosh ζ, ζ = α+ iβ (31)

As the boundary of the ellipse is traversed, α remains constant at α0 while β varies from 0 to 2π.
Hence the stresses must be periodic in β with period 2π, while becoming equal to the far-field
uniaxial stress σy = σ, σx = τxy = 0 far from the ellipse; Eqn. 26 then gives

4Reψ′(z) = σ

2[zψ′′(z) + χ′′(z)] = σ

}
ζ →∞ (32)

These boundary conditions can be satisfied by potential functions in the forms

4ψ(z) = Ac cosh ζ +Bc sinh ζ
4χ(z) = Cc2ζ +Dc2 cosh 2ζ + Ec2 sinh 2ζ

where A,B,C,D,E are constants to be determined from the boundary conditions. When this
is done the complex potentials are given as

4ψ(z) = σc[(1 + e2α0) sinh ζ − e2α0 cosh ζ]
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4χ(z) = −σc2
[
(cosh 2α0 − coshπ)ζ +

1

2
e2α0 − cosh 2

(
ζ − α0 − i

π

2

)]
The stresses σx, σy, and τxy can be obtained by using these in Eqns. 26. However, the amount
of labor in carrying out these substitutions isn’t to be sneezed at, and before computers were
generally available the Inglis solution was of somewhat limited use in probing the nature of the
stress field near crack tips.

Figure 5: Stress field in the vicinity of an elliptical hole, with uniaxial stress applied in y-
direction. (a) Contours of σy, (b) Contours of σx.

Figure 5 shows stress contours computed by Cook and Gordon6 from the Inglis equations.
A strong stress concentration of the stress σy is noted at the periphery of the hole, as would
be expected. The horizontal stress σx goes to zero at this same position, as it must to sat-
isfy the boundary conditions there. Note however that σx exhibits a mild stress concentration
(one fifth of that for σy, it turns out) a little distance away from the hole. If the material has
planes of weakness along the y direction, for instance as between the fibrils in wood or many
other biological structures, the stress σx could cause a split to open up in the y direction just
ahead of the main crack. This would act to blunt and arrest the crack, and thus impart a mea-
sure of toughness to the material. This effect is sometimes called the Cook-Gordon toughening
mechanism.
The mathematics of the Inglis solution are simpler at the surface of the elliptical hole, since

here the normal component σα must vanish. The tangential stress component can then be
computed directly:

(σβ)α=α0 = σe
2α0

[
sinh 2α0(1 + e

−2α0)

cosh 2α0 − cos 2β
− 1

]

The greatest stress occurs at the end of the major axis (cos 2β = 1):

(σβ)β=0,π = σy = σ

(
1 + 2

a

b

)
(33)

This can also be written in terms of the radius of curvature ρ at the tip of the major axis as

σy = σ

(
1 + 2

√
a

ρ

)
(34)

6J.E. Gordon, The Science of Structures and Materials, Scientific American Library, New York, 1988.
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This result is immediately useful: it is clear that large cracks are worse than small ones (the
local stress increases with crack size a), and it is also obvious that sharp voids (decreasing ρ)
are worse than rounded ones. Note also that the stress σy increases without limit as the crack
becomes sharper (ρ → 0), so the concept of a stress concentration factor becomes difficult to
use for very sharp cracks. When the major and minor axes of the ellipse are the same (b = a),
the result becomes identical to that of the circular hole outlined earlier.

Stresses near a sharp crack

Figure 6: Sharp crack in an infinite sheet.

The Inglis solution is difficult to apply, especially as the crack becomes sharp. A more
tractable and now more widely used approach was developed by Westergaard7, which treats a
sharp crack of length 2a in a thin but infinitely wide sheet (see Fig. 6). The stresses that act
perpendicularly to the crack free surfaces (the crack “flanks”) must be zero, while at distances
far from the crack they must approach the far-field imposed stresses. Consider a harmonic
function φ(z), with first and second derivatives φ′(z) and φ′′(z), and first and second integrals

φ(z) and φ(z). Westergaard constructed a stress function as

Φ = Reφ(z) + y Imφ(z) (35)

It can be shown directly that the stresses derived from this function satisfy the equilibrium,
compatibility, and constitutive relations. The function φ(z) needed here is a harmonic function
such that the stresses approach the far-field value of σ at infinity, but are zero at the crack flanks
except at the crack tip where the stress becomes unbounded:

σy =

{
σ, x→ ±∞0, −a < x < +a, y = 0
∞, x = ±∞

These conditions are satisfied by complex functions of the form

φ(z) =
σ√

1− a2/z2
(36)

7Westergaard, H.M., “Bearing Pressures and Cracks,” Transactions, Am. Soc. Mech. Engrs., Journal of Applied
Mechanics, Vol. 5, p. 49, 1939.
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This gives the needed singularity for z = ±a, and the other boundary conditions can be verified
directly as well. The stresses are now found by suitable differentiations of the stress function;
for instance

σy =
∂2Φ

∂x2
= Reφ(z) + y Imφ′(z)

In terms of the distance r from the crack tip, this becomes

σy = σ

√
a

2r
· cos

θ

2

(
1 + sin

θ

2
sin
3θ

2

)
+ · · · (37)

where these are the initial terms of a series approximation. Near the crack tip, when r � a, we
can write

(σy)y=0 = σ

√
a

2r
≡

K
√
2πr

(38)

where K = σ
√
πa is the stress intensity factor, with units of Nm−3/2 or psi

√
in. (The factor π

seems redundant here since it appears to the same power in both the numerator and denominator,
but it is usually included as written here for agreement with the older literature.) We will see
in the Module on Fracture that the stress intensity factor is a commonly used measure of the
driving force for crack propagation, and thus underlies much of modern fracture mechanics. The
dependency of the stress on distance from the crack is singular, with a 1/

√
r dependency. The

K factor scales the intensity of the overall stress distribution, with the stress always becoming
unbounded as the crack tip is approached.

Problems

1. Expand the governing equations (Eqns. 1—3) in two Cartesian dimensions. Identify the
unknown functions. How many equations and unknowns are there?

2. Consider a thick-walled pressure vessel of inner radius ri and outer radius ro, subjected
to an internal pressure pi and an external pressure po. Assume a trial solution for the
radial displacement of the form u(r) = Ar + B/r; this relation can be shown to satisfy
the governing equations for equilibrium, strain-displacement, and stress-strain governing
equations.

(a) Evaluate the constants A and B using the boundary conditions

σr = −pi @ r = ri, σr = −po @ r = ro

(b) Then show that

σr(r) = −
pi
[
(ro/r)

2 − 1
]
+ po[(ro/ri)

2 − (ro/r)2]

(ro/ri)2 − 1

3. Justify the boundary conditions given in Eqns. 14 for stress in circular coordinates (σr, σθ, τxy
appropriate to a uniaxially loaded plate containing a circular hole.

4. Show that the Airy function φ(x, y) defined by Eqns. 11 satisfies the equilibrium equations.
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Prob. 2

5. Show that stress functions in the form of quadratic or cubic polynomials (φ = a2x
2 +

b2xy + c2y
2 and φ = a3x

3 + b3x
2y + c3xy

2 + d3y
3) automatically satisfy the governing

relation ∇4φ = 0.

6. Write the stresses σx, σy, τxy corresponding to the quadratic and cubic stress functions of
the previous problem.

7. Choose the constants in the quadratic stress function of the previous two problems so as
to represent (a) simple tension, (b) biaxial tension, and (c) pure shear of a rectangular
plate.

Prob. 7

8. Choose the constants in the cubic stress function of the previous problems so as to represent
pure bending induced by couples applied to vertical sides of a rectangular plate.

Prob. 8

9. Consider a cantilevered beam of rectangular cross section and width b = 1, loaded at the
free end (x = 0) with a force P . At the free end, the boundary conditions on stress can
be written σx = σy = 0, and

∫ h/2
−h/2

τxy dy = P

12



The horizontal edges are not loaded, so we also have that τxy = 0 at y = ±h/2.

(a) Show that these conditions are satisfied by a stress function of the form

φ = b2xy + d4xy
3

(b) Evaluate the constants to show that the stresses can be written

σx =
Pxy

I
, σy = 0, τxy =

P

2I

[(
h

2

)2
− y2

]

in agreement with the elementary theory of beam bending (Module 13).

Prob. 9
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Introduction

As was seen in previous modules, stress analysis even of simple-appearing geometries can lead to
complicated mathematical maneuvering. Actual articles — engine crankshafts, medical prosthe-
ses, tennis rackets, etc. — have boundary shapes that cannot easily be described mathematically,
and even if they were it would be extremely difficult to fit solutions of the governing equations
to them. One approach to this impasse is the experimental one, in which we seek to construct
a physical laboratory model that somehow reveals the stresses in a measurable way.
It is the nature of forces and stresses that they cannot be measured directly. It is the effect of

a force that is measurable: when we weigh an object on a spring scale, we are actually measuring
the stretching of the spring, and then calculating the force from Hooke’s law. Experimental stress
analysis, then, is actually experimental strain analysis. The difficulty is that strains in the linear
elastic regime are almost always small, on the order of 1% or less, and the art in this field is that
of detecting and interpreting small displacements. We look for phenomena that exhibit large
and measurable changes due to small and difficult-to-measure displacements. There a number
of such techniques, and three of these will be outlined briefly in the sections to follow. A good
deal of methodology has been developed around these and other experimental methods, and
both further reading1 and laboratory practice would be required to put become competent in
this area.

Strain gages

The term “strain gage” usually refers to a thin wire or foil, folded back and forth on itself and
bonded to the specimen surface as seen in Fig. 1, that is able to generate an electrical measure
of strain in the specimen. As the wire is stretched along with the specimen, the wire’s electrical
resistance R changes both because its length L is increased and its cross-sectional area A is
reduced. For many resistors, these variables are related by the simple expression discovered in
1856 by Lord Kelvin:

R =
ρL

A

1Manual on Experimental Stress Analysis, Third Edition, Society of Experimental Stress Analysis (now Society
of Experimental Mechanics), 1978.
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Figure 1: Wire resistance strain gage.

where here ρ is the material’s resistivity. To express the effect of a strain ε = dL/L in the
wire’s long direction on the electrical resistance, assume a circular wire with A = πr2 and take
logarithms:

ln R = ln ρ+ ln L− (ln π + 2 ln r)

The total differential of this expression gives

dR

R
=
dρ

ρ
+
dL

L
− 2
dr

r

Since

εr =
dr

r
= −ν

dL

L

then

dR

R
=
dρ

ρ
+ (1 + 2ν)

dL

L

P.W. Bridgeman (1882–1961) in 1929 studied the effect of volume change on electrical resistance
and found these to vary proportionally:

dρ

ρ
= αR

dV

V

where αR is the constant of proportionality between resistance change and volume change.
Writing the volume change in terms of changes in length and area, this becomes

dρ

ρ
= αR

(
dL

L
+
dA

A

)
= αR(1− 2ν)

dL

L

Hence

dR/R

ε
= (1 + 2ν) + αR(1 − 2ν) (1)

This quantity is called the gage factor, GF. Constantan, a 45/55 nickel/copper alloy, has αR =
1.13 and ν = 0.3, giving GF≈ 2.0. This material also has a low temperature coefficient of
resistivity, which reduces the temperature sensitivity of the strain gage.
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Figure 2: Wheatstone bridge circuit for strain gages.

A change in resistance of only 2%, which would be generated by a gage with GF = 2 at 1%
strain, would not be noticeable on a simple ohmmeter. For this reason strain gages are almost
always connected to a Wheatstone-bridge circuit as seen in Fig. 2. The circuit can be adjusted
by means of the variable resistance R2 to produce a zero output voltage Vout before strain is
applied to the gage. Typically the gage resistance is approximately 350Ω and the excitation
voltage is near 10V. When the gage resistance is changed by strain, the bridge is unbalanced
and a voltage appears on the output according to the relation

Vout
Vin
=
∆R

2R0

where R0 is the nominal resistance of the four bridge elements. The output voltage is easily
measured because it is a deviation from zero rather than being a relatively small change su-
perimposed on a much larger quantity; it can thus be amplified to suit the needs of the data
acquisition system.
Temperature compensation can be achieved by making a bridge element on the opposite side

of the bridge from the active gage, say R3, an inactive gage that is placed near the active gage
but not bonded to the specimen. Resistance changes in the active gage due to temperature will
then be offset be an equal resistance change in the other arm of the bridge.

Figure 3: Cancellation of bending effects.
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It is often difficult to mount a tensile specimen in the testing machine without inadvertently
applying bending in addition to tensile loads. If a single gage were applied to the convex-
outward side of the specimen, its reading would be erroneously high. Similarly, a gage placed on
the concave-inward or compressive-tending side would read low. These bending errors can be
eliminated by using an active gage on each side of the specimen as shown in Fig. 3 and wiring
them on the same side of the Wheatstone bridge, e.g. R1 and R4. The tensile component of
bending on one side of the specimen is accompanied by an equal but compressive component on
the other side, and these will generate equal but opposite resistance changes in R1 and R4. The
effect of bending will therefore cancel, and the gage combination will measure only the tensile
strain (with doubled sensitivity, since both R1 and R4 are active).

Figure 4: Strain rosette.

The strain in the gage direction can be found directly from the gage factor (Eqn. 1). When the
direction of principal stress is unknown, strain gage rosettes are useful; these employ multiple
gages on the same film backing, oriented in different directions. The rectangular three-gage
rosette shown in Fig. 4 uses two gages oriented perpendicularly, and a third gage oriented at
45◦ to the first two.

Example 1

A three-gage rosette gives readings ε0 = 150µ, ε45 = 200 µ, and ε90 = −100 µ (here the µ symbol
indicates micrometers per meter). If we align the x and y axis along the 0◦and 90◦gage directions, then
εx and εy are measured directly, since these are ε0 and ε90 respectively. To determine the shear strain
γxy, we use the rule for strain transformation to write the normal strain at 45

◦:

ε45 = 200 µ = εx cos
2 45 + εy sin

2 45 + γxy sin 45 cos 45

Substituting the known values for εx and εy, and solving,

γxy = 350 µ

The principal strains can now be found as

ε1,2 =
εx + εy
2

±

√(
εx − εy
2

)2
+
(γxy
2

)2
= 240 µ, − 190 µ

The angle from the x-axis to the principal plane is

tan 2θp =
γxy/2

(εx − εy)/2
→ θp = 27.2

◦

The stresses can be found from the strains from the material constitutive relations; for instance for steel
with E = 205 GPa and ν = .3 the principal stress is
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σ1 =
E

1− ν2
(ε1 + νε2) = 41.2 MPa

For the specific case of a 0-45-90 rosette, the orientation of the principal strain axis can be
given directly by2

tan 2θ =
2εb − εa − εc
εa − εc

(2)

and the principal strains are

ε1,2 =
εa + εc
2

±

√
(εa − εb)2 + (εb − εc)2

2
(3)

Graphical solutions based on Mohr’s circles are also useful for reducing gage output data.
Strain gages are used very extensively, and critical structures such as aircraft may be in-

strumented with hundreds of gages during testing. Each gage must be bonded carefully to the
structure, and connected by its two leads to the signal conditioning unit that includes the excita-
tion voltage source and the Wheatstone bridge. This can obviously be a major instrumentation
chore, with computer-aided data acquisition and reduction a practical necessity.

Photoelasticity

Wire-resistance strain gages are probably the principal device used in experimental stress anal-
ysis today, but they have the disadvantage of monitoring strain only at a single location. Pho-
toelasticity and moire methods, to be outlined in the following sections, are more complicated
in concept and application but have the ability to provide full-field displays of the strain distri-
bution. The intuitive insight from these displays can be so valuable that it may be unnecessary
to convert them to numerical values, although the conversion can be done if desired.

Figure 5: Light propagation.

Photoelasticity employs a property of many transparent polymers and inorganic glasses called
birefringence. To explain this phenomenon, recall the definition of refractive index, n, which is
the ratio of the speed of light v in the medium to that in vacuum c:

n =
v

c
(4)

2M. Hetenyi, ed., Handbook of Experimental Stress Analysis, Wiley, New York, 1950.
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As the light beam travels in space (see Fig. 5), its electric field vector E oscillates up and down
at an angular frequency ω in a fixed plane, termed the plane of polarization of the beam. (The
wavelength of the light is λ = 2πc/ω.) A birefringent material is one in which the refractive
index depends on the orientation of plane of polarization, and magnitude of the birefringence is
the difference in indices:

∆n = n⊥ − n‖

where n⊥ and n‖ are the refractive indices on the two planes. Those two planes that produce
the maximum ∆n are the principal optical planes. As shown in Fig. 6, a birefringent material
can be viewed simplistically as a Venetian blind that resolves an arbitrarily oriented electric
field vector into two components, one on each of the two principal optical planes, after which
each component will transit the material at a different speed according to Eqn. 4. The two
components will eventually exit the material, again traveling at the same speed but having been
shifted in phase from one another by an amount related to the difference in transit times.

Figure 6: Venetian-blind model of birefringence.

A photoelastic material is one in which the birefringence depends on the applied stress, and
many such materials can be described to a good approximation by the stress-optical law

∆n = C(λ)(σ1 − σ2) (5)

where C is the stress-optical coefficient, and the quantity in the second parentheses is the differ-
ence between the two principal stresses in the plane normal to the light propagation direction;
this is just twice the maximum shear stress in that plane. The stress-optical coefficient is gen-
erally a function of the wavelength λ.
The stress distribution in an irregularly shaped body can be viewed by replicating the actual

structure (probably scaled up or down in size for convenience) in a birefringent material such as
epoxy. If the structure is statically determinate, the stresses in the model will be the same as that
in the actual structure, in spite of the differences in modulus. To make the birefringence effect
visible, the model is placed between crossed polarizers in an apparatus known as a polariscope.
(Polarizers such as Polaroid, a polymer sheet containing oriented iodide crystals, are essentially
just birefringent materials that pass only light polarized in the polarizer’s principal optical
plane.)
The radiation source can produce either conventional white (polychromatic) or filtered

(monochromatic) light. The electric field vector of light striking the first polarizer with an
arbitrary orientation can be resolved into two components as shown in Fig. 7, one in the po-
larization direction and the other perpendicular to it. The polarizer will block the transverse
component, allowing the parallel component to pass through to the specimen. This polarized
component can be written
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Figure 7: The circular polariscope.

uP = A cosωt

where uP is the field intensity at time t. The birefringent specimen will resolve this component
into two further components, along each of the principal stress directions; these can be written
as

u1 = A cos α cos ωt

u2 = A sin α cos ωt

where α is the (unknown) angle the principal stress planes makes with the polarization direction.
Both of these new components pass through the specimen, but at different speeds as given by
Eqn. 5. After traveling through the specimen a distance h with velocities v1 and v2, they emerge
as

u′1 = A cos α cos ω[t− (h/v1)]

u′2 = A sin α cos ω[t− (h/v2)]

These two components then fall on the second polarizer, oriented at 90◦ to the first and known
as the analyzer. Each is again resolved into further components parallel and perpendicular to the
analyzer axis, and the perpendicular components blocked while the parallel components passed
through. The transmitted component can be written as

uA = −u
′
1 sinα+ u

′
2 cos α

= −A sin α cos α
[
cos ω

(
t−
h

v1

)
− cos ω

(
t−
h

v2

)]

= A sin 2α sin ω

(
h

2v1
−
h

2v2

)
sin ω

(
t−

h

2v1
−
h

2v2

)

This is of the form uA = A
′ sin (ωt− δ), where A′ is an amplitude and δ is a phase angle. Note

that the amplitude is zero, so that no light will be transmitted, if either α = 0 or if

2πc

λ

(
h

2v1
−
h

2v2

)
= 0, π, 2π, · · · (6)

7



The case for which α = 0 occurs when the principal stress planes are aligned with the polar-
izer-analyzer axes. All positions on the model at which this is true thus produce an extinction
of the transmitted light. These are seen as dark bands called isoclinics, since they map out lines
of constant inclination of the principal stress axes. These contours can be photographed at a
sequence of polarization orientations, if desired, to give an even more complete picture of stress
directions.
Positions of zero stress produce extinction as well, since then the retardation is zero and

the two light components exiting the analyzer cancel one another. The neutral axis of a beam
in bending, for instance, shows as a black line in the observed field. As the stress at a given
location is increased from zero, the increasing phase shift between the two components causes
the cancellation to be incomplete, and light is observed. Eventually, as the stress is increased still
further, the retardation will reach δ = π, and extinction occurs again. This produces another
dark fringe in the observed field. In general, alternating light areas and dark fringes are seen,
corresponding to increasing orders of extinction.

Figure 8: Photoelastic patterns for stress around (a) a circular hole and (b) a sharp crack.

Close fringe spacing indicates a steep stress gradient, similar to elevation lines on a ge-
ographical contour map; Fig. 8 shows the patterns around circular and a sharp-crack stress
risers. It may suffice simply to observe the locations of high fringe density to note the presence
of stress concentrations, which could then be eliminated by suitable design modifications (such
as rounding corners or relocating abrupt geometrical discontinuities from high-stress regions).
If white rather than monochromatic light is used, brightly colored lines rather than dark fringes
are observed, with each color being the complement of that color that has been brought into
extinction according to Eqn. 4. These bands of constant color are termed isochromatics.
Converting the fringe patterns to numerical stress values is usually straightforward but te-

dious, since the fringes are related to the stress difference σ1−σ2 rather than a single stress. At
a free boundary, however, the stress components normal to the boundary must be zero, which
means that the stress tangential to the boundary is a principal stress and is therefore given
directly by the fringe order there. The reduction of photoelastic patterns to numerical values
usually involves beginning at these free surfaces, and then working gradually into the interior of
the body using a graphical procedure.
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Moire

The term “moire” is spelled with a small “m” and derives not from someone’s name but from
the name of a silk fabric that shows patterns of light and dark bands. Bands of this sort are also
developed by the superposition of two almost-identical gratings, such as might be seen when
looking through two window screens slightly rotated from one another. Figure 9 demonstrates
that fringes are developed if the two grids have different spacing as well as different orientations.
The fringes change dramatically for even small motions or strains in the gratings, and this visual
amplification of motion can be used in detecting and quantifying strain in the specimen.

Figure 9: Moire fringes developed by difference in line pitch (a) and line orientation (b). (Prof.
Fu-Pen Chiang, SUNY-Stony Brook.)

As a simple illustration of moire strain analysis, assume a grating of vertical lines of spacing p
(the “specimen” grating) is bonded to the specimen and that this is observed by looking through
another “reference” grating of the same period but not bonded to the specimen. Now let the
specimen undergo a strain, so that the specimen grating is stretched to a period of p′. A dark
fringe will appear when the lines from the two gratings superimpose, and this will occur when
N(p′ − p) = p, since after N lines on the specimen grid the incremental gap (p′ − p) will have
accumulated to one reference pitch distance p. The distance S between the fringes is then

S = Np′ =
pp′

p′ − p
(7)

The normal strain εx in the horizontal direction is now given directly from the fringe spacing as

εx =
p′ − p

p
=
p

S
(8)

Fringes will also develop if the specimen grid undergoes a rotation relative to the reference
grid: if the rotation is small, then

p

S
= tan θ ≈ θ

S =
p

θ

This angle is also the shear strain γxy, so

γxy = θ =
p

θ
(9)

More generally, consider the interference fringes that develop between a vertical reference grid
and an arbitrarily displaced specimen grid (originally vertical). The zeroth-order (N = 0) fringe
is that corresponding to positions having zero horizontal displacement, the first-order (N = 1)
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fringe corresponds to horizontal motions of exactly one pitch distance, etc. The horizontal
displacement is given directly by the fringe order as u = Np, from which the strain is given by

εx =
∂u

∂x
= p
∂N

∂x
(10)

so the strain is given as the slope of the fringe.
Similarly, a moire pattern developed between two originally horizontal grids, characterized

by fringes N ′ = 0, 1, 2, · · · gives the vertical strains:

εy =
∂v

∂y
=
∂(N ′p)

∂y
= p
∂N ′

∂y
(11)

The shearing strains are found from the slopes of both the u-field and v-field fringes:

γxy = p

(
∂N

∂y
+
∂N ′

∂x

)
(12)

Figure 10 shows the fringes corresponding to vertical displacements around a circular hole
in a plate subjected to loading in the y-direction. The vertical strain εy is proportional to the
y-distance between these fringes, each of which is a contour of constant vertical displacement.
This strain is largest along the x-axis at the periphery of the hole, and smallest along the y-axis
at the periphery of the hole.

Figure 10: Moire patterns of the vertical displacements of a bar with a hole under pure tension.
(Prof. Fu-Pen Chiang, SUNY-Stony Brook.)

Problems

1. A 0◦/45◦/90◦three-arm strain gage rosette bonded to a steel specimen gives readings ε0 =
175µ, ε45 = 150 µ, and ε90 = −120 µ. Determine the principal stresses and the orientation
of the principal planes at the gage location.

2. Repeat the previous problem, but with gage readings ε0 = 150 µ, ε45 = 200 µ, and
ε90 = 125 µ.
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Introduction

Finite element analysis (FEA) has become commonplace in recent years, and is now the basis
of a multibillion dollar per year industry. Numerical solutions to even very complicated stress
problems can now be obtained routinely using FEA, and the method is so important that even
introductory treatments of Mechanics of Materials – such as these modules – should outline its
principal features.
In spite of the great power of FEA, the disadvantages of computer solutions must be kept in

mind when using this and similar methods: they do not necessarily reveal how the stresses are
influenced by important problem variables such as materials properties and geometrical features,
and errors in input data can produce wildly incorrect results that may be overlooked by the
analyst. Perhaps the most important function of theoretical modeling is that of sharpening the
designer’s intuition; users of finite element codes should plan their strategy toward this end,
supplementing the computer simulation with as much closed-form and experimental analysis as
possible.
Finite element codes are less complicated than many of the word processing and spreadsheet

packages found on modern microcomputers. Nevertheless, they are complex enough that most
users do not find it effective to program their own code. A number of prewritten commercial
codes are available, representing a broad price range and compatible with machines from mi-
crocomputers to supercomputers1. However, users with specialized needs should not necessarily
shy away from code development, and may find the code sources available in such texts as that
by Zienkiewicz2 to be a useful starting point. Most finite element software is written in Fortran,
but some newer codes such as felt are in C or other more modern programming languages.
In practice, a finite element analysis usually consists of three principal steps:

1. Preprocessing: The user constructs a model of the part to be analyzed in which the geom-
etry is divided into a number of discrete subregions, or “elements,” connected at discrete
points called “nodes.” Certain of these nodes will have fixed displacements, and others
will have prescribed loads. These models can be extremely time consuming to prepare,
and commercial codes vie with one another to have the most user-friendly graphical “pre-
processor” to assist in this rather tedious chore. Some of these preprocessors can overlay
a mesh on a preexisting CAD file, so that finite element analysis can be done conveniently
as part of the computerized drafting-and-design process.

1C.A. Brebbia, ed., Finite Element Systems, A Handbook, Springer-Verlag, Berlin, 1982.
2O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, McGraw-Hill Co., London, 1989.
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2. Analysis: The dataset prepared by the preprocessor is used as input to the finite element
code itself, which constructs and solves a system of linear or nonlinear algebraic equations

Kijuj = fi

where u and f are the displacements and externally applied forces at the nodal points. The
formation of the K matrix is dependent on the type of problem being attacked, and this
module will outline the approach for truss and linear elastic stress analyses. Commercial
codes may have very large element libraries, with elements appropriate to a wide range
of problem types. One of FEA’s principal advantages is that many problem types can be
addressed with the same code, merely by specifying the appropriate element types from
the library.

3. Postprocessing: In the earlier days of finite element analysis, the user would pore through
reams of numbers generated by the code, listing displacements and stresses at discrete
positions within the model. It is easy to miss important trends and hot spots this way,
and modern codes use graphical displays to assist in visualizing the results. A typical
postprocessor display overlays colored contours representing stress levels on the model,
showing a full-field picture similar to that of photoelastic or moire experimental results.

The operation of a specific code is usually detailed in the documentation accompanying the
software, and vendors of the more expensive codes will often offer workshops or training sessions
as well to help users learn the intricacies of code operation. One problem users may have even
after this training is that the code tends to be a “black box” whose inner workings are not
understood. In this module we will outline the principles underlying most current finite element
stress analysis codes, limiting the discussion to linear elastic analysis for now. Understanding
this theory helps dissipate the black-box syndrome, and also serves to summarize the analytical
foundations of solid mechanics.

Matrix analysis of trusses

Pin-jointed trusses, discussed more fully in Module 5, provide a good way to introduce FEA
concepts. The static analysis of trusses can be carried out exactly, and the equations of even
complicated trusses can be assembled in a matrix form amenable to numerical solution. This
approach, sometimes called “matrix analysis,” provided the foundation of early FEA develop-
ment.
Matrix analysis of trusses operates by considering the stiffness of each truss element one

at a time, and then using these stiffnesses to determine the forces that are set up in the truss
elements by the displacements of the joints, usually called “nodes” in finite element analysis.
Then noting that the sum of the forces contributed by each element to a node must equal the
force that is externally applied to that node, we can assemble a sequence of linear algebraic
equations in which the nodal displacements are the unknowns and the applied nodal forces are
known quantities. These equations are conveniently written in matrix form, which gives the
method its name: 


K11 K12 · · · K1n
K21 K22 · · · K2n
...

...
. . .

...
Kn1 Kn2 · · · Knn







u1
u2
...
un



=




f1
f2
...
fn



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Here ui and fj indicate the deflection at the i
th node and the force at the jth node (these

would actually be vector quantities, with subcomponents along each coordinate axis). The Kij
coefficient array is called the global stiffness matrix, with the ij component being physically the
influence of the jth displacement on the ith force. The matrix equations can be abbreviated as

Kijuj = fi or Ku = f (1)

using either subscripts or boldface to indicate vector and matrix quantities.
Either the force externally applied or the displacement is known at the outset for each node,

and it is impossible to specify simultaneously both an arbitrary displacement and a force on a
given node. These prescribed nodal forces and displacements are the boundary conditions of
the problem. It is the task of analysis to determine the forces that accompany the imposed
displacements, and the displacements at the nodes where known external forces are applied.

Stiffness matrix for a single truss element

As a first step in developing a set of matrix equations that describe truss systems, we need a
relationship between the forces and displacements at each end of a single truss element. Consider
such an element in the x− y plane as shown in Fig. 1, attached to nodes numbered i and j and
inclined at an angle θ from the horizontal.

Figure 1: Individual truss element.

Considering the elongation vector δ to be resolved in directions along and transverse to the
element, the elongation in the truss element can be written in terms of the differences in the
displacements of its end points:

δ = (uj cos θ + vj sin θ)− (ui cos θ + vi sin θ)

where u and v are the horizontal and vertical components of the deflections, respectively. (The
displacements at node i drawn in Fig. 1 are negative.) This relation can be written in matrix
form as:

δ =
[
−c −s c s

]


ui
vi
uj
vj




Here c = cos θ and s = sin θ.
The axial force P that accompanies the elongation δ is given by Hooke’s law for linear elastic

bodies as P = (AE/L)δ. The horizontal and vertical nodal forces are shown in Fig. 2; these can
be written in terms of the total axial force as:
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Figure 2: Components of nodal force.



fxi
fyi
fxj
fyj



=



−c
−s
c

s



P =



−c
−s
c

s



AE

L
δ

=



−c
−s
c

s



AE

L

[
−c −s c s

]


ui
vi
uj
vj




Carrying out the matrix multiplication:



fxi
fyi
fxj
fyj



=
AE

L



c2 cs −c2 −cs
cs s2 −cs −s2

−c2 −cs c2 cs

−cs −s2 cs s2





ui
vi
uj
vj




(2)

The quantity in brackets, multiplied by AE/L, is known as the “element stiffness matrix”
kij . Each of its terms has a physical significance, representing the contribution of one of the
displacements to one of the forces. The global system of equations is formed by combining the
element stiffness matrices from each truss element in turn, so their computation is central to the
method of matrix structural analysis. The principal difference between the matrix truss method
and the general finite element method is in how the element stiffness matrices are formed; most
of the other computer operations are the same.

Assembly of multiple element contributions

Figure 3: Element contributions to total nodal force.

The next step is to consider an assemblage of many truss elements connected by pin joints.
Each element meeting at a joint, or node, will contribute a force there as dictated by the
displacements of both that element’s nodes (see Fig. 3). To maintain static equilibrium, all
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element force contributions f elemi at a given node must sum to the force f exti that is externally
applied at that node:

f exti =
∑
elem

f elemi = (
∑
elem

kelemij uj) = (
∑
elem

kelemij )uj = Kijuj

Each element stiffness matrix kelemij is added to the appropriate location of the overall, or “global”
stiffness matrix Kij that relates all of the truss displacements and forces. This process is called
“assembly.” The index numbers in the above relation must be the “global” numbers assigned
to the truss structure as a whole. However, it is generally convenient to compute the individual
element stiffness matrices using a local scheme, and then to have the computer convert to global
numbers when assembling the individual matrices.

Example 1

The assembly process is at the heart of the finite element method, and it is worthwhile to do a simple
case by hand to see how it really works. Consider the two-element truss problem of Fig. 4, with the
nodes being assigned arbitrary “global” numbers from 1 to 3. Since each node can in general move in
two directions, there are 3× 2 = 6 total degrees of freedom in the problem. The global stiffness matrix
will then be a 6 × 6 array relating the six displacements to the six externally applied forces. Only one
of the displacements is unknown in this case, since all but the vertical displacement of node 2 (degree of
freedom number 4) is constrained to be zero. Figure 4 shows a workable listing of the global numbers,
and also “local” numbers for each individual element.

Figure 4: Global and local numbering for the two-element truss.

Using the local numbers, the 4×4 element stiffness matrix of each of the two elements can be evaluated
according to Eqn. 2. The inclination angle is calculated from the nodal coordinates as

θ = tan−1
y2 − y1
x2 − x1

The resulting matrix for element 1 is:

k(1) =



25.00 −43.30 −25.00 43.30
−43.30 75.00 43.30 −75.00
−25.00 43.30 25.00 −43.30
43.30 −75.00 −43.30 75.00


× 103

and for element 2:

k(2) =



25.00 43.30 −25.00 −43.30
43.30 75.00 −43.30 −75.00
−25.00 −43.30 25.00 43.30
−43.30 −75.00 43.30 75.00


× 103

(It is important the units be consistent; here lengths are in inches, forces in pounds, and moduli in psi.
The modulus of both elements is E = 10 Mpsi and both have area A = 0.1 in2.) These matrices have
rows and columns numbered from 1 to 4, corresponding to the local degrees of freedom of the element.
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However, each of the local degrees of freedom can be matched to one of the global degrees of the overall
problem. By inspection of Fig. 4, we can form the following table that maps local to global numbers:

local global, global,
element 1 element 2

1 1 3
2 2 4
3 3 5
4 4 6

Using this table, we see for instance that the second degree of freedom for element 2 is the fourth degree
of freedom in the global numbering system, and the third local degree of freedom corresponds to the fifth
global degree of freedom. Hence the value in the second row and third column of the element stiffness

matrix of element 2, denoted k
(2)
23 , should be added into the position in the fourth row and fifth column

of the 6× 6 global stiffness matrix. We write this as

k
(2)
23 −→ K4,5

Each of the sixteen positions in the stiffness matrix of each of the two elements must be added into the
global matrix according to the mapping given by the table. This gives the result

K =




k
(1)
11 k

(1)
12 k

(1)
13 k

(1)
14 0 0

k
(1)
21 k

(1)
22 k

(1)
23 k

(1)
24 0 0

k
(1)
31 k

(1)
32 k

(1)
33 + k

(2)
11 k

(1)
34 + k

(2)
12 k

(2)
13 k

(2)
14

k
(1)
41 k

(1)
42 k

(1)
43 + k

(2)
21 k

(1)
44 + k

(2)
22 k

(2)
23 k

(2)
24

0 0 k
(2)
31 k

(2)
32 k

(2)
33 k

(2)
34

0 0 k
(2)
41 k

(2)
42 k

(2)
43 k

(2)
44




This matrix premultiplies the vector of nodal displacements according to Eqn. 1 to yield the vector of
externally applied nodal forces. The full system equations, taking into account the known forces and
displacements, are then

103




25.0 −43.3 −25.0 43.3 0.0 0.00
−43.3 75.0 43.3 −75.0 0.0 0.00
−25.0 43.3 50.0 0.0 −25.0 −43.30
43.3 −75.0 0.0 150.0 −43.3 −75.00
0.0 0.0 −25.0 −43.3 25.0 43.30
0.0 0.0 −43.3 −75.0 43.3 75.00







0
0
0
u4
0
0



=




f1
f2
f3
−1732
f5
f5




Note that either the force or the displacement for each degree of freedom is known, with the accompanying
displacement or force being unknown. Here only one of the displacements (u4) is unknown, but in most
problems the unknown displacements far outnumber the unknown forces. Note also that only those
elements that are physically connected to a given node can contribute a force to that node. In most
cases, this results in the global stiffness matrix containing many zeroes corresponding to nodal pairs that
are not spanned by an element. Effective computer implementations will take advantage of the matrix
sparseness to conserve memory and reduce execution time.
In larger problems the matrix equations are solved for the unknown displacements and forces by

Gaussian reduction or other techniques. In this two-element problem, the solution for the single unknown
displacement can be written down almost from inspection. Multiplying out the fourth row of the system,
we have

0 + 0 + 0 + 150× 103u4 + 0 + 0 = −1732

u4 = −1732/150× 10
3 = −0.01155 in

Now any of the unknown forces can be obtained directly. Multiplying out the first row for instance gives
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0 + 0 + 0 + (43.4)(−0.0115)× 103 + 0 + 0 = f1

f1 = −500 lb

The negative sign here indicates the horizontal force on global node #1 is to the left, opposite the direction
assumed in Fig. 4.

The process of cycling through each element to form the element stiffness matrix, assembling
the element matrix into the correct positions in the global matrix, solving the equations for
displacements and then back-multiplying to compute the forces, and printing the results can be
automated to make a very versatile computer code.
Larger-scale truss (and other) finite element analysis are best done with a dedicated computer

code, and an excellent one for learning the method is available from the web at
http://felt.sourceforge.net/. This code, named felt, was authored by Jason Gobat and
Darren Atkinson for educational use, and incorporates a number of novel features to promote
user-friendliness. Complete information describing this code, as well as the C-language source
and a number of trial runs and auxiliary code modules is available via their web pages. If you
have access to X-window workstations, a graphical shell named velvet is available as well.

Example 2

Figure 5: The six-element truss, as developed in the velvet/felt FEA graphical interface.

To illustrate how this code operates for a somewhat larger problem, consider the six-element truss of
Fig. 5, which was analyzed in Module 5 both by the joint-at-a-time free body analysis approach and by
Castigliano’s method.
The input dataset, which can be written manually or developed graphically in velvet, employs

parsing techniques to simplify what can be a very tedious and error-prone step in finite element analysis.
The dataset for this 6-element truss is:

problem description

nodes=5 elements=6

nodes

1 x=0 y=100 z=0 constraint=pin
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2 x=100 y=100 z=0 constraint=planar

3 x=200 y=100 z=0 force=P

4 x=0 y=0 z=0 constraint=pin

5 x=100 y=0 z=0 constraint=planar

truss elements

1 nodes=[1,2] material=steel

2 nodes=[2,3]

3 nodes=[4,2]

4 nodes=[2,5]

5 nodes=[5,3]

6 nodes=[4,5]

material properties

steel E=3e+07 A=0.5

distributed loads

constraints

free Tx=u Ty=u Tz=u Rx=u Ry=u Rz=u

pin Tx=c Ty=c Tz=c Rx=u Ry=u Rz=u

planar Tx=u Ty=u Tz=c Rx=u Ry=u Rz=u

forces

P Fy=-1000

end

The meaning of these lines should be fairly evident on inspection, although the felt documentation
should be consulted for more detail. The output produced by felt for these data is:

** **

Nodal Displacements

-----------------------------------------------------------------------------

Node # DOF 1 DOF 2 DOF 3 DOF 4 DOF 5 DOF 6

-----------------------------------------------------------------------------

1 0 0 0 0 0 0

2 0.013333 -0.03219 0 0 0 0

3 0.02 -0.084379 0 0 0 0

4 0 0 0 0 0 0

5 -0.0066667 -0.038856 0 0 0 0

Element Stresses

-------------------------------------------------------------------------------

1: 4000

2: 2000

3: -2828.4

4: 2000

5: -2828.4

6: -2000

Reaction Forces

-----------------------------------

Node # DOF Reaction Force

-----------------------------------
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1 Tx -2000

1 Ty 0

1 Tz 0

2 Tz 0

3 Tz 0

4 Tx 2000

4 Ty 1000

4 Tz 0

5 Tz 0

Material Usage Summary

--------------------------

Material: steel

Number: 6

Length: 682.8427

Mass: 0.0000

Total mass: 0.0000

The vertical displacement of node 3 (the DOF 2 value) is -0.0844, the same value obtained by the
closed-form methods of Module 5. Figure 6 shows the velvet graphical output for the truss deflections
(greatly magnified).

Figure 6: The 6-element truss in its original and deformed shape.

General Stress Analysis

The element stiffness matrix could be formed exactly for truss elements, but this is not the case
for general stress analysis situations. The relation between nodal forces and displacements are
not known in advance for general two- or three-dimensional stress analysis problems, and an
approximate relation must be used in order to write out an element stiffness matrix.
In the usual “displacement formulation” of the finite element method, the governing equa-

tions are combined so as to have only displacements appearing as unknowns; this can be done by
using the Hookean constitutive equations to replace the stresses in the equilibrium equations by
the strains, and then using the kinematic equations to replace the strains by the displacements.
This gives

LTσ = LTDε = LTDLu = 0 (3)
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Of course, it is often impossible to solve these equations in closed form for the irregular bound-
ary conditions encountered in practical problems. However, the equations are amenable to
discretization and solution by numerical techniques such as finite differences or finite elements.
Finite element methods are one of several approximate numerical techniques available for

the solution of engineering boundary value problems. Problems in the mechanics of materials
often lead to equations of this type, and finite element methods have a number of advantages
in handling them. The method is particularly well suited to problems with irregular geometries
and boundary conditions, and it can be implemented in general computer codes that can be
used for many different problems.
To obtain a numerical solution for the stress analysis problem, let us postulate a function

ũ(x, y) as an approximation to u:

ũ(x, y) ≈ u(x, y) (4)

Many different forms might be adopted for the approximation ũ. The finite element method
discretizes the solution domain into an assemblage of subregions, or “elements,” each of which has
its own approximating functions. Specifically, the approximation for the displacement ũ(x, y)
within an element is written as a combination of the (as yet unknown) displacements at the
nodes belonging to that element:

ũ(x, y) = Nj(x, y)uj (5)

Here the index j ranges over the element’s nodes, uj are the nodal displacements, and the Nj are
“interpolation functions.” These interpolation functions are usually simple polynomials (gen-
erally linear, quadratic, or occasionally cubic polynomials) that are chosen to become unity at
node j and zero at the other element nodes. The interpolation functions can be evaluated at any
position within the element by means of standard subroutines, so the approximate displacement
at any position within the element can be obtained in terms of the nodal displacements directly
from Eqn. 5.

Figure 7: Interpolation in one dimension.

The interpolation concept can be illustrated by asking how we might guess the value of a
function u(x) at an arbitrary point x located between two nodes at x = 0 and x = 1, assuming
we know somehow the nodal values u(0) and u(1). We might assume that as a reasonable
approximation u(x) simply varies linearly between these two values as shown in Fig. 7, and
write

u(x) ≈ ũ(x) = u0 (1− x) + u1 (x)

or
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ũ(x) = u0N0(x) + u1N1(x),

{
N0(x) = (1− x)
N1(x) = x

Here the N0 and N1 are the linear interpolation functions for this one-dimensional approxima-
tion. Finite element codes have subroutines that extend this interpolation concept to two and
three dimensions.
Approximations for the strain and stress follow directly from the displacements:

ε̃ = Lũ = LNjuj ≡ Bjuj (6)

σ̃ = Dε̃ = DBjuj (7)

where Bj(x, y) = LNj(x, y) is an array of derivatives of the interpolation functions:

Bj =


 Nj,x 0
0 Nj,y
Nj,y Nj,x


 (8)

A “virtual work” argument can now be invoked to relate the nodal displacement uj appearing
at node j to the forces applied externally at node i: if a small, or “virtual,” displacement δui is
superimposed on node i, the increase in strain energy δU within an element connected to that
node is given by:

δU =

∫
V
δεT σ dV (9)

where V is the volume of the element. Using the approximate strain obtained from the inter-
polated displacements, δε̃ = Biδui is the approximate virtual increase in strain induced by the
virtual nodal displacement. Using Eqn. 7 and the matrix identity (AB)T = BTAT, we have:

δU = δuTi

∫
V
BTi DBj dV uj (10)

(The nodal displacements δuTi and uj are not functions of x and y, and so can be brought from
inside the integral.) The increase in strain energy δU must equal the work done by the nodal
forces; this is:

δW = δuTi fi (11)

Equating Eqns. 10 and 11 and canceling the common factor δuTi , we have:

[∫
V
BTi DBj dV

]
uj = fi (12)

This is of the desired form kijuj = fi, where kij =
∫
V B

T
i DBj dV is the element stiffness.

Finally, the integral in Eqn. 12 must be replaced by a numerical equivalent acceptable to the
computer. Gauss-Legendre numerical integration is commonly used in finite element codes for
this purpose, since that technique provides a high ratio of accuracy to computing effort. Stated
briefly, the integration consists of evaluating the integrand at optimally selected integration
points within the element, and forming a weighted summation of the integrand values at these
points. In the case of integration over two-dimensional element areas, this can be written:
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∫
A
f(x, y) dA ≈

∑
l

f(xl, yl)wl (13)

The location of the sampling points xl, yl and the associated weights wl are provided by
standard subroutines. In most modern codes, these routines map the element into a convenient
shape, determine the integration points and weights in the transformed coordinate frame, and
then map the results back to the original frame. The functions Nj used earlier for interpolation
can be used for the mapping as well, achieving a significant economy in coding. This yields what
are known as “numerically integrated isoparametric elements,” and these are a mainstay of the
finite element industry.
Equation 12, with the integral replaced by numerical integrations of the form in Eqn. 13, is

the finite element counterpart of Eqn. 3, the differential governing equation. The computer will
carry out the analysis by looping over each element, and within each element looping over the
individual integration points. At each integration point the components of the element stiffness
matrix kij are computed according to Eqn. 12, and added into the appropriate positions of the
Kij global stiffness matrix as was done in the assembly step of matrix truss method described in
the previous section. It can be appreciated that a good deal of computation is involved just in
forming the terms of the stiffness matrix, and that the finite element method could never have
been developed without convenient and inexpensive access to a computer.

Stresses around a circular hole

We have considered the problem of a uniaxially loaded plate containing a circular hole in previous
modules, including the theoretical Kirsch solution (Module 16) and experimental determinations
using both photoelastic and moire methods (Module 17). This problem is of practical importance
—- for instance, we have noted the dangerous stress concentration that appears near rivet holes
— and it is also quite demanding in both theoretical and numerical analyses. Since the stresses
rise sharply near the hole, a finite element grid must be refined there in order to produce
acceptable results.

Figure 8: Mesh for circular-hole problem.

Figure 8 shows a mesh of three-noded triangular elements developed by the felt-velvet
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graphical FEA package that can be used to approximate the displacements and stresses around
a uniaxially loaded plate containing a circular hole. Since both theoretical and experimental
results for this stress field are available as mentioned above, the circular-hole problem is a good
one for becoming familiar with code operation.
The user should take advantage of symmetry to reduce problem size whenever possible, and

in this case only one quadrant of the problem need be meshed. The center of the hole is kept
fixed, so the symmetry requires that nodes along the left edge be allowed to move vertically
but not horizontally. Similarly, nodes along the lower edge are constrained vertically but left
free to move horizontally. Loads are applied to the nodes along the upper edge, with each load
being the resultant of the far-field stress acting along half of the element boundaries between
the given node and its neighbors. (The far-field stress is taken as unity.) Portions of the felt
input dataset for this problem are:

problem description

nodes=76 elements=116

nodes

1 x=1 y=-0 z=0 constraint=slide_x

2 x=1.19644 y=-0 z=0

3 x=0.984562 y=0.167939 z=0 constraint=free

4 x=0.940634 y=0.335841 z=0

5 x=1.07888 y=0.235833 z=0

.

.

.

72 x=3.99602 y=3.01892 z=0

73 x=3.99602 y=3.51942 z=0

74 x=3.33267 y=4 z=0

75 x=3.57706 y=3.65664 z=0

76 x=4 y=4 z=0

CSTPlaneStress elements

1 nodes=[13,12,23] material=steel

2 nodes=[67,58,55]

6 nodes=[50,41,40]

.

.

.

7 nodes=[68,67,69] load=load_case_1

8 nodes=[68,58,67]

9 nodes=[57,58,68] load=load_case_1

10 nodes=[57,51,58]

11 nodes=[52,51,57] load=load_case_1

12 nodes=[37,39,52] load=load_case_1

13 nodes=[39,51,52]

.

.

.

116 nodes=[2,3,1]

material properties

steel E=2.05e+11 nu=0.33 t=1

distributed loads

load_case_1 color=red direction=GlobalY values=(1,1) (3,1)
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constraints

free Tx=u Ty=u Tz=u Rx=u Ry=u Rz=u

slide_x color=red Tx=u Ty=c Tz=c Rx=u Ry=u Rz=u

slide_y color=red Tx=c Ty=u Tz=c Rx=u Ry=u Rz=u

end

The y-displacements and vertical stresses σy are contoured in Fig. 9(a) and (b) respectively;
these should be compared with the photoelastic and moire analyses given in Module 17, Figs. 8
and 10(a). The stress at the integration point closest to the x-axis at the hole is computed
to be σy,max = 3.26, 9% larger than the theoretical value of 3.00. In drawing the contours of
Fig. 9b, the postprocessor extrapolated the stresses to the nodes by fitting a least-squares plane
through the stresses at all four integration points within the element. This produces an even
higher value for the stress concentration factor, 3.593. The user must be aware that graphical
postprocessors smooth results that are themselves only approximations, so numerical inaccuracy
is a real possibility. Refining the mesh, especially near the region of highest stress gradient at
the hole meridian, would reduce this error.

Figure 9: Vertical displacements (a) and stresses (b) as computed for the mesh of Fig. 8.

Problems

1. (a) – (h) Use FEA to determine the force in each element of the trusses drawn below.

2. (a) – (c) Write out the global stiffness matrices for the trusses listed below, and solve
for the unknown forces and displacements. For each element assume E = 30 Mpsi and
A = 0.1 in2.

3. Obtain a plane-stress finite element solution for a cantilevered beam with a single load at
the free end. Use arbitrarily chosen (but reasonable) dimensions and material properties.
Plot the stresses σx and τxy as functions of y at an arbitrary station along the span; also
plot the stresses given by the elementary theory of beam bending (c.f. Module 13) and
assess the magnitude of the numerical error.

4. Repeat the previous problem, but with a symmetrically-loaded beam in three-point bend-
ing.
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Prob. 1

Prob. 2

5. Use axisymmetric elements to obtain a finite element solution for the radial stress in a
thick-walled pressure vessel (using arbitrary geometry and material parameters). Compare
the results with the theoretical solution (c.f. Prob. 2 in Module 16).
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Prob. 3

Prob. 4
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1 Introduction

This document is intended to outline an important aspect of the mechanical response of polymers
and polymer-matrix composites: the field of linear viscoelasticity. The topics included here are
aimed at providing an instructional introduction to this large and elegant subject, and should
not be taken as a thorough or comprehensive treatment. The references appearing either as
footnotes to the text or listed separately at the end of the notes should be consulted for more
thorough coverage.

Viscoelastic response is often used as a probe in polymer science, since it is sensitive to
the material’s chemistry and microstructure. The concepts and techniques presented here are
important for this purpose, but the principal objective of this document is to demonstrate how
linear viscoelasticity can be incorporated into the general theory of mechanics of materials, so
that structures containing viscoelastic components can be designed and analyzed.

While not all polymers are viscoelastic to any important practical extent, and even fewer
are linearly viscoelastic1, this theory provides a usable engineering approximation for many
applications in polymer and composites engineering. Even in instances requiring more elaborate
treatments, the linear viscoelastic theory is a useful starting point.

2 Molecular Mechanisms

When subjected to an applied stress, polymers may deform by either or both of two fundamen-
tally different atomistic mechanisms. The lengths and angles of the chemical bonds connecting
the atoms may distort, moving the atoms to new positions of greater internal energy. This is a
small motion and occurs very quickly, requiring only ≈ 10−12 seconds.

If the polymer has sufficient molecular mobility, larger-scale rearrangements of the atoms
may also be possible. For instance, the relatively facile rotation around backbone carbon-
carbon single bonds can produce large changes in the conformation of the molecule. Depending
on the mobility, a polymer molecule can extend itself in the direction of the applied stress, which
decreases its conformational entropy (the molecule is less “disordered”). Elastomers — rubber
— respond almost wholly by this entropic mechanism, with little distortion of their covalent
bonds or change in their internal energy.

1For an overview of nonlinear viscoelastic theory, see for instance W.N. Findley et al., Creep and Relaxation
of Nonlinear Viscoelastic Materials, Dover Publications, New York, 1989.
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The combined first and second laws of thermodynamics state how an increment of mechanical
work f dx done on the system can produce an increase in the internal energy dU or a decrease
in the entropy dS:

f dx = dU − T dS (1)

Clearly, the relative importance of the entropic contribution increases with temperature T , and
this provides a convenient means of determining experimentally whether the material’s stiffness
in energetic or entropic in origin. The retractive force needed to hold a rubber band at fixed
elongation will increase with increasing temperature, as the increased thermal agitation will
make the internal structure more vigorous in its natural attempts to restore randomness. But
the retractive force in a stretched steel specimen — which shows little entropic elasticity — will
decrease with temperature, as thermal expansion will act to relieve the internal stress.

In contrast to the instantaneous nature of the energetically controlled elasticity, the con-
formational or entropic changes are processes whose rates are sensitive to the local molecular
mobility. This mobility is influenced by a variety of physical and chemical factors, such as molec-
ular architecture, temperature, or the presence of absorbed fluids which may swell the polymer.
Often, a simple mental picture of “free volume” — roughly, the space available for molecular
segments to act cooperatively so as to carry out the motion or reaction in question — is useful
in intuiting these rates.

These rates of conformational change can often be described with reasonable accuracy by
Arrhenius-type expressions of the form

rate ∝ exp
−E†

RT
(2)

where E† is an apparent activation energy of the process and R = 8.314J/mol − ◦K is the Gas
Constant. At temperatures much above the “glass transition temperature,” labeled Tg in Fig.
1, the rates are so fast as to be essentially instantaneous, and the polymer acts in a rubbery
manner in which it exhibits large, instantaneous, and fully reversible strains in response to an
applied stress.

Figure 1: Temperature dependence of rate.

Conversely, at temperatures much less than Tg, the rates are so slow as to be negligible.
Here the chain uncoiling process is essentially “frozen out,” so the polymer is able to respond
only by bond stretching. It now responds in a “glassy” manner, responding instantaneously
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and reversibly but being incapable of being strained beyond a few percent before fracturing in
a brittle manner.

In the range near Tg, the material is midway between the glassy and rubbery regimes.
Its response is a combination of viscous fluidity and elastic solidity, and this region is termed
“leathery,” or, more technically, “viscoelastic”. The value of Tg is an important descriptor of
polymer thermomechanical response, and is a fundamental measure of the material’s propensity
for mobility. Factors that enhance mobility, such as absorbed diluents, expansive stress states,
and lack of bulky molecular groups, all tend to produce lower values of Tg. The transparent
polyvinyl butyral film used in automobile windshield laminates is an example of a material that
is used in the viscoelastic regime, as viscoelastic response can be a source of substantial energy
dissipation during impact.

At temperatures well below Tg, when entropic motions are frozen and only elastic bond de-
formations are possible, polymers exhibit a relatively high modulus, called the “glassy modulus”
Eg, which is on the order of 3 GPa (400 kpsi). As the temperature is increased through Tg, the
stiffness drops dramatically, by perhaps two orders of magnitude, to a value called the “rubbery
modulus” Er. In elastomers that have been permanently crosslinked by sulphur vulcanization
or other means, the value of Er is determined primarily by the crosslink density; the kinetic
theory of rubber elasticity gives the relation as

σ = NRT

(
λ−

1

λ2

)
(3)

where σ is the stress, N is the crosslink density (mol/m3), and λ = L/L0 is the extension
ratio. Differentiation of this expression gives the slope of the stress-strain curve at the origin as
Er = 3NRT .

If the material is not crosslinked, the stiffness exhibits a short plateau due to the ability
of molecular entanglements to act as network junctions; at still higher temperatures the entan-
glements slip and the material becomes a viscous liquid. Neither the glassy nor the rubbery
modulus depends strongly on time, but in the vicinity of the transition near Tg time effects can
be very important. Clearly, a plot of modulus versus temperature, such as is shown in Fig. 2, is a
vital tool in polymer materials science and engineering. It provides a map of a vital engineering
property, and is also a fingerprint of the molecular motions available to the material.

Figure 2: A generic modulus-temperature map for polymers.
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3 Phenomenological Aspects

Experimentally, one seeks to characterize materials by performing simple laboratory tests from
which information relevant to actual in-use conditions may be obtained. In the case of vis-
coelastic materials, mechanical characterization often consists of performing uniaxial tensile
tests similar to those used for elastic solids, but modified so as to enable observation of the
time dependency of the material response. Although many such “viscoelastic tensile tests” have
been used, one most commonly encounters only three: creep, stress relaxation, and dynamic
(sinusoidal) loading.

Creep

The creep test consists of measuring the time dependent strain ε(t) = δ(t)/L0 resulting from
the application of a steady uniaxial stress σ0 as illustrated in Fig. 3. These three curves are the
strains measured at three different stress levels, each one twice the magnitude of the previous
one.

Figure 3: Creep strain at various constant stresses.

Note in Fig. 3 that when the stress is doubled, the resulting strain in doubled over its full
range of time. This occurs if the materials is linear in its response. If the strain-stress relation
is linear, the strain resulting from a stress aσ, where a is a constant, is just the constant a times
the strain resulting from σ alone. Mathematically,

ε(aσ) = aε(σ)

This is just a case of “double the stress, double the strain.”
If the creep strains produced at a given time are plotted as the abscissa against the applied

stress as the ordinate, an “isochronous” stress-strain curve would be produced. If the material
is linear, this “curve” will be a straight line, with a slope that increases as the chosen time is
decreased.

For linear materials, the family of strain histories ε(t) obtained at various constant stresses
may be superimposed by normalizing them based on the applied stress. The ratio of strain to
stress is called the “compliance” C, and in the case of time-varying strain arising from a constant
stress the ratio is the “creep compliance”:

Ccrp(t) =
ε(t)

σ0
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A typical form of this function is shown in Fig. 4, plotted against the logarithm of time. Note
that the logarithmic form of the plot changes the shape of the curve drastically, stretching out
the short-time portion of the response and compressing the long-time region. Upon loading,
the material strains initially to the “glassy” compliance Cg; this is the elastic deformation
corresponding to bond distortion. In time, the compliance rises to an equilibrium or “rubbery”
value Cr, corresponding to the rubbery extension of the material. The value along the abscissa
labeled “log τ” marks the inflection from rising to falling slope, and τ is called the “relaxation
time” of the creep process.

Figure 4: The creep compliance function Ccrp(t).

Stress relaxation

Another common test, easily conducted on Instron or other displacement-controlled machines,
consists of monitoring the time-dependent stress resulting from a steady strain as seen in Fig. 5.
This is the converse of Fig. 3; here the stress curves correspond to three different levels of
constant strain, each one twice the magnitude of the previous one.

Figure 5: Measurement of relaxation response.

Analogously with creep compliance, one may superimpose the relaxation curves by means
of the “relaxation modulus,” defined as Erel(t) = σ(t)/ε0, plotted against log time in Fig. 6.
At short times, the stress is at a high plateau corresponding to a “glassy” modulus Eg, and
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then falls exponentially to a lower equilibrium “rubbery” modulus Er as the polymer molecules
gradually accommodate the strain by conformational extension rather than bond distortion.

Figure 6: The stress relaxation modulus Erel(t). Here Eg = 100, Er = 10, and τ = 1.

Creep and relaxation are both manifestations of the same molecular mechanisms, and one
should expect that Erel and Ccrp are related. However even though Eg = 1/Cg and Er = 1/Cr, in
general Erel(t) �= 1/Ccrp(t). In particular, the relaxation response moves toward its equilibrium
value more quickly than does the creep response.

Dynamic loading

Creep and stress relaxation tests are convenient for studying material response at long times
(minutes to days), but less accurate at shorter times (seconds and less). Dynamic tests, in which
the stress (or strain) resulting from a sinusoidal strain (or stress) is measured, are often well-
suited for filling out the “short-time” range of polymer response. When a viscoelastic material
is subjected to a sinusoidally varying stress, a steady state will eventually be reached2 in which
the resulting strain is also sinusoidal, having the same angular frequency but retarded in phase
by an angle δ; this is analogous to the delayed strain observed in creep experiments. The strain
lags the stress by the phase angle δ, and this is true even if the strain rather than the stress is
the controlled variable.

If the origin along the time axis is selected to coincide with a time at which the strain passes
through its maximum, the strain and stress functions can be written as:

ε = ε0 cosωt (4)

σ = σ0 cos(ωt + δ) (5)

Using an algebraic maneuver common in the analysis of reactive electrical circuits and other
harmonic systems, it is convenient to write the stress function as a complex quantity σ∗ whose
real part is in phase with the strain and whose imaginary part is 90◦ out of phase with it:

σ∗ = σ′0 cosωt+ i σ
′′
0 sinωt (6)

Here i =
√
−1 and the asterisk denotes a complex quantity as usual.

2The time needed for the initial transient effect to die out will itself be dependent on the material’s viscoelastic
response time, and in some situations this can lead to experimental errors. Problem 5 develops the full form of
the dynamic response, including the initial transient term.
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It can be useful to visualize the observable stress and strain as the projection on the real
axis of vectors rotating in the complex plane at a frequency ω. If we capture their positions just
as the strain vector passes the real axis, the stress vector will be ahead of it by the phase angle
δ as seen in Fig. 7.

Figure 7: The “rotating-vector” representation of harmonic stress and strain.

Figure 7 makes it easy to develop the relations between the various parameters in harmonic
relations:

tan δ = σ′′0/σ
′
0 (7)

|σ∗| = σ0 =
√
(σ′0)

2 + (σ′′0 )
2 (8)

σ′0 = σ0 cos δ (9)

σ′′0 = σ0 sin δ (10)

We can use this complex form of the stress function to define two different dynamic moduli,
both being ratios of stress to strain as usual but having very different molecular interpretations
and macroscopic consequences. The first of these is the “real,” or “storage,” modulus, defined
as the ratio of the in-phase stress to the strain:

E′ = σ′0/ε0 (11)

The other is the “imaginary,” or “loss,” modulus, defined as the ratio of the out-of-phase stress
to the strain:

E′′ = σ′′0/ε0 (12)

Example 1

The terms “storage” and “loss” can be understood more readily by considering the mechanical work
done per loading cycle. The quantity

∫
σ dε is the strain energy per unit volume (since σ = force/area

and ε = distance/length). Integrating the in-phase and out-of-phase components separately:

W =

∮
σdε =

∮
σ
dε

dt
dt (13)

=

∫ 2π/ω

0

(σ′0 cosωt)(−ε0ω sinωt)dt+

∫ 2π/ω

0

(σ′′0 sinωt)(−ε0ω sinωt)dt (14)
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= 0− πσ′′0 ε0 (15)

Note that the in-phase components produce no net work when integrated over a cycle, while the out-of-
phase components result in a net dissipation per cycle equal to:

Wdis = πσ
′′
0 ε0 = πσ0ε0 sin δ (16)

This should be interpreted to illustrate that the strain energy associated with the in-phase stress and
strain is reversible; i.e. that energy which is stored in the material during a loading cycle can be re-
covered without loss during unloading. Conversely, energy supplied to the material by the out-of-phase
components is converted irreversibly to heat.

The maximum energy stored by the in-phase components occurs at the quarter-cycle point, and this
maximum stored energy is:

Wst =

∫ π/2ω

0

(σ′0 cosωt)(−ε0ω sinωt)dt

= −
1

2
σ′0ε0 = −

1

2
σ0ε0 cos δ (17)

The relative dissipation – the ratio of Wdis/Wst – is then related to the phase angle by:

Wdis

Wst
= 2π tan δ (18)

We will also find it convenient to express the harmonic stress and strain functions as expo-
nentials:

σ = σ∗0e
iωt (19)

ε = ε∗0e
iωt (20)

The eiωt factor follows from the Euler relation eiθ = cos θ + i sin θ, and writing both the stress
and the strain as complex numbers removes the restriction of placing the origin at a time of
maximum strain as was done above. The complex modulus can now be written simply as:

E∗ = σ∗0/ε
∗
0 (21)

4 Mathematical Models for Linear Viscoelastic Response

4.1 The Maxwell Spring-Dashpot Model

The time dependence of viscoelastic response is analogous to the time dependence of reactive
electrical circuits, and both can be described by identical ordinary differential equations in time.
A convenient way of developing these relations while also helping visualize molecular motions
employs “spring-dashpot” models. These mechanical analogs use “Hookean” springs, depicted
in Fig. 8 and described by

σ = kε

where σ and ε are analogous to the spring force and displacement, and the spring constant k
is analogous to the Young’s modulus E; k therefore has units of N/m2. The spring models
the instantaneous bond deformation of the material, and its magnitude will be related to the
fraction of mechanical energy stored reversibly as strain energy.
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Figure 8: Hookean spring (left) and Newtonian dashpot (right).

The entropic uncoiling process is fluidlike in nature, and can be modeled by a “Newtonian
dashpot” also shown in Fig. 8, in which the stress produces not a strain but a strain rate:

σ = ηε̇

Here the overdot denotes time differentiation and η is a viscosity with units of N-s/m2. In many
of the relations to follow, it will be convenient to employ the ratio of viscosity to stiffness:

τ =
η

k

The unit of τ is time, and it will be seen that this ratio is a useful measure of the response time
of the material’s viscoelastic response.

Figure 9: The Maxwell model.

The “Maxwell” solid shown in Fig. 9 is a mechanical model in which a Hookean spring and a
Newtonian dashpot are connected in series. The spring should be visualized as representing the
elastic or energetic component of the response, while the dashpot represents the conformational
or entropic component. In a series connection such as the Maxwell model, the stress on each
element is the same and equal to the imposed stress, while the total strain is the sum of the
strain in each element:

σ = σs = σd

ε = εs + εd

Here the subscripts s and d represent the spring and dashpot, respectively. In seeking a single
equation relating the stress to the strain, it is convenient to differentiate the strain equation and
then write the spring and dashpot strain rates in terms of the stress:

ε̇ = ε̇s + ε̇d =
σ̇

k
+
σ

η

Multiplying by k and using τ = η/k:

kε̇ = σ̇ +
1

τ
σ (22)

This expression is a “constitutive” equation for our fictitious Maxwell material, an equation that
relates the stress to the strain. Note that it contains time derivatives, so that simple constant of
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proportionality between stress and strain does not exist. The concept of “modulus” – the ratio
of stress to strain – must be broadened to account for this more complicated behavior.

Eqn. 22 can be solved for the stress σ(t) once the strain ε(t) is specified, or for the strain if
the stress is specified. Two examples will illustrate this process:

Example 2

In a stress relaxation test, a constant strain ε0 acts as the “input” to the material, and we seek an
expression for the resulting time-dependent stress; this is depicted in Fig. 10.

Figure 10: Strain and stress histories in the stress relaxation test.

Since in stress relaxation ε̇ = 0, Eqn. 22 becomes

dσ

dt
= −

1

τ
σ

Separating variables and integrating:

∫ σ

σ0

dσ

σ
= −

1

τ

∫ t

0

dt

lnσ − ln σ0 = −
t

τ

σ(t) = σ0 exp(−t/τ)

Here the significance of τ ≡ η/k as a characteristic “relaxation time” is evident; it is physically the time
needed for the stress to fall to 1/e of its initial value. It is also the time at which the stress function
passes through an inflection when plotted against log time.

The relaxation modulus Erel may be obtained from this relation directly, noting that initially only
the spring will deform and the initial stress and strain are related by σ0 = kε0. So

Erel(t) =
σ(t)

ε0
=
σ0

ε0
exp(−t/τ)

Erel(t) = k exp(−t/τ) (23)

This important function is plotted schematically in Fig. 11. The two adjustable parameters in the model,
k and τ , can be used to force the model to match an experimental plot of the relaxation modulus at two
points. The spring stiffness k would be set to the initial or glass modulus Eg, and τ would be chosen to
force the value k/e to match the experimental data at t = τ .

10



Figure 11: Relaxation modulus for the Maxwell model.

The relaxation time τ is strongly dependent on temperature and other factors that effect the mobility

of the material, and is roughly inverse to the rate of molecular motion. Above Tg, τ is very short; below

Tg, it is very long. More detailed consideration of the temperature dependence will be given in a later

section, in the context of “thermorheologically simple” materials.

Example 3

In the case of the dynamic response, the time dependency of both the stress and the strain are of the
form exp(iωt). All time derivatives will therefore contain the expression (iω) exp(iωt), so Eqn. 22 gives:

k (iω) ε∗0 exp(iωt) =

(
iω +

1

τj

)
σ∗0 exp(iωt)

The complex modulus E∗ is then

E∗ =
σ∗0
ε∗0

=
k(iω)

iω + 1
τj

=
k(iωτ)

1 + iωτ
(24)

This equation can be manipulated algebraically (multiply and divide by the complex conjugate of the
denominator) to yield:

E∗ =
kω2τ2

1 + ω2τ2
+ i

kωτ

1 + ω2τ2
(25)

In Eq. 25, the real and imaginary components of the complex modulus are given explicitly; these are the

“Debye” relations also important in circuit theory.

4.2 The Standard Linear Solid (Maxwell Form)

Most polymers do not exhibit the unrestricted flow permitted by the Maxwell model, although
it might be a reasonable model for Silly Putty or warm tar. Therefore Eqn. 23 is valid only
for a very limited set of materials. For more typical polymers whose conformational change
is eventually limited by the network of entanglements or other types of junction points, more
elaborate spring-dashpot models can be used effectively.

Placing a spring in parallel with the Maxwell unit gives a very useful model known as the
“Standard Linear Solid” (S.L.S.) shown in Fig. 12. This spring has stiffness ke, so named because

11



Figure 12: The Maxwell form of the Standard Linear Solid.

it provides an “equilibrium” or rubbery stiffness that remains after the stresses in the Maxwell
arm have relaxed away as the dashpot extends.

In this arrangement, the Maxwell arm and the parallel spring ke experience the same strain,
and the total stress σ is the sum of the stress in each arm: σ = σe + σm. It is awkward to solve
for the stress σm in the Maxwell arm using Eqn. 22, since that contains both the stress and its
time derivative. The Laplace transformation is very convenient in this and other viscoelasticity
problems, because it reduces differential equations to algebraic ones. Appendixes A lists some
transform pairs encountered often in these problems.

Since the stress and strain are zero as the origin is approached from the left, the transforms
of the time derivatives are just the Laplace variable s times the transforms of the functions;
denoting the transformed functions with an overline, we have L(ε̇) = sε and L(σ̇) = sσ. Then
writing the transform of an expression such as Eqn. 22 is done simply by placing a line over the
time-dependent functions, and replacing the time-derivative overdot by an s coefficient:

kε̇ = σ̇m +
1

τ
σm −→ k1sε = sσm +

1

τ
σm

Solving for σm:

σm =
k1s

s+ 1
τ

ε (26)

Adding the stress σe = keε in the equilibrium spring, the total stress is:

σ = keε+
k1s

s+ 1
τ

ε =

{
ke +

k1s

s+ 1
τ

}
ε

This result can be written

σ = Eε (27)

where for this model the parameter E is

E = ke +
k1s

s+ 1
τ

(28)

12



Eqn. 27, which is clearly reminiscent of Hooke’s Law σ = Eε but in the Laplace plane, is called
the associated viscoelastic constitutive equation. Here the specific expression for E is that of the
Standard Linear Solid model, but other models could have been used as well.

For a given strain input function ε(t), we obtain the resulting stress function in three steps:

1. Obtain an expression for the transform of the strain function, ε(s).

2. Form the algebraic product σ(s) = Eε(s).

3. Obtain the inverse transform of the result to yield the stress function in the time plane.

Example 4

In the case of stress relaxation, the strain function ε(t) is treated as a constant ε0 times the “Heaviside”
or “unit step” function u(t):

ε(t) = ε0u(t), u(t) =

{
0, t < 0
1, t ≥ 0

This has the Laplace transform

ε =
ε0

s

Using this in Eqn. 27 and dividing through by ε0, we have

σ

ε0
=
ke

s
+

k1

s+ 1
τ

Since L−1 1/(s+ a) = e−at, this can be inverted directly to give

σ(t)

ε0
≡ Erel(t) = ke + k1 exp(−t/τ) (29)

This function, which is just that of the Maxwell model shifted upward by an amount ke, was used to
generate the curve shown in Fig. 6.

Example 5

The form of Eqn. 27 is convenient when the stress needed to generate a given strain is desired. It is
somewhat awkward when the strain generated by a given stress is desired, since then the parameter E
appears in the denominator:

ε =
σ

E
=

σ

ke +
k1s
s+ 1τ

This is more difficult to invert, and in such cases symbolic manipulation software such as MapleTM can
be helpful. For instance, if we want to compute the creep compliance of the Maxwell Standard Linear
Solid, we could write:

read transformation library

> with(inttrans):

define governing equation

> eq1:=sigbar=EE*epsbar;

Constant stress sig0:

> sigbar:=laplace(sig0,t,s);

13



EE viscoelastic operator - Maxwell S.L.S. model

> EE:= k[e]+k[1]*s/(s+1/tau);

Solve governing equation for epsbar and invert:

> C[crp](t):=simplify((invlaplace(solve(eq1,epsbar),s,t))/sig0);

k[e] t

-k[e] - k[1] + k[1] exp(- -----------------)

tau (k[e] + k[1])

C[crp](t) := - --------------------------------------------

k[e] (k[e] + k[1])

This result can be written as

Ccrp(t) = Cg + (Cr − Cg)
(
1− e−t/τc

)
(30)

where

Cg =
1

ke + k1
, Cr =

1

ke
, τc = τ

(
ke + k1
ke

)

The glassy compliance Cg is the compliance of the two springs ke and k1 acting in parallel, and the
rubbery compliance Cr is that of spring ke alone, as expected. Less obvious is that the characteristic
time for creep τc (sometimes called the “retardation” time) is longer than the characteristic time for
relaxation τ , by a factor equal to the ratio of the glassy to the rubbery modulus. This is a general result,
not restricted to the particular model used.

A less awkward form for compliance problems is produced when “Voigt-type” rather than Maxwell-
type models are used; see problems 7 and 8.

The Standard Linear Solid is a three-parameter model capable of describing the general
features of viscoelastic relaxation: ke and k1 are chosen to fit the glassy and rubbery moduli,
and τ is chosen to place the relaxation in the correct time interval:

ke = Er (31)

k1 = Eg − Er (32)

τ = t@Erel =

(
Er +

1

e
(Eg − Er)

)
(33)

This forces the S.L.S. prediction to match the experimental data at three points, but the ability
of the model to fit the experimental data over the full range of the relaxation is usually poor.
The relaxation modulus predicted by the S.L.S. drops from Eg to Er in approximately two
decades3 of time, which is generally too abrupt a transition.

4.3 The Wiechert Model

A real polymer does not relax with a single relaxation time as predicted by the previous mod-
els. Molecular segments of varying length contribute to the relaxation, with the simpler and
shorter segments relaxing much more quickly than the long ones. This leads to a distribution
of relaxation times, which in turn produces a relaxation spread over a much longer time than
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Figure 13: The Wiechert model.

can be modeled accurately with a single relaxation time. When the engineer considers it nec-
essary to incorporate this effect, the Wiechert model illustrated in Fig. 13 can have as many
spring-dashpot Maxwell elements as are needed to approximate the distribution satisfactorily.

The total stress σ transmitted by the model is the stress in the isolated spring (of stiffness
ke) plus that in each of the Maxwell spring-dashpot arms:

σ = σe +
∑
j

σj

From Eqn. 26, the stress in the Maxwell arm is

σj =
kjsε(
s+ 1

τj

)

Then

σ = σe +
∑
j

σj =


ke +

∑
j

kjs(
s+ 1

τj

)

 ε (34)

The quantity in braces is the viscoelastic modulus operator E defined in Eqn. 27 for the Wiechert
model.

Example 6

In stress relaxation tests, we have

ε(t) = ε0 ⇒ ε(s) = ε0/s

σ(s) = E(s)ε(s) =


ke +

∑
j

kjs

s+ 1
τj



ε0

s
=



ke

s
+

∑
j

kj

s+ 1
τj


 ε0

3A “decade” of time in our context is a multiple of ten, say from 103 to 104 seconds, rather than a span of ten
years.
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σ(t) = L−1[σ(s)] =


ke +

∑
j

kj exp

(
−t

τj

)
 ε0 (35)

Dividing by ε0, the relaxation modulus is

Erel(t) = ke +
∑
j

kj exp

(
−t

τj

)
(36)

The material constants in this expression (ke and the various kj and τj) can be selected by forcing the
predicted values of Erel(t) as given by Eqn. 36 to match those determined experimentally. Prob. 19
provides an example of such a procedure.

Example 7

Consider the stress function resulting from a constant-strain-rate test:

ε = Rεt −→ ε̄(s) = Rε/s
2

where Rε is the strain rate. Then

σ̄(s) = E(s)ε̄(s) =


ke +∑

j

kjs

s+ 1
τj


 Rε
s2

=
keRε

s2
+

∑
j

kjRε

s
(
s+ 1

τj

)

σ(t) = keRεt+
∑
j

kjRετj [1− exp(−t/τj)] (37)

Note that the stress-time function, and hence the stress-strain curve, is not linear. It is not true, therefore,
that a curved stress-strain diagram implies that the material response is nonlinear. It is also interesting to
note that the slope of the constant-strain-rate stress-strain curve is related to the value of the relaxation
modulus evaluated at the same time:

dσ

dε
=
dσ

dt
·
dt

dε
=
dσ

dt
·
1

Rε
=


keRε +∑

j

kjRε exp(−t/τj)


 1

Rε

=


ke +∑

j

kj exp(−t/τj)


 ≡ Erel(t) |t=ε/Rε (38)

Example 8

It may be that the input strain function is not known as a mathematical expression, or its mathematical
expression may be so complicated as to make the transform process intractable. In those cases, one may
return to the differential constitutive equation and recast it in finite-difference form so as to obtain a
numerical solution. Recall that the stress in the jth arm of the Wiechert model is given by

dσj

dt
+

1

τj
σj = kj

dε

dt
(39)

This can be written in finite difference form as
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σtj − σ
t−1
j

∆t
+

1

τj
σtj = kj

εt − εt−1

∆t
(40)

where the superscripts t and t− l indicate values before and after the passage of a small time increment
∆t. Solving for σtj :

σtj =
1

1 + (∆t/τj)

[
kj(ε

t − εt−1) + σt−1j
]

(41)

Now summing over all arms of the model and adding the stress in the equilibrium spring:

σt = keε
t +

∑
j

kj(ε
t − εt−1) + σt−1j
1 + (∆t/τj)

(42)

This constitutes a recursive algorithm which the computer can use to calculate successive values of σt

beginning at t = 0. In addition to storing the various kj and τj which constitute the material description,

the computer must also keep the previous values of each arm stress (the σt−1j ) in storage.

4.4 The Boltzman Superposition Integral

As seen in the previous sections, linear viscoelasticity can be stated in terms of mechanical models
constructed from linear springs and dashpots. These models generate constitutive relations that
are ordinary differential equations; see Probs. 13 and 14 as examples of this. However, integral
equations could be used as well, and this integral approach is also used as a starting point for
viscoelastic theory.

Integrals are summing operations, and this view of viscoelasticity takes the response of the
material at time t to be the sum of the responses to excitations imposed at all previous times.
The ability to sum these individual responses requires the material to obey a more general
statement of linearity than we have invoked previously, specifically that the response to a number
of individual excitations be the sum of the responses that would have been generated by each
excitation acting alone. Mathematically, if the stress due to a strain ε1(t) is σ(ε1) and that due
to a different strain ε2(t) is σ(ε2), then the stress due to both strains is σ(ε1+ε2) = σ(ε1)+σ(ε2).
Combining this with the condition for multiplicative scaling used earlier, we have as a general
statement of linear viscoelasticity:

σ(aε1 + bε2) = aσ(ε1) + bσ(ε2) (43)

The “Boltzman Superposition Integral” statement of linear viscoelastic response follows from
this definition. Consider the stress σ1(t) at time t due to the application of a small strain ∆ε1
applied at a time ξ1 previous to t; this is given directly from the definition of the relaxation
modulus as

σ1(t) = Erel(t− ξ1)∆ε1

Similarly, the stress σ2(t) due to a strain increment ∆ε2 applied at a different time ξ2 is

σ2(t) = Erel(t− ξ2)∆ε2

If the material is linear, the total stress at time t due to both strain increments together can be
obtained by superposition of these two individual effects:
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σ(t) = σ1(t) + σ2(t) = Erel(t− ξ1)∆ε1 + Erel(t− ξ2)∆ε2

As the number of applied strain increments increases so as to approach a continuous distribution,
this becomes:

σ(t) =
∑
j

σj(t) =
∑
j

Erel(t− ξj)∆εj

−→ σ(t) =

∫ t
−∞

Erel(t− ξ) dε =
∫ t
−∞

Erel(t− ξ)
dε(ξ)

dξ
dξ (44)

Example 9

In the case of constant strain rate (ε(t) = Rεt) we have

dε(ξ)

dξ
=
d(Rεξ)

dξ
= Rε

For S.L.S. materials response (Erel(t) = ke + k1 exp[−t/τ ]),

Erel(t− ξ) = ke + k1e
−(t−ξ)
τ

Eqn. 44 gives the stress as

σ(t) =

∫ t

0

(
ke + k1e

−(t−ξ)
τ

)
Rε dξ

Maple statements for carrying out these operations might be:

define relaxation modulus for S.L.S.

>Erel:=k[e]+k[1]*exp(-t/tau);

define strain rate

>eps:=R*t;

integrand for Boltzman integral

>integrand:=subs(t=t-xi,Erel)*diff(subs(t=xi,eps),xi);

carry out integration

>’sigma(t)’=int(integrand,xi=0..t);

which gives the result:

σ(t) = keRεt+ k1Rετ [1− exp(−t/τ)]

This is identical to Eqn. 37, with one arm in the model.

The Boltzman integral relation can be obtained formally by recalling that the transformed
relaxation modulus is related simply to the associated viscoelastic modulus in the Laplace plane
as

stress relaxation : ε(t) = ε0u(t)→ ε =
ε0
s

σ = Eε = E
ε0
s

σ

ε0
= Ērel(s) =

1

s
E(s)
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Since sf̄ =
¯̇
f , the following relations hold:

σ̄ = E ε̄ = sĒrelε̄ =
¯̇Erelε̄ = Ērel¯̇ε

The last two of the above are of the form for which the convolution integral transform applies
(see Appendix A), so the following four equivalent relations are obtained immediately:

σ(t) =

∫ t
0
Erel(t− ξ)ε̇(ξ) dξ

=

∫ t
0
Erel(ξ)ε̇(t− ξ) dξ

=

∫ t
0
Ėrel(t− ξ)ε(ξ) dξ

=

∫ t
0
Ėrel(ξ)ε(t− ξ) dξ (45)

These relations are forms of Duhamel’s formula, where Erel(t) can be interpreted as the
stress σ(t) resulting from a unit input of strain. If stress rather than strain is the input quantity,
then an analogous development leads to

ε(t) =

∫ t
0
Ccrp(t− ξ)σ̇(ξ) dξ (46)

where Ccrp(t), the strain response to a unit stress input, is the quantity defined earlier as the
creep compliance. The relation between the creep compliance and the relaxation modulus can
now be developed as:

σ̄ = sĒrelε̄

ε̄ = sC̄crpσ̄

σ̄ε̄ = s2ĒrelC̄crpε̄σ̄ −→ ĒrelC̄crp =
1

s2∫ t
0
Erel(t− ξ)Ccrp(ξ) dξ =

∫ t
0
Erel(ξ)Ccrp(t− ξ) dξ = t

It is seen that one must solve an integral equation to obtain a creep function from a relaxation
function, or vice versa. This deconvolution process may sometimes be performed analytically
(probably using Laplace transforms), and in intractable cases some use has been made of nu-
merical approaches.

4.5 Effect of Temperature

As mentioned at the outset (cf. Eqn. 2), temperature has a dramatic influence on rates of vis-
coelastic response, and in practical work it is often necessary to adjust a viscoelastic analysis for
varying temperature. This strong dependence of temperature can also be useful in experimental
characterization: if for instance a viscoelastic transition occurs too quickly at room temperature
for easy measurement, the experimenter can lower the temperature to slow things down.

In some polymers, especially “simple” materials such as polyisobutylene and other amor-
phous thermoplastics that have few complicating features in their microstructure, the relation
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between time and temperature can be described by correspondingly simple models. Such mate-
rials are termed “thermorheologically simple”.

For such simple materials, the effect of lowering the temperature is simply to shift the
viscoelastic response (plotted against log time) to the right without change in shape. This is
equivalent to increasing the relaxation time τ , for instance in Eqns. 29 or 30, without changing
the glassy or rubbery moduli or compliances. A “time-temperature shift factor” aT (T ) can be
defined as the horizontal shift that must be applied to a response curve, say Ccrp(t), measured
at an arbitrary temperature T in order to move it to the curve measured at some reference
temperature Tref .

log(aT ) = log τ(T )− log τ(Tref ) (47)

This shifting is shown schematically in Fig. 14.

Figure 14: The time-temperature shifting factor.

In the above we assume a single relaxation time. If the model contains multiple relaxation
times, thermorheological simplicity demands that all have the same shift factor, since otherwise
the response curve would change shape as well as position as the temperature is varied.

If the relaxation time obeys an Arrhenius relation of the form τ(T ) = τ0 exp(E
†/RT ), the

shift factor is easily shown to be (see Prob. 17)

log aT =
E†

2.303R

(
1

T
−

1

Tref

)
(48)

Here the factor 2.303 = ln 10 is the conversion between natural and base 10 logarithms, which
are commonly used to facilitate graphical plotting using log paper.

While the Arrhenius kinetic treatment is usually applicable to secondary polymer transitions,
many workers feel the glass-rubber primary transition appears governed by other principles. A
popular alternative is to use the “W.L.F.” equation at temperatures near or above the glass
temperature:

log aT =
−C1(T − Tref )

C2 + (T − Tref )
(49)

Here C1 and C2 are arbitrary material constants whose values depend on the material and choice
of reference temperature Tref . It has been found that if Tref is chosen to be Tg, then C1 and C2
often assume “universal” values applicable to a wide range of polymers:
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log aT =
−17.4(T − Tg)

51.6 + (T − Tg)
(50)

where T is in Celsius. The original W.L.F. paper4 developed this relation empirically, but
rationalized it in terms of free-volume concepts.

A series of creep or relaxation data taken over a range of temperatures can be converted to a
single “master curve” via this horizontal shifting. A particular curve is chosen as reference, then
the other curves shifted horizontally to obtain a single curve spanning a wide range of log time
as shown in Fig. 15. Curves representing data obtained at temperatures lower than the reference
temperature appear at longer times, to the right of the reference curve, so will have to shift left;
this is a positive shift as we have defined the shift factor in Eqn. 47. Each curve produces its
own value of aT , so that aT becomes a tabulated function of temperature. The master curve is
valid only at the reference temperature, but it can be used at other temperatures by shifting it
by the appropriate value of log aT .

Figure 15: Time-temperature superposition.

The labeling of the abscissa as log(t/aT ) = log t − log at in Fig. 15 merits some discussion.
Rather than shifting the master curve to the right for temperatures less than the reference
temperature, or to the left for higher temperatures, it is easier simply to renumber the axis,
increasing the numbers for low temperatures and decreasing them for high. The label therefore
indicates that the numerical values on the horizontal axis have been adjusted for temperature
by subtracting the log of the shift factor. Since lower temperatures have positive shift factors,
the numbers are smaller than they need to be and have to be increased by the appropriate shift
factor. Labeling axes this way is admittedly ambiguous and tends to be confusing, but the
correct adjustment is easily made by remembering that lower temperatures slow the creep rate,
so times have to be made longer by increasing the numbers on the axis. Conversely for higher
temperatures, the numbers must be made smaller.

Example 10

We wish to find the extent of creep in a two-temperature cycle that consists of t1 = 10 hours at 20◦C
followed by t2 = 5 minutes at 50 ◦C. The log shift factor for 50 ◦C, relative to a reference temperature
of 20◦C, is known to be −2.2.

4M.L. Williams, R.F. Landel, and J.D. Ferry, J. Am. Chem. Soc., Vol. 77, No. 14, pp. 3701–3707, 1955.
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Using the given shift factor, we can adjust the time of the second temperature at 50◦C to an equivalent
time t′2 at 20

◦C as follows:

t′2 =
t2

aT
=

5 min

10−2.2
= 792 min = 13.2 h

Hence 5 minutes at 50◦C is equivalent to over 13 h at 20◦C. The total effective time is then the sum of
the two temperature steps:

t′ = t1 + t
′
2 = 10 + 13.2 = 23.2 h

The total creep can now be evaluated by using this effective time in a suitable relation for creep, for

instance Eqn. 30.

The effective-time approach to response at varying temperatures can be extended to an
arbitrary number of temperature steps:

t′ =
∑
j

t′j =
∑
j

(
tj

aT (Tj)

)

For time-dependent temperatures in general, we have T = T (t), so aT becomes an implicit
function of time. The effective time can be written for continuous functions as

t′ =

∫ t
0

dξ

aT (ξ)
(51)

where ξ is a dummy time variable. This approach, while perhaps seeming a bit abstract, is of
considerable use in modeling time-dependent materials response. Factors such as damage due to
applied stress or environmental exposure can accelerate or retard the rate of a given response,
and this change in rate can be described by a time-expansion factor similar to aT but dependent
on other factors in addition to temperature.

Example 11

Consider a hypothetical polymer with a relaxation time measured at 20◦C of τ = 10 days, and with
glassy and rubbery moduli Eg = 100, Er = 10. The polymer can be taken to obey the W.L.F. equation
to a reasonable accuracy, with Tg = 0◦C. We wish to compute the relaxation modulus in the case of a
temperature that varies sinusoidally ±5◦ around 20◦C over the course of a day. This can be accomplished
by using the effective time as computed from Eqn. 51 in Eqn. 29, as shown in the following Maple
commands:

define WLF form of log shift factor

>log_aT:=-17.4*(T-Tg)/(51.6+(T-Tg));

find offset; want shift at 20C to be zero

>Digits:=4;Tg:=0;offset:=evalf(subs(T=20,log_aT));

add offset to WLF

>log_aT:=log_aT-offset;

define temperature function

>T:=20+5*cos(2*Pi*t);

get shift factor; take antilog

>aT:=10^log_aT;

replace time with dummy time variable xi

>aT:=subs(t=xi,aT);

get effective time t’

>t_prime:=int(1/aT,xi=0..t);
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define relaxation modulus

>Erel:=ke+k1*exp(-t_prime/tau);

define numerical parameters

>ke:=10;k1:=90;tau:=10;

plot result

>plot(Erel,t=0..10);

The resulting plot is shown in Fig. 16.

Figure 16: Relaxation modulus with time-varying temperature.

5 Viscoelastic Stress Analysis

5.1 Multiaxial Stress States

The viscoelastic expressions above have been referenced to a simple stress state in which a
specimen is subjected to uniaxial tension. This loading is germane to laboratory characterization
tests, but the information obtained from these tests must be cast in a form that allows application
to the multiaxial stress states that are encountered in actual design.

Many formulae for stress and displacement in structural mechanics problems are cast in
forms containing the Young’s modulus E and the Poisson’s ratio ν. To adapt these relations
for viscoelastic response, one might observe both longitudinal and transverse response in a
tensile test, so that both E(t) and ν(t) could be determined. Models could then be fit to both
deformation modes to find the corresponding viscoelastic operators E and N . However, it is
often more convenient to use the shear modulus G and the bulk modulus K rather than E and
ν, which can be done using the relations valid for isotropic linear elastic materials:

E =
9GK

3K +G
(52)

ν =
3K − 2G

6K + 2G
(53)

These important relations follow from geometrical or equilibrium arguments, and do not involve
considerations of time-dependent response. Since the Laplace transformation affects time and
not spatial parameters, the corresponding viscoelastic operators obey analogous relations in the
Laplace plane:

23



E(s) =
9G(s)K(s)

3K(s) + G(s)

N (s) =
3K(s) − 2G(s)

6K(s) + 2G(s)

Figure 17: Relaxation moduli of polyisobutylene in dilation (K) and shear (G). From Huang,
M.G., Lee, E.H., and Rogers, T.G., “On the Influence of Viscoelastic Compressibility in Stress
Analysis,” Stanford University Technical Report No. 140 (1963).

These substitutions are useful because K(t) is usually much larger than G(t), and K(t)
usually experiences much smaller relaxations than G(t) (see Fig. 17). These observations lead
to idealizations of compressiblilty that greatly simplify analysis. First, if one takes Krel = Ke
to be finite but constant (only shear response viscoelastic), then

K = sKrel = s
Ke
s

= Ke

G =
3KeE

9Ke − E

Secondly, if K is assumed not only constant but infinite (material incompressible, no hydrostatic
deformation), then

G =
E

3

N = ν =
1

2

24



Example 12

The shear modulus of polyvinyl chloride (PVC) is observed to relax from a glassy value of Gg =800 MPa
to a rubbery value of Gr =1.67 MPa. The relaxation time at 75◦C is approximately τ =100 s, although
the transition is much broader than would be predicted by a single relaxation time model. But assuming
a standard linear solid model as an approximation, the shear operator is

G = Gr +
(Gg −Gr)s

s+ 1
τ

The bulk modulus is constant to a good approximation at Ke =1.33 GPa. These data can be used to
predict the time dependence of the Poisson’s ratio, using the expression

N =
3Ke − 2G

6Ke + 2G

On substituting the numerical values and simplifying, this becomes

N = 0.25 +
9.97× 108

4.79× 1011s+ 3.99× 109

The “relaxation” Poisson’s ratio — the time-dependent strain in one direction induced by a constant
strain in a transverse direction — is then

νrel =
N

s
=

0.25

s
+

1

s

(
9.97× 108

4.79× 1011s+ 3.99× 109

)

Inverting, this gives

νrel = 0.5− 0.25e−t/120

This function is plotted in Fig. 18. The Poisson’s ratio is seen to rise from a glassy value of 0.25 to a
rubbery value of 0.5 as the material moves from the glassy to the rubbery regime over time. Note that
the time constant of 120 s in the above expression is not the same as the relaxation time τ for the pure
shear response.

Figure 18: Time dependence of Poisson’s ratio for PVC at 75◦C, assuming viscoelastic shear
response and elastic hydrostatic response.
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In the case of material isotropy (properties not dependent on direction of measurement), at
most two viscoelastic operators — say G and K — will be necessary for a full characterization
of the material. For materials exhibiting lower orders of symmetry more descriptors will be
necessary: a transversely isotropic material requires four constitutive descriptors, an orthotropic
material requires nine, and a triclinic material twenty-one. If the material is both viscoelastic
and anisotropic, these are the number of viscoelastic operators that will be required. Clearly,
the analyst must be discerning in finding the proper balance between realism and practicality
in choosing models.

5.2 Superposition

Fortunately, it is often unnecessary to start from scratch in solving structural mechanics prob-
lems that involve viscoelastic materials. We will outline two convenient methods for adapting
standard solutions for linear elastic materials to the viscoelastic case, and the first of these is
based on the Boltzman superposition principle. We will illustrate this with a specific example,
that of the thin-walled pressure vessel.

Polymers such as polybutylene and polyvinyl chloride are finding increasing use in plumbing
and other liquid delivery systems, and these materials exhibit measurable viscoelastic time
dependency in their mechanical response. It is common to ignore these rate effects in design of
simple systems by using generous safety factors. However, in more critical situations the designer
may wish extend the elastic theory outlined in standard texts to include material viscoelasticity.

One important point to stress at the outset is that in many cases, the stress distribution
does not depend on the material properties and consequently is not influenced by viscoelasticity.
For instance, the “hoop” stress σθ in an open-ended cylindrical pressure vessel is

σθ =
pr

b

where p is the internal pressure, r is the vessel radius, and b is the wall thickness. If the material
happens to be viscoelastic, this relation — which contains no material constants — applies
without change.

However, the displacements — for instance the increase in radius δr— are affected, increasing
with time as the strain in the material increases via molecular conformational change. For an
open-ended cylindrical vessel with linear elastic material, the radial expansion is

δr =
pr2

bE

The elastic modulus in the denominator indicates that the radial expansion will increase as ma-
terial loses stiffness through viscoelastic response. In quantifying this behavior, it is convenient
to replace the modulus E by the compliance C = 1/E. The expression for radial expansion now
has the material constant in the numerator:

δr =
pr2

b
C (54)

If the pressure p is constant, viscoelasticity enters the problem only through the material
compliance C, which must be made a suitable time-dependent function. (Here we assume
that values of r and b can be treated as constant, which will be usually be valid to a good
approximation.) The value of δr at time t is then simply the factor (pr2/b) times the value of
C(t) at that time.
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The function C(t) needed here is the material’s creep compliance, the time-dependent strain
exhibited by the material in response to an imposed unit tensile stress: Ccrp = ε(t)/σ0. The
standard linear solid, as given by Eqn. 30, gives the compliance as

Ccrp(t) = Cg + (Cr − Cg) (1 − e
−t/τ ) (55)

where here it is assumed that the stress is applied at time t = 0. The radial expansion of a
pressure vessel, subjected to a constant internal pressure p0 and constructed of a material for
which the S.L.S. is a reasonable model, is then

δr(t) =
p0r
2

b

[
Cg + (Cr − Cg) (1− e

−t/τ )
]

(56)

This function is shown schematically in Fig. 19.

Figure 19: Creep of open-ended pressure vessel subjected to constant internal pressure.

The situation is a bit more complicated if both the internal pressure and the material com-
pliance are time-dependent. It is incorrect simply to use the above equation with the value of
p0 replaced by the value of p(t) at an arbitrary time, because the radial expansion at time t is
influenced by the pressure at previous times as well as the pressure at the current time.

The correct procedure is to “fold” the pressure and compliance functions together in a
convolution integral as was done in developing the Boltzman Superposition Principle. This
gives:

δr(t) =
r2

b

∫ t
−∞

Ccrp(t− ξ)ṗ(ξ) dξ (57)

Example 13

Let the internal pressure be a constantly increasing “ramp” function, so that p = Rpt, with Rp being
the rate of increase; then we have ṗ(ξ) = Rp. Using the standard linear solid of Eqn. 55 for the creep
compliance, the stress is calculated from the convolution integral as

δr(t) =
r2

b

∫ t

0

[
Cg + (Cr − Cg) (1 − e

−(t−ξ)/τ )
]
Rp dξ

=
r2

b

[
RptCr −Rpτ (Cr − Cg)

(
1− e−t/τ

)]
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This function is plotted in Fig. 20, for a hypothetical material with parameters Cg = 1/3 × 105 psi−1,
Cr = 1/3 × 104 psi−1, b = 0.2 in, r = 2 in, τ = 1 month, and Rp = 100 psi/month. Note that the
creep rate increases from an initial value (r2/b)RpCg to a final value (r2/b)RpCr as the glassy elastic
components relax away.

Figure 20: Creep δr(t) of hypothetical pressure vessel for constantly increasing internal pressure.

When the pressure vessel has closed ends and must therefore resist axial as well as hoop
stresses, the radial expansion is δr = (pr2/bE) [1− (ν/2)]. The extension of this relation to
viscoelastic material response and a time-dependent pressure is another step up in complexity.
Now two material descriptors, E and ν, must be modeled by suitable time-dependent functions,
and then folded into the pressure function. The superposition approach described above could
be used here as well, but with more algebraic complexity. The “viscoelastic correspondence
principle” to be presented in below is often more straightforward, but the superposition concept
is very important in understanding time-dependent materials response.

5.3 The viscoelastic correspondence principle

In elastic materials, the boundary tractions and displacements may depend on time as well
as position without affecting the solution: time is carried only as a parameter, since no time
derivatives appear in the governing equations. With viscoelastic materials, the constitutive or
stress-strain equation is replaced by a time-differential equation, which complicates the sub-
sequent solution. In many cases, however, the field equations possess certain mathematical
properties that permit a solution to be obtained relatively easily5. The “viscoelastic correspon-
dence principle” to be outlined here works by adapting a previously available elastic solution
to make it applicable to viscoelastic materials as well, so that a new solution from scratch is
unnecessary.

If a mechanics problem— the structure, its materials, and its boundary conditions of traction
and displacement — is subjected to the Laplace transformation, it will often be the case that
none of the spatial aspects of its description will be altered: the problem will appear the same, at
least spatially. Only the time-dependent aspects, namely the material properties, will be altered.
The Laplace-plane version of problem can then be interpreted as representing a stress analysis

5E.H. Lee, “Viscoelasticity,” Handbook of Engineering Mechanics, W. Flugge, ed., McGraw-Hill, New York,
1962, Chap. 53.
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problem for an elastic body of the same shape as the viscoelastic body, so that a solution for an
elastic body will apply to a corresponding viscoelastic body as well, but in the Laplace plane.

There is an exception to this correspondence, however: although the physical shape of the
body is unchanged upon passing to the Laplace plane, the boundary conditions for traction or
displacement may be altered spatially on transformation. For instance, if the imposed traction

is T̂ = cos(xt), then T̂ = s/(s2+x2); this is obviously of a different spatial form than the original
untransformed function. However, functions that can be written as separable space and time
factors will not change spatially on transformation:

T̂ (x, t) = f(x) g(t)⇒ T̂ = f(x) g(s)

This means that the stress analysis problems whose boundary constraints are independent of
time or at worst are separable functions of space and time will look the same in both the actual
and Laplace planes. In the Laplace plane, the problem is then geometrically identical with an
“associated” elastic problem.

Having reduced the viscoelastic problem to an associated elastic one by taking transforms,
the vast library of elastic solutions may be used: one looks up the solution to the associated
elastic problem, and then performs a Laplace inversion to return to the time plane. The process
of viscoelastic stress analysis employing transform methods is usually called the “correspondence
principle”, which can be stated as the following recipe:

1. Determine the nature of the associated elastic problem. If the spatial distribution of the
boundary and body-force conditions is unchanged on transformation - a common occur-
rence - then the associated elastic problem appears exactly like the original viscoelastic
one.

2. Determine the solution to this associated elastic problem. This can often be done by
reference to standard handbooks6 or texts on the theory of elasticity7.

3. Recast the elastic constants appearing in the elastic solution in terms of suitable viscoelas-
tic operators. As discussed in Section 5.1, it is often convenient to replace E and ν with
G and K, and then replace the G and K by their viscoelastic analogs:

E

ν

}
−→

{
G −→ G
K −→ K

4. Replace the applied boundary and body force constraints by their transformed counter-
parts:

T̂⇒ T̂

û⇒ û

where T̂ and û are imposed tractions and displacements, respectively.

5. Invert the expression so obtained to obtain the solution to the viscoelastic problem in the
time plane.

6For instance, W.C. Young, Roark’s Formulas for Stress and Strain, McGraw-Hill, Inc., New York, 1989.
7For instance, S. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, Inc., New York, 1951.
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If the elastic solution contains just two time-dependent quantities in the numerator, such
as in Eqn. 54, the correspondence principle is equivalent to the superposition method of the
previous section. Using the pressure-vessel example, the correspondence method gives

δr =
pr2C

b
→ δr(s) =

r2

b
pC

Since C = sCcrp, the transform relation for convolution integrals gives

δr(t) = L
−1

(
r2

b
sCcrp · p

)
= L−1

(
r2

b
Ccrp · ṗ

)
=
r2

b

∫ t
−∞

Ccrp(t− ξ)ṗ(ξ) dξ

as before. However, the correspondence principle is more straightforward in problems having a
complicated mix of time-dependent functions, as demonstrated in the following example.

Example 14

The elastic solution for the radial expansion of a closed-end cylindrical pressure vessel of radius r and
thickness b is

δr =
pr2

bE

(
1−

ν

2

)
Following the correspondence-principle recipe, the associated solution in the Laplace plane is

δr =
pr2

bE

(
1−
N

2

)

In terms of hydrostatic and shear response functions, the viscoelastic operators are:

E(s) =
9G(s)K(s)

3K(s) + G(s)

N (s) =
3K(s)− 2G(s)

6K(s) + 2G(s)

In Example 12, we considered a PVC material at 75◦C that to a good approximation was elastic in
hydrostatic response and viscoelastic in shear. Using the standard linear solid model, we had

K = Ke, G = Gr +
(Gg −Gr)s

s+ 1
τ

where Ke =1.33 GPa, Gg =800 MPA, Gr =1.67 MPa, and τ =100 s.
For constant internal pressure p(t) = p0, p = p0/s. All these expressions must be combined, and the

result inverted. Maple commands for this problem might be:

define shear operator

> G:=Gr+((Gg-Gr)*s)/(s+(1/tau));

define Poisson operator

> N:=(3*K-2*G)/(6*K+2*G);

define modulus operator

> Eop:=(9*G*K)/(3*K+G);

define pressure operator

> pbar:=p0/s;

get d1, radial displacement (in Laplace plane)

> d1:=(pbar*r^2)*(1-(N/2))/(b*Eop);

read Maple library for Laplace transforms

> readlib(inttrans);

invert transform to get d2, radial displacement in real plane

> d2:=invlaplace(d1,s,t);
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After some manual rearrangement, the radial displacement δr(t) can be written in the form

δr(t) =
r2p0

b

[(
1

4Gr
+

1

6K

)
−

(
1

4Gr
−

1

4Gg

)
e−t/τc

]

where the creep retardation time is τc = τ(Gg/Gr). Continuing the Maple session:

define numerical parameters

> Gg:=800*10^6; Gr:=1.67*10^6; tau:=100; K:=1.33*10^9;

> r:=.05; b:=.005; p0:=2*10^5;

resulting expression for radial displacement

> d2;

- .01494 exp( - .00002088 t) + .01498

A log-log plot of this function is shown in Fig. 21. Note that for this problem the effect of the small
change in Poisson’s ratio ν during the transition is negligible in comparison with the very large change
in the modulus E, so that a nearly identical result would have been obtained simply by letting ν =
constant = 0.5. On the other hand, it isn’t appreciably more difficult to include the time dependence of
ν if symbolic manipulation software is available.

Figure 21: Creep response of PVC pressure vessel.
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7 Problems

1. Plot the functions e−t/τ and 1 − e−t/τ versus log10 t from t = 10−2 to t = 102. Have two
curves on the plot for each function, one for τ = 1 and one for τ = 10.

2. Determine the apparent activation energy in (E† in Eqn. 2) for a viscoelastic relaxation in
which the initial rate is observed to double when the temperature is increased from 20◦C
to 30◦C. (Answer: E† = 51 kJ/mol.)

3. Determine the crosslink density N and segment molecular weight Mc between crosslinks
for a rubber with an initial modulus E = 1000 psi at 20◦C and density 1.1 g/cm3. (Answer:
N = 944 mol/m3, Mc = 1165 g/mol.)

4. Expand the exponential forms for the dynamic stress and strain
(
σ(t) = σ∗0e

iωt, ε(t) = ε∗0e
iωt

)
and show that

E∗ =
σ(t)

ε(t)
=
σ0 cos δ

ε0
+ i
σ0 sin δ

ε0
,

where δ is the phase angle between the stress and strain.

5. Using the relation σ = Eε for the case of dynamic loading (ε(t) = ε0 cosωt) and S.L.S.

material response
(
E = ke + k1s/(s+

1
τ )

)
, solve for the time-dependent stress σ(t). Use

this solution to identify the steady-state components of the complex modulus E∗ = E′ +
iE′′, and the transient component as well. Answer:

E∗ =
k1

1 + ω2τ2
e−t/τ +

(
ke +

k1ω
2τ2

1 + ω2τ2

)
cosωt−

(
k1ωτ

1 + ω2τ2

)
sinωt

6. For the Standard Linear Solid with parameters ke = 25, k1 = 50, and τ1 = 1, plot E′ and
E′′ versus log ω in the range 10−2 < ωτ1 < 102. Also plot E′′ versus E′ in this same range,
using ordinary rather than logarithmic axes and the same scale for both axes (Argand
diagram).

7. Show that the viscoelastic law for the “Voigt” form of the Standard Linear Solid (a spring
of stiffness kv = 1/Cv in parallel with a dashpot of viscosity η, and this combination in
series with another spring of stiffness kg = 1/Cg) can be written

ε = Cσ, with C =


Cg + Cv

τ
(
s+ 1

τ

)



where τ = η/kv .
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Prob. 7

8. Show that the creep compliance of the Voigt SLS model of Prob. 7 is

Ccrp = Cg + Cv
(
1− e−t/τ

)

9. In cases where the stress rather than the strain is prescribed, the Kelvin model - a series
arrangement of Voigt elements - is preferable to the Wiechert model:

Prob. 9

where φj = 1/ηj = ε̇j/σdj and mj = 1/kj = εj/σsj Using the relations ε = εg +
∑
j εj,

σ = σsj + σdj , τj = mj/φj , show the associated viscoelastic constitutive equation to be:

ε =


mg +∑

j

mj

τj
(
s+ 1

τj

)

σ

and for this model show the creep compliance to be:

Ccrp(t) =
ε(t)

σ0
= mg +

∑
j

mj
(
1− e−t/τj

)

10. For a simple Voigt model (Cg=0 in Prob. 7), show that the strain εt+∆t at time t + ∆t
can be written in terms of the strain εt at time t and the stress σt acting during the time
increment ∆t as

εt+∆t = Cvσ
t
(
1− e−∆t/τ

)
+ εte−∆t/τ

Use this algorithm to plot the creep strain arising from a constant stress σ = 100 versus
log t = (1, 5) for Cv = 0.05 and τ = 1000.

11. Plot the strain response ε(t) to a load-unload stress input defined as
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σ(t) =




0, t < 1
1, 1 < t < 4.5
−1, 4.5 < t < 5
0, t > 5

The material obeys the SLS compliance law (Eqn. 30) with Cg = 5, Cr = 10, and τ = 2.

12. Using the Maxwell form of the standard linear solid with ke = 10, k1 = 100 and η = 1000:
a) Plot Erel(t) and Ecrp(t) = 1/Ccrp(t) versus log time. b) Plot [Ecrp(t) − Erel(t)] versus
log time. c) Compare the relaxation time with the retardation time (the time when the
argument of the exponential becomes −1, for relaxation and creep respectively). Speculate
on why one is shorter than the other.

13. Show that a Wiechert model with two Maxwell arms (Eqn. 34) is equivalent to the second-
order ordinary differential equation

a2σ̈ + a1σ̇ + a0σ = b2ε̈+ b1ε̇+ b0ε

where
a2 = τ1τ2, a1 = τ1 + τ2, a0 = 1

b2 = τ1τ2 (ke + k1 + k2) , b1 = ke (τ1 + τ2) + k1τ1 + k2τ2, b0 = ke

14. For a viscoelastic material defined by the differential constitutive equation:

15σ̈ + 8σ̇ + σ = 105ε̈+ 34ε̇+ ε,

write an expression for the relaxation modulus in the Prony-series form (Eqn. 36). (Answer:
Erel = 1 + 2e−t/3 + 4e−t/5)

15. For the simple Maxwell element, verify that

∫ t
0
Erel(ξ)Dcrp(t− ξ) dξ = t

16. Evaluate the Boltzman integral

σ(t) =

∫ t
0
Erel(t− ξ)ε̇(ξ) dξ

to determine the response of the Standard Linear Solid to sinusoidal straining (ε(t) =
cos(ωt))

17. Derive Eqn. 48 by using the Arrhenius expression for relaxation time to subtract the log
relaxation time at an arbitrary temperature T from that at a reference temperature Tref .

18. Using isothermal stress relaxation data at various temperatures, shift factors have been
measured for a polyurethane material as shown in the table below:
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T, ◦C log10 aT
+5 -0.6
0 0
-5 0.8
-10 1.45
-15 2.30
-20 3.50
-25 4.45
-30 5.20

(a) Plot log aT vs. 1/T (◦K); compute an average activation energy using Eqn 48. (An-
swer: E† = 222 kJ/mol.)

(b) Plot log aT vs. T (◦C) and compare with WLF equation (Eqn. 50), with Tg = −35◦C.
(Note that Tref = 0 �= Tg.)

19. After time-temperature shifting, a master relaxation curve at 0◦C for the polyurethane of
Prob. 18 gives the following values of Erel(t) at various times:

log(t,min) Erel(t), psi

-6 56,280
-5 22,880
-4 4,450
-3 957
-2 578
-1 481
0 480

(a) In Eqn. 36, choose ke = Erel(t = 0) = 480.

(b) Choose values of τj to match the times given in the above table from 10−6 to 10−1

(a process called “collocation”).

(c) Determine appropriate values for the spring stiffnesses kj corresponding to each τj
so as to make Eqn. 36 match the experimental values of Erel(t). This can be done
by setting up and solving a sequence of linear algebraic equations with the kj as
unknowns:

6∑
j=1

kje
−ti/τj = Erel(ti)− ke, i = 1, 6

Note that the coefficient matrix is essentially triangular, which facilitates manual
solution in the event a computer is not available.

(d) Adjust the value of k1 so that the sum of all the spring stiffnesses equals the glassy
modulus Eg = 91, 100 psi.

(e) Plot the relaxation modulus predicted by the model from log t = −8 to 0.

20. Plot the relaxation (constant strain) values of modulus E and Poisson’s ratio ν for the
polyisobutylene whose dilatational and shear response is shown in Fig. 17. Assume S.L.S.
models for both dilatation and shear.
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Prob. 19

21. The elastic solution for the stress σx(x, y) and vertical deflection v(x, y) in a cantilevered
beam of length L and moment of inertia I, loaded at the free end with a force F , is

σx(x, y) =
F (L− x)y

I
, v(x, y) =

Fx2

6EI
(3L− x)

Determine the viscoelastic counterparts of these relations using both the superposition and
correspondence methods, assuming S.L.S. behavior for the material compliance (Eqn. 30).

Prob. 21

22. A polymer with viscoelastic properties as given in Fig. 17 is placed in a rigid circular die
and loaded with a pressure σy = 1 MPa. Plot the transverse stress σx(t) and the axial
strain εy(t) over log t = −5 to 1. The elastic solution is

σx =
νσy
1− ν

, εy =
(1 + ν)(1− 2ν)

E(1− ν)
σy
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A Laplace Transformations

Basic definition:

Lf(t) = f(s) =
∫ ∞
0
f(t) e−st dt

Fundamental properties:

L[c1f1(t) + c2f2(t)] = c2f1(s)c1f2(s)

L
[
∂f

∂t

]
= sf(s)− f(0−)

Some useful transform pairs:

f(t) f(s)

u(t) 1/s
tn n!/sn+1

e−at 1/(s + a)
1
a(1− e

−at) 1/s(s + a)
t
a −

1
a2
(1− e−at) 1/s2(s+ a)

Here u(t) is the Heaviside or unit step function, defined as

u(t) =

{
0, t < 0
1, t ≥ 0

The convolution integral:

Lf · Lg = f · g = L
[∫ t
0
f(t− ξ) g(ξ) dξ

]
= L

[∫ t
0
f(ξ) g(t− ξ) dξ

]
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Introduction

In our overview of the tensile stress-strain curve in Module 4, we described yield as a permanent
molecular rearrangement that begins at a sufficiently high stress, denoted σY in Fig. 1. The
yielding process is very material-dependent, being related directly to molecular mobility. It is
often possible to control the yielding process by optimizing the materials processing in a way
that influences mobility. General purpose polystyrene, for instance, is a weak and brittle plastic
often credited with giving plastics a reputation for shoddiness that plagued the industry for
years. This occurs because polystyrene at room temperature has so little molecular mobility
that it experiences brittle fracture at stresses less than those needed to induce yield with its
associated ductile flow. But when that same material is blended with rubber particles of suitable
size and composition, it becomes so tough that it is used for batting helmets and ultra-durable
children’s toys. This magic is done by control of the yielding process. Yield control to balance
strength against toughness is one of the most important aspects of materials engineering for
structural applications, and all engineers should be aware of the possibilities.

Figure 1: Yield stress σY as determined by the 0.2% offset method.

Another important reason for understanding yield is more prosaic: if the material is not
allowed to yield, it is not likely to fail. This is not true of brittle materials such as ceramics that
fracture before they yield, but in most of the tougher structural materials no damage occurs
before yield. It is common design practice to size the structure so as to keep the stresses in the
elastic range, short of yield by a suitable safety factor. We therefore need to be able to predict
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when yielding will occur in general multidimensional stress states, given an experimental value
of σY .

Fracture is driven by normal stresses, acting to separate one atomic plane from another.
Yield, conversely, is driven by shearing stresses, sliding one plane along another. These two
distinct mechanisms are illustrated n Fig. 2. Of course, bonds must be broken during the sliding
associated with yield, but unlike in fracture are allowed to reform in new positions. This process
can generate substantial change in the material, even leading eventually to fracture (as in bending
a metal rod back and forth repeatedly to break it). The “plastic” deformation that underlies
yielding is essentially a viscous flow process, and follows kinetic laws quite similar to liquids.
Like flow in liquids, plastic flow usually takes place without change in volume, corresponding to
Poisson’s ratio ν = 1/2.

Figure 2: Cracking is caused by normal stresses (a), sliding is caused by shear stresses (b).

Multiaxial stress states

The yield stress σY is usually determined in a tensile test, where a single uniaxial stress acts.
However, the engineer must be able to predict when yield will occur in more complicated real-life
situations involving multiaxial stresses. This is done by use of a yield criterion, an observation
derived from experimental evidence as to just what it is about the stress state that causes yield.
One of the simplest of these criteria, known as the maximum shear stress or Tresca criterion,
states that yield occurs when the maximum shear stress reaches a critical value τmax = k. The
numerical value of k for a given material could be determined directly in a pure-shear test, such
as torsion of a circular shaft, but it can also be found indirectly from the tension test as well. As
shown in Fig. 3, Mohr’s circle shows that the maximum shear stress acts on a plane 45◦ away
from the tensile axis, and is half the tensile stress in magnitude; then k = σY /2.

In cases of plane stress, Mohr’s circle gives the maximum shear stress in that plane as half
the difference of the principal stresses:

τmax =
σp1 − σp2

2
(1)

2



Figure 3: Mohr’s circle construction for yield in uniaxial tension.

Example 1

Using σp1 = σθ = pr/b and σp2 = σz = pr/2b in Eqn. 1, the shear stress in a cylindrical pressure vessel
with closed ends is1

τmax,θz =
1

2

(pr
b
−
pr

2b

)
=
pr

4b

where the θz subscript indicates a shear stress in a plane tangential to the vessel wall. Based on this, we
might expect the pressure vessel to yield when

τmax,θz = k =
σY

2

which would occur at a pressure of

pY =
4bτmax,θz

r

?
=

2bσY
r

However, this analysis is in error, as can be seen by drawing Mohr’s circles not only for the θz plane but
for the θr and rz planes as well as shown in Fig. 4.

Figure 4: Principal stresses and Mohr’s circle for closed-end pressure vessel

The shear stresses in the θr plane are seen to be twice those in the θz plane, since in the θr plane
the second principal stress is zero:

τmax,θr =
1

2

(pr
b
− 0
)
=
pr

2b

Yield will therefore occur in the θr plane at a pressure of b σY /r, half the value needed to cause yield in

the θz plane. Failing to consider the shear stresses acting in this third direction would lead to a seriously

underdesigned vessel.

Situations similar to this example occur in plane stress whenever the principal stresses in the
xy plane are of the same sign (both tensile or both compressive). The maximum shear stress,

1See Module 6.
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which controls yield, is half the difference between the principal stresses; if they are both of the
same sign, an even larger shear stress will occur on the perpendicular plane containing the larger
of the principal stresses in the xy plane.

This concept can be used to draw a “yield locus” as shown in Fig. 5, an envelope in σ1-σ2
coordinates outside of which yield is predicted. This locus obviously crosses the coordinate
axes at values corresponding to the tensile yield stress σY . In the I and III quadrants the
principal stresses are of the same sign, so according to the maximum shear stress criterion yield
is determined by the difference between the larger principal stress and zero. In the II and IV
quadrants the locus is given by τmax = |σ1−σ2|/2 = σY /2, so σ1−σ2 = const; this gives straight
diagonal lines running from σY on one axis to σY on the other.

Figure 5: Yield locus for the maximum-shear stress criterion.

Example 2

Figure 6: (a) Circular shaft subjected to simultaneous twisting and tension. (b) Mohr’s circle
construction.

A circular shaft is subjected to a torque of half that needed to cause yielding as shown in Fig. 6; we now
ask what tensile stress could be applied simultaneously without causing yield.
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A Mohr’s circle is drawn with shear stress τ = k/2 and unknown tensile stress σ. Using the Tresca
maximum-shear yield criterion, yield will occur when σ is such that

τmax = k =

√(σ
2

)2
+

(
k

2

)2

σ =
√
3 k

The Tresca criterion is convenient to use in practice, but a somewhat better fit to experi-
mental data can often be obtained from the “von Mises” criterion, in which the driving force for
yield is the strain energy associated with the deviatoric components of stress. The von Mises
stress (also called the equivalent or effective stress) is defined as

σM =

√
1

2
[(σx − σy)2 + (σx − σz)2 + (σy − σz)2 + 6(τxy + τyz + τxz)]

In terms of the principal stresses this is

σM =

√
1

2
[(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2]

where the stress differences in parentheses are proportional to the maximum shear stresses on
the three principal planes2. (Since the quantities are squared, the order of stresses inside the
parentheses is unimportant.) The Mises stress can also be written in compact form in terms of
the second invariant of the deviatoric stress tensor Σij:

σM =
√

3ΣijΣij/2 (2)

It can be shown that this is proportional to the total distortional strain energy in the material,
and also to the shear stress τoct on the “octahedral” plane oriented equally to the 1-2-3 axes.
The von Mises stress is the driving force for damage in many ductile engineering materials, and
is routinely computed by most commercial finite element stress analysis codes.

The value of von Mises stress σM,Y needed to cause yield can be determined from the tensile
yield stress σY , since in tension at the yield point we have σ1 = σY , σ2 = σ3 = 0. Then

σM,Y =

√
1

2
[(σY − 0)2 + (σY − 0)2 + (0− 0)2] = σY

Hence the value of von Mises stress needed to cause yield is the same as the simple tensile yield
stress.

The shear yield stress k can similarly be found by inserting the principal stresses corre-
sponding to a state of pure shear in the Mises equation. Using k = σ1 = −σ3 and σ2 = 0, we
have

√
1

2
[(k − 0)2 + (k + k)2 + (0− k)2] =

√
6k2

2
= σY

k =
σY√
3

2Some authors use a factor other than 1/2 within the radical. This is immaterial, since it will be absorbed by
the calculation of the critical value of σM .
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Note that this result is different than the Tresca case, in which we had k = σY /2.
The von Mises criterion can be plotted as a yield locus as well. Just as the Tresca criterion,

it must pass through σY on each axis. However, it plots as an ellipse rather than the prismatic
shape of the Tresca criterion (see Fig. 7).

Figure 7: Yield locus for the von Mises criterion.

Effect of hydrostatic pressure

Since in the discussion up to now yield has been governed only by shear stress, it has not
mattered whether a uniaxial stress is compressive or tensile; yield occurs when σ = ±σY . This
corresponds to the hydrostatic component of the stress −p = (σx+σy+σz)/3 having no influence
on yield, which is observed experimentally to be valid for slip in metallic systems. Polymers,
however, are much more resistant to yielding in compressive stress states than in tension. The
atomistic motions underlying slip in polymers can be viewed as requiring “free volume” as the
molecular segments move, and this free volume is diminished by compressive stresses. It is thus
difficult to form solid polymers by deformation processing such as stamping and forging in the
same way steel can be shaped; this is one reason the vast majority of automobile body panels
continue to be made of steel rather than plastic.

Figure 8: Effect of pressure on the von Mises yield envelope.
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This dependency on hydrostatic stress can be modeled by modifying the yield criterion to
state that yield occurs when

τmax or σM ≥ τ0 +Ap (3)

where τ0 and A are constants. As p increases (the hydrostatic component of stress becomes
more positive) the shear stress needed for yield becomes greater as well, since there is less free
volume and more hindrance to molecular motion. The effect of this modification is to slide the
von Mises ellipse to extend less into the I quadrant and more into the III quadrant as shown
in Fig. 8. This shows graphically that greater stresses are needed for yield in compression, and
lesser stresses in tension.

Figure 9: A craze in polystyrene (from R. Kambour, “Crazing,” Encyclopedia of Polymer Science
and Engineering, Wiley-Interscience, 1991).

Several amorphous glassy polymers — notably polystyrene, polymethylmethacrylate, and
polycarbonate — are subject to a yield mechanism termed “crazing” in which long elongated
voids are created within the material by a tensile cavitation process. Figure 9 shows a craze
in polystyrene, grown in plasticizing fluid near Tg. The voids, or crazes, are approximately
1000Å thick and microns or more in length, and appear visually to be much like conventional
cracks. They differ from cracks, however, in that the broad faces of the crazes are spanned by
a great many elongated fibrils that have been drawn from the polymer as the craze opens. The
fibril formation requires shear flow, but the process is also very dependent on free volume. A
successful multiaxial stress criterion for crazing that incorporates both these features has been
proposed3 of the form

σ1 − σ2 = A(T ) +
B(T )

σ1 + σ2

The left hand side of this relation is proportional to the shear stress, and the denominator in
the second term on the right hand side is related to the hydrostatic component of the stress. As
the hydrostatic tension increases, the shear needed to cause crazing decreases. The parameters
A and B are adjustable, and both depend on temperature. This relation plots as a batwing on
the yield locus diagram as seen in Fig. 10, approaching a 45◦ diagonal drawn through the II

3S. Sternstein and L. Ongchin, Polymer Preprints, 10, 1117, 1969.

7



and IV quadrants. Crazing occurs to the right of the curve; note that crazing never occurs in
compressive stress fields.

Figure 10: The Sternstein envelopes for crazing and pressure-inhibited shear yielding.

Crazing is a yield mechanism, but it also precipitates brittle fracture as the craze height
increases and the fibrils are brought to rupture. The point where the craze locus crosses the
shear yielding locus is therefore a type of mechanically induced ductile-brittle transition, as the
failure mode switches from shear yielding to craze embrittlement. Environmental agents such
as acetone that expand the free volume in these polymers greatly exacerbate the tendency for
craze brittleness. Conversely, modifications such as rubber particle inclusions that stabilize the
crazes and prevent them from becoming true cracks can provide remarkable toughness. Rubber
particles not only stabilize crazes, they also cause a great increase in the number of crazes, so
the energy absorption of craze formation can add to the toughness as well. This is the basis of
the “high impact polystyrene,” or HIPS, mentioned at the outset of this chapter.

Effect of rate and temperature

The yield process can be viewed as competing with fracture, and whichever process has the
lowest stress requirements will dominate. As the material is made less and less mobile, for
instance by lowering the temperature or increasing the number and tightness of chemical bonds,
yielding becomes more and more difficult. The fracture process is usually much less dependent
on mobility. Both yield and fracture stresses usually increase with decreasing temperature, but
yield is more temperature-dependent (see Fig. 11). This implies that below a critical temperature
(called the ductile-brittle transition temperature TDB) the material will fracture before it yields.
Several notable failures in ships and pipelines have occurred during winter temperatures when
the steels used in their manufacture were stressed below their TDB and were thus unable to
resist catastrophic crack growth. In polymers, the ductile-brittle transition temperature is often
coincident with the glass transition temperature. Clearly, we need an engineering model capable
of showing how yield depends on temperature, and one popular approach is outlined below.

Yield processes are thermally activated, stress driven motions, much like the flow of viscous
liquids. Even without going into much detail as to the specifics of the motions, it is possible to
write down quite effective expressions for the dependency of these motions on strain rate and
temperature. In the Eyring view of thermally activated processes, an energy barrier E∗Y must be
overcome for the motion to proceed. (We shall use the asterisk superscript to indicate activation

8



Figure 11: Schematic illustration of the temperature dependence of yield and fracture stress.

parameters, and the Y subscript here indicates the yield process.) A stress acts to lower the
barrier when it acts in the direction of flow, and to raise it when it opposes the flow.

Consider now a constant strain rate test (ε̇ = const), in which the stress rises until yield
occurs at σ = σY . At the yield point we have dσ/dε = 0, so a fluidlike state is achieved in
which an increment of strain can occur without a corresponding incremental increase in stress.
Analogously with rate theories for viscous flow, an Eyring rate equation can be written for the
yielding process as

ε̇ = ε̇0 exp
−(E∗Y − σY V

∗)

kT
(4)

Here k is Boltzman’s constant and V ∗ is a factor governing the effectiveness of the stress in
reducing the activation barrier. It must have units of volume for the product σY V

∗ to have units
of energy, and is called the “activation volume” of the process. Taking logs and rearranging,

σY
T

=
E∗Y
V ∗ T

+

(
k

V ∗

)
ln

(
ε̇

ε̇0

)

Hence plots of σY /T versus ln ε̇ should be linear with a slope k/V ∗ as seen in Fig. 12, from
which the activation volume may be computed. The horizontal spacing between two lines at
differing temperatures T1 and T2 gives the activation energy:

E∗Y =
k (ln ε̇T2 − ln ε̇T1)(

1
T1
− 1
T2

)

Apparent activation volumes in polymers are on the order of 5000Å3, much larger than a single
repeat unit. This is taken to indicate that yield in polymers involves the cooperative motion of
several hundred repeat units.

Example 3

The yield stress for polycarbonate is reported at 60 MPa at room-temperature (23◦C = 296◦K), and we
wish to know its value at 0◦C (273◦K), keeping the strain rate the same.

This can be accomplished by writing Eqn. 4 out twice, once for each temperature, and then dividing
one by the other. The parameters ε̇ and ε̇0 cancel, leaving

1 = exp

(
E∗Y − σ

273
Y V ∗

R(273)
−
E∗Y − σ

296
Y V ∗

R(296)

)

From the data in Fig. 12, the yield activation parameters are E∗Y = 309 kJ/mol, V ∗ = 3.9×10−3m3/mol.
Using these along with R = 8.314 J/mol and σ296Y = 60× 106 N/m2, we have
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Figure 12: Eyring plot showing dependence of yield strength on temperature and strain rate
in polycarbonate (from N.G. McCrum, C.P Buckley and C.B. Bucknall, Principles of Polymer
Engineering, Oxford University Press, 1988).

σ273Y = 61.5 MPa

Continuum plasticity

Plasticity theory, which seeks to determine stresses and displacements in structures all or part
of which have been stressed beyond the yield point, is an important aspect of solid mechanics.
The situation is both materially and geometrically nonlinear, so it is not a trivial undertaking.
However, in such areas as metal forming, plasticity theory has provided valuable insight. We
will outline only a few aspects of this field in the following paragraphs, to introduce some of the
fundamental concepts that the reader can extend in future study.

Plastic deformation

A useful idealization in modeling plastic behavior takes the material to be linearly elastic up
to the yield point as shown in Fig. 13, and then “perfectly plastic” at strains beyond yield.
Strains up to yield (the line between points a and b ) are recoverable, and the material unloads
along the same elastic line it followed during loading; this is conventional elastic response. But
if the material is strained beyond yield (point b), the “plastic” straining beyond b takes place at
constant stress and is unrecoverable. If the material is strained to point c and then unloaded, it
follows the path cd (a line parallel to the original elastic line ab) rather than returning along cba.
When the stress has been brought to zero (point d), the plastic strain ad remains as a residual
strain.

Plastic deformation can generate “ residual” stresses in structures, internal stresses that
remain even after the external loads are removed. To illustrate this, consider two rods having
different stress-strain curves, connected in parallel (so their strains are always equal) as shown
in Fig. 14. When the rods are strained up to the yield point of rod B (point a on the strain
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Figure 13: The elastic-perfectly plastic idealization of plastic deformation.

axis), rod A will have experienced an amount of permanent plastic deformation εp. When the
applied load is removed, rod B unloads along its original stress-strain curve, but rod A follows
a path parallel to its original elastic line. When rod A reaches zero stress (point b), rod B will
still be in tension (point c). In order for the load transmitted by the rods together to come to
zero, rod B will pull rod A into compression until −σB = σA as indicated by points d and e.
Residual stresses are left in the rods, and the assembly as a whole is left with a residual tensile
strain.

Figure 14: Plastic deformation of two-bar assembly.

Compressive residual stress can be valuable if the structure must bear tensile loads. Similarly
to how rapid quenching can be used to make safety glass by putting the surfaces in compression,
plastic deformation can be used to create favorable compressive stresses. One famous such
technique is called “autofrettage;” this is a method used to strengthen cannon barrels against
bursting by pressurizing them from the inside so as to bring the inner portion of the barrel into
the plastic range. When the pressure is removed, the inner portions are left with a compressive
residual stress just as with bar A in the above example.

Wire drawing

To quantify the plastic flow process in more detail, consider next the “drawing” of wire4, in
which wire is pulled through a reducing die so as to reduce its cross-sectional area from A0 to A
as shown in Fig. 15. Since volume is conserved during plastic deformation, this corresponds to
an axial elongation of L/L0 = A0/A. Considering the stress state to be simple uniaxial tension,
we have

4G.W. Rowe, Elements of Metalworking Theory, Edward Arnold, London, 1979.
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Figure 15: Wire drawing.

σ1 = σY , σ2 = σ3 = 0

where 1 denotes the direction along the wire and 2 and 3 are the transverse directions. The
work done in stretching the wire by an increment of length dL, per unit volume of material, is

dU =
dW

AL
=
σYAdL

AL

Integrating this from L0 to L to obtain the total work:

U =

∫ L
L0

dU =
F dL

AL
= σY ln

L

L0

The quantity ln(L/L0) is the logarithmic strain εT introduced in Module 4 (Stress-Strain Curves).

Example 4

The logarithmic strain can be written in terms of either length increase or area reduction, due to the
constancy of volume during plastic deformation: εT = ln(L/L0) = ln(A0/A). In terms of diameter
reduction, the relation A = πd2/4 leads to

εT = ln

(
πd20/4

πd2/4

)
= 2 ln

(
d0

d

)

Taking the pearlite cell size to shrink commensurately with the diameter, we expect the wire strength
σf to vary according to the Hall-Petch relation with 1/

√
d. The relation between wire strength and

logarithmic drawing strain is then

σf ∝
exp (εT /4)√

do

The work done by the constant pulling force F in drawing an initial length L0 of wire to a
new length L is W = FL. This must equal the work per unit volume done in the die, multiplied
by the total volume of wire:

FL = (AL)σY ln
L

L0

Written in terms of area reduction, this is

F = AσY ln
A0
A
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This simple result is useful in estimating the requirements of wire drawing, even though it
neglects the actual complicated flow field within the die and the influence of friction at the die
walls. Both friction at the surface and constraints to flow within the field raise the force needed
in drawing, but the present analysis serves to establish a lower-limit approximation. It is often
written in terms of the drawing stress σ1 = F/A and the area reduction ratio r = (A0−A)/A0 =
1− (A/A0):

σ1 = σY ln
1

1− r

Note that the draw stress for a small area reduction is less than the tensile yield stress. In
fact, the maximum area reduction that can be achieved in a single pass can be estimated by
solving for the value of r which brings the draw stress up to the value of the yield stress, which
it obviously cannot exceed. This calculation gives

ln
1

1− rmax
= 1⇒ rmax = 1−

1

e
= 0.63

Hence the maximum area reduction is approximately 63%, assuming perfect lubrication at the
die. This lower-bound treatment gives an optimistic result, but is not far from the approximately
50% reduction often used as a practical limit. If the material hardens during drawing, the
maximum reduction can be slightly greater.

Slip-line fields

In cases of plane strain, there is a graphical technique called slip-line theory5 which permits a
more detailed examination of plastic flow fields and the loads needed to create them. Friction
and internal flow constraints can be included, so upper-bound approximations are obtained
that provide more conservative estimates of the forces needed in deformation. Considerable
experience is needed to become proficient in this method, but the following will outline some of
the basic ideas.

Consider plane strain in the 1-3 plane, with no strain in the 2-direction. There is a Poisson
stress in the 2-direction, given by

ε2 = 0 =
1

E
[σ2 − ν(σ1 + σ3)]

Since ν = 1/2 in plastic flow,

σ2 =
1

2
(σ1 + σ3)

The hydrostatic component of stress is then

p =
1

3
(σ1 + σ2 + σ3) =

1

2
(σ1 + σ3) = σ2

Hence the Poisson stress σ2 in the zero-strain direction is the average of the other two stresses σ1
and σ2, and also equal to the hydrostatic component of stress. The stress state can be specified
in terms of the maximum shear stress, which is just k during plastic flow, and the superimposed
hydrostatic pressure p:

σ1 = −p+ k, σ2 = −p σ3 = −p− k

5W. Johnson and P.B. Mellor, Plasticity for Mechanical Engineers, Van Nostrand Co., New York, 1962.

13



Since the shear stress is equal to k everywhere, the problem is one of determining the directions
of k (the direction of maximum shear, along which slip occurs), and the magnitude of p.

The graphical technique involves sketching lines that lie along the directions of k. Since
maximum shear stresses act on two orthogonal planes, there will be two sets of these lines,
always perpendicular to one another and referred to as α-lines and β-lines. The direction of
these lines is specified by an inclination angle φ. Any convenient inclination can be used for
the φ = 0 datum, and the identification of α- vs. β-lines is such as to make the shear stress
positive according to the usual convention. As the pressure p varies from point to point, there
is a corresponding variation of the angle φ, given by the Hencky equations as

p+ 2kφ = C1 = constant, along an α-line

p− 2kφ = C2 = constant, along a β-line

Hence the pressure can be determined from the curvature of the sliplines, once the constant is
known.

The slip-line field must obey certain constraints at boundaries:

1. Free surfaces: Since there can be no stress normal to a free surface, we can put σ3 = 0
there and then

p = k, σ1 = −p− k = −2k

Hence the pressure is known to be just the shear yield strength at a free surface. Further-
more, since the directions normal and tangential to the surface are principal directions,
the directions of maximum shear must be inclined at 45◦ to the surface.

2. Frictionless surface: The shear stress must be zero tangential to a frictionless surface,
which again means that the tangential and normal directions must be principal directions.
Hence the slip lines must meet the surface at 45◦. However, there will in general be a
stress acting normal to the surface, so σ3 	= 0 and thus p will not be equal to k.

3. Perfectly rough surface: If the friction is so high as to prevent any tangential motion at
the surface, the shearing must be maximum in a direction that is also tangential to the
surface. One set of slip lines must then be tangential to the surface, and the other set
normal to it.

Figure 16: Slip-line construction for a flat indentation.

Consider a flat indentor of width b being pressed into a semi-infinite block, with negligible
friction (see Fig. 16). Since the sliplines must meet the indentor surface at 45◦, we can draw a
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triangular flow field ABC. Since all lines in this region are straight, there can be no variation
in the pressure p, and the field is one of “constant state.” This cannot be the full extent of the
field, however, since it would be constrained both vertically and laterally by rigid metal. The
field must extend to the free surfaces adjacent to the punch, so that downward motion under
the punch can be compensated by upward flow adjacent to it. Two more triangular regions
ADF and BEG are added that satisfy the boundary conditions at free surfaces, and these are
connected to the central triangular regions by “fans” AFC and BCG. Fans are very useful in
slip-line constructions; they are typically centered on singularities such as points A and B where
there is no defined normal to the surface.

The pressure on the punch needed to establish this field can be determined from the sliplines,
and this is one of their principal uses. Since BE is a free surface, σ3 = 0 there and p = k. The
pressure remains constant along line EG since φ is unchanging, but as φ decreases along the curve
GC (the line curves clockwise), the pressure must increase according to the Hencky equation.
At point C it has rotated through −π/2 so the pressure there is

pC + 2kφ = pC + 2k

(
−
π

2

)
= constant = pG = k

pC = k(1 + π)

The pressure remains unchanged along lines CA and CB, so the pressure along the punch face
is also k(1 + π). The total stress acting upward on the punch face is therefore

σ1 = p+ k = 2k

(
1 +

π

2

)

The ratio of punch pressure to the tensile yield strength 2k is

σ1
2k

= 1 +
π

2
= 2.571

The factor 2.571 represents the increase over the tensile yield strength caused by the geometrical
constraints on the flow field under the punch.

The Brinell Hardness Test is similar to the punch yielding scenario above, but uses a hard
steel sphere instead of a flat indentor. The Brinell hardness H is calculated as the load applied
to the punch divided by the projected area of the indentation. Analysis of the Brinell test differs
somewhat in geometry, but produces a result not much different than that of the flat punch:

H

σY
≈ 2.8− 2.9

This relation is very useful in estimating the yield strength of metals by simple nondestructive
indentation hardness tests.

Problems

1. An open-ended pressure vessel is constructed of aluminum, with diameter 0.3 m and wall
thickness 3 mm. (Open-ended in this context means that both ends of the vessel are
connected to other structural parts able to sustain pressure, as in a hose connected between
two reservoirs.) Determine the internal pressure at which the vessel will yield according
to the (a) Tresca and (b) von Mises criteria.
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Prob. 1

Prob. 2

2. Repeat the previous problem, but with the pressure vessel now being closed-ended.

3. A steel plate is clad with a thin layer of aluminum on both sides at room temperature,
and the temperature then raised. At what temperature increase ∆T will the aluminum
yield?

Prob. 3

4. If the temperature in the previous problem is raised 40◦C beyond the value at which
yielding occurs, and is thereafter lowered back to room temperature, what is the residual
stress left in the aluminum?

5. Copper alloy is subjected to the stress state σx = 100, σy = −200, τxy = 100 (all in MPa).
Determine whether yield will occur according to the (a) Tresca and (b) von Mises criterion.

6. Repeat the previous problem, but with the stress state σx = 190, σy = 90, τxy = 120 (all
in MPa)

7. A thin-walled tube is placed in simultaneous tension and torsion, causing a stress state as
shown here. Construct a plot of τ/σY vs. σ/σY at which yield will occur according to the
(a) Tresca and (b) von Mises criterion. (σY is the tensile yield stress.)
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Prob. 7

8. A solid circular steel shaft is loaded by belt pulleys at both ends as shown. Determine the
diameter of the shaft required to avoid yield according to the von Mises criterion, with a
factor of safety of 2.

Prob. 8

9. For polycarbonate, the kinetic parameters in Eqn. 4 are found to be ε̇0 = 448 s−1, E∗Y = 309
kJ/mol, and V ∗ = 3.9 × 10−3 m3/mol. Find the yield stress σY at a strain rate of
ε̇ = 102 s−1 and temperature 40◦C.

10. Yield stresses (in MPa) have been measured at various strain rates and temperatures as
follows:

ε̇ = 10−3 s−1 ε̇ = 10−1 s−1

T = 0◦C 54.1 62.7
T = 40◦C 42.3 52.1

Determine the activation volume for the yield process. What physical significance might
this parameter have?

11. The yield stress of a polymer is measured to be 20 MPa at a temperature of 300K and a
strain rate of 10−3s−1. When the strain rate is doubled from this value, the yield stress
is observed to increase by 10%. What is the apparent activation volume for yield in this
case?
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12. Show the von Mises stress can be written in index notation as σM =
√

3ΣijΣij/2

13. A sample of linear polyethylene was tested in uniaxial loading at T = 23◦ C and ε̇ =
10−3 s−1. The yield stress σY was found to be 30.0 MPa in tension and 31.5 MPa in
compression. Determine the pressure-dependency constant A in Eqn. 3.

14. A circular shaft of radius R is subjected to a torque T .

(a) What value of T will be just large enough to induce yielding at the outer surface?

(b) As the value of T is increased beyond the level found in (a), determine the radius re
within which the material is still in the elastic range.

(c) What value of T will make the shaft fully plastic; i.e. re = 0?

15. A two-element truss frame is constructed of steel with the geometry shown. What load P
can the frame support without yielding in either element?

Prob. 15

16. A three-element truss frame is constructed of steel with the geometry shown. What load
P can the frame support before all three elements have yielded?

Prob. 16

17. If the frame of the previous problem is loaded until all three members have yielded and
the load then reduced to zero, find the residual stress in the central element.

18. A rigid beam is hinged at one end as shown and supported by two vertical rods as shown.

(a) What load P can the structure support before both vertical rods have yielded?

(b) What is the residual stress in the vertical rods after the load has been reduced to zero?

18



Prob. 18

19. Estimate the drawing force required to reduce the diameter of a 0.125′′ aluminum rod by
50% in a wire-drawing operation.
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Introduction

Phenomenological treatments such those outlined in the Module on Yield and Plastic Flow
(Module 20) are very useful for engineering predictions, but they provide only limited insight
to the molecular mechanisms underlying yield. Molecular understanding is a higher level of
insight, and also guides processing adjustments that can optimize the material. As discussed in
the Module on Atomistics of Elasticity (Module 2), the high level of order present in crystalline
materials lead to good atomistic models for the stiffness. Early workers naturally sought an
atomistic treatment of the yield process as well. This turned out to be a much more subtle
problem than might have been anticipated, and required hypothesizing a type of crystalline
defect — the “dislocation” — to explain the experimentally observed results. Dislocation theory
permits a valuable intuitive understanding of yielding in crystalline materials, and explains how
yielding can be controlled by alloying and heat treatment. It is one of the principal triumphs of
the last century of materials science.

Theoretical yield strength

In yield, atoms slide tangentially from one equilibrium position to another. The forces required
to bring this about are given by the bond energy function, which is the anharmonic curve
resulting from the balance of attractive and repulsive atomic forces described in Module 2. The
force needed to displace the atom from equilibrium is the derivative of the energy function, being
zero at the equilibrium position (see Fig. 1). As a simplifying assumption, let us approximate
the force function with a harmonic expression, and write

τ = τmax sin

(
2π
x

a

)

where a is the interatomic spacing. The stress reaches a maximum a quarter of the distance
between the two positions, dropping to zero at the metastable position midway between them.
After that, the stress changes sign, meaning that force is required to hold the atom back as
it tries to fall toward the new equilibrium position. Using γ = x/a as the shear strain, the
maximum shear stress τmax can be related to the shear modulus G as

dτ

dγ
=
dτ

dx

dx

dγ
= a
dτ

dx
= a τmax

2π

a
cos
2πx

a
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Figure 1: Atomistic energy and stress functions.

G =
dτ

dγ

∣∣∣∣
γ→0
= τmax · 2π

This implies a shear stress at yield of τmax = G/2π ≈ G/10, which would be on the order of 10
GPa. Measured values are 10–100 MPa, so the theoretical value is 2 to 3 orders of magnitude
too large. More elaborate derivations give a somewhat smaller value for the theoretical yield
stress, but still much larger than what is observed experimentally.

Edge, screw, and mixed dislocations

A rationale for the apparently low experimental values for the yield strengths of crystalline
materials was proposed independently by Taylor, Polyani and Orowan in 1934. These workers
realized that it was not necessary to slip entire planes of atoms past one another to deform the
material plastically, a process that would require breaking all the bonds connecting the planes
simultaneously. The stress needed to do this would be very high, on the order of G/10 as
described above. But it isn’t necessary to move all the atoms at once; only a few at a time need
to move, requiring a much smaller stress. Analogously to the way an inchworm moves, only those
atoms lying in a plane above a single line might be displaced one atomic spacing. This would
force the plane of atoms previously there into a midway position as shown in Fig. 2, creating an
“extra” plane of atoms halfway between the normal equilibrium positions. The termination of
this plane then constitutes a line defect in the crystal known as a dislocation1 .
Viewed end-on as seen in Fig. 3, it can be appreciated that the extra plane of atoms creates

a region of compression near the plane but above the dislocation line, and a tensile region below
it. In a “soft” crystal whose interatomic bonds are relatively compliant, the distortion extends
an appreciable distance from the dislocation. Conversely, in “hard” crystals with stiffer bonds
the distortion is confined to a smaller region near the dislocation. The face-centered cubic (fcc)
metals such as copper and gold have close-packed planes (those with (111) Miller indices), which

1For an extended discussion of the geometrical aspects of crystal dislocations, see S.M. Allen and E.L. Thomas,
The Structure of Materials, John Wiley & Sons, New York, 1999.
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Figure 2: The edge dislocation.

corresponds to large distances between those planes. This gives rise to relatively soft interplanar
bonds, so that the dislocation width is large. The dislocation width is substantially smaller in
the body centered cubic (bcc) metals such as iron and steel, smaller still in ionically bonded
ceramics, and even smaller in covalently bonded ceramics.

Figure 3: Dislocation motion.

The dislocation associated with this extra plane of atoms can be moved easily, since only a
small adjustment in position is required to break the bonds on the next plane over and allow them
to form on the originally “extra” plane. Now the third plane is the extra one, and the dislocation
will have moved by one atomic position. Slip is obviously made much easier if dislocation motion
is available to the material. In fact, it first appears the dislocation concept does too good a job
in explaining crystal plasticity, since the dislocation is in a balanced metastable position and
should be capable of being moved either left or right with a vanishingly small force. If this were
true, the crystal would have essentially no shear strength.
However, as the dislocation moves it drags with it the regions of compressive and tensile

distortion in the lattice around it. This is accompanied by a sort of frictional drag, giving rise to
a resistance to dislocation motion known as the Peierls force. This force is dependent on such
factors as the crystal type and the temperature, and this plays an important role in determining
the material’s yield stress. As seen in Table 1, materials with wide dislocations have low Peierls
forces, since the distortion is spread out over a large volume and is much less intense at its core.
Table 1 also indicates that the effect of temperature on the Peierls force is low for fcc mate-

rials having wide dislocations, and this results in a small temperature dependency of the yield
stress. Conversely, materials with narrow and intense dislocation fields have high Peierls forces
with a large temperature sensitivity of the yield stress, with higher temperatures facilitating
dislocation mobility and thus reducing the yield strength. Among the important consequences
of these factors is the dangerous tendency of steel to become brittle at low temperatures; as
the temperature is lowered, the yield stress can rise to such high levels that brittle fracture
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Table 1: Relationship between dislocation width and yield strength temperature sensitivity
(from R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John
Wiley & Sons, 1976).

Yield Strength
Material Crystal Type Dislocation Width Peierls Stress Temperature Sensitivity

Metal fcc wide very small negligible
Metal bcc narrow moderate strong
Ceramic ionic narrow large strong
Ceramic covalent very narrow very large strong

intervenes.
Dislocations can have geometries other than the simple edge dislocation shown in Fig. 3. A

more general view is provided by considering displacing a portion of the atoms in a “slip plane”
acfg a distance b̄, as shown in Fig. 4. The vector b̄ is also a measure of the magnitude and
direction of the crystal dislocation, and is known as the Burgers’ vector. The boundary between
slipped and unslipped atoms on the slip plane is the dislocation line, shown as a dotted line. At
position e, the dislocation line is perpendicular to the Burgers’ vector, so these two quantities
lie in the slip plane. A dislocation so situated is called an edge dislocation, and is constrained
to move only in the slip plane defined by the dislocation line and the Burgers’ vector.

Figure 4: The mixed dislocation.

At position b, a spiral-like defect is formed such that a circular transit around the dislocation
line ends on a plane a distance b̄ from the starting point. Now the defect is known as a screw
dislocation. The dislocation line is now parallel to the Burgers’ vector, so these two quantities do
not define a unique slip plane the way an edge dislocation does. A screw dislocation can therefore
cross-slip to another easy-glide plane passing through the dislocation line, and this mechanism
enables screw dislocations to maneuver around obstacles that might otherwise impede their
motion. Edge dislocations are more easily pinned, since they must “climb” by diffusion of
vacancies to surmount obstacles as illustrated in Fig. 5.
As the curved dislocation line is traversed from point b to point e, the dislocation changes

gradually from screw to edge character. At intermediate points the dislocation has both edge
and screw character, and is known as a mixed dislocation.
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Figure 5: Dislocation climb by vacancy diffusion.

Dislocation-controlled yield

Single crystals tend to slip on their most closely packed planes, and in directions of minimum
atomic separation distance. The distances between planes is maximum for the close-packed
planes, so these are the most loosely bonded. Slip in close-packed directions minimizes the
distance the stresses need to displace the slipping atoms. Both of these act to minimize the
energy needed for slip. There are 12 such slip systems in the face-centered cubic (fcc) systems;
using Miller indices, these are the {111} planes and the 〈110〉 directions. There are 4 independent
nonparallel (111) planes, and 3 independent [110] directions in each plane.

Table 2: Critical Resolved shear stress for single crystals of various materials.

crystal slip τcrss,
Material type system MPa
Nickel fcc {111} 〈110〉 5.7
Copper fcc {111} 〈110〉 0.98
Gold fcc {111} 〈110〉 0.90
Silver fcc {111} 〈110〉 0.60
Magnesium hcp {1101} 〈001〉 0.81
NaCl cubic {110} 〈110〉 0.75

Slip occurs when the shear stress on the slip plane, and in the slip direction, reaches a value
τcrss, the critical resolved shear stress; experimental values for τcrss are listed in Table 2 for a
number of single crystal materials. The resolved shear stress corresponding to an arbitrary stress
state can be computed using the transformation relations of Module 10. In a simple tension test
it can be written by inspection of Fig. 6 as

τrss =
P cos θ

As
=
P cos θ

A0/ cos φ
= σ(cos θ cos φ) ≡

σ

m

where m is a structure factor dependent on the orientation of the slip system relative to the
applied tensile stress. For single crystals of arbitrary alignment, the yield stress will then be of
the form

σY = τcrss ·m (1)

This is known as “Schmid’s Law,” and m is the “Schmid factor.”
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Figure 6: Critical resolved shear stress.

The yield stress will generally be higher in polycrystalline materials, since many of the
grains will be oriented unfavorably (have high Schmid factors). Equation 1 can be modified for
polycrystalline systems as

σY = τcrss ·m

where m is an equivalent Schmid factor that is generally somewhat higher than a simple average
over all the individual grains; for fcc and bcc systems m ≈ 3.

Strain energy in dislocations

Figure 7: Shear strain associated with a screw dislocation.

Many calculations in dislocation mechanics are done more easily with energy concepts than
with Newtonian force-displacement approaches. As seen in Fig. 7, the shear strain associated
with a screw dislocation is the deflection b̄ divided by the circumference of a circular path around
the dislocation core:

γ =
b̄

2πr
(2)

where r is the distance from the dislocation core. Assuming Hookean elasticity, the corresponding
strain energy per unit volume is
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U =

∫
τ dγ =

1

2
τγ =

Gγ2

2
=
Gb̄2

8π2r2

The total strain energy associated with the screw dislocation is now obtained by integrating this
over the volume around the dislocation:

Uscrew =

∫
U dV = l ·

∫ r
r0

Gb̄2

8π2r2
2πr dr

where here l is the length of the dislocation line and r0 is the radius of the dislocation “core”
inside which the energy is neglected. (Mathematically, the energy density increases without
bound inside the core; however its volume becomes very small.) Taking l = 1 to obtain energy
per unit length and carrying out the integration,

Uscrew =
Gb̄2

4π
ln
r

r0
≈ Gb̄2 (3)

This last approximation should be read “scales as,” since it is arbitrary to select the limiting
value r so that ln rr0 ≈ 4π. The important conclusion is that the dislocation energy increases

linearly with the shear modulus G and quadratically with the Burgers’ vector b̄. A similar
expression can be obtained for the strain energy per unit length of edge dislocation; it can be
shown that

Uedge =
Gb̄2

1− ν
(4)

where ν is the Poisson’s ratio.
The dislocation energy represents an increase in the total energy of the system, which the

material will try to eliminate if possible. For instance, two dislocations of opposite sign will
be attracted to one another, since their strain fields will tend to cancel and lower the energy.
Conversely, two dislocations of same sign will repel one another. The force of this attraction or
repulsion will scale as

F dr = dU ⇒ Fscrew ≈
Gb̄2

r

where here r is the distance between dislocations.

Dislocation motion and hardening

The ductility of crystalline materials is determined by dislocation mobility, and factors that
impede dislocation motion can produce dramatic increases in the material’s yield strength.
This increased resistance to plastic flow also raises the indentation hardness of the material, so
strengthening of this sort is known as hardening. Alloying elements, grain boundaries, and even
dislocations themselves can provide this impediment, and these provide the means by which
the materials technologist controls yield. A thorough treatment of these important concepts
must be left to subjects in physical metallurgy, but the following paragraphs will provide a brief
introduction to some of them.
When one dislocation, moving on its slip plane under the influence of a driving shear stress,

passes through another a “jog” will be created in the second dislocation as shown in Fig. 8.
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Figure 8: A dislocation jog.

The portion of the dislocation line in the jog is now no longer on its original glide plane, and
is “pinned” in position. If the dislocation concentration is large, these jogs become a powerful
impediment to plastic flow by dislocation motion. Paradoxically, the very dislocations that
permit plastic flow in the first place can impede it if they become too numerous.

Figure 9: Dislocation bowing.

When a moving dislocation becomes pinned by jogs or other impediments, the shear stress τ
that had been driving the dislocation now causes the line segment between the obstacles to bow
forward as shown in Fig. 9, with an angle φ between adjacent segments. The extra length of the
bowed line represents an increase in the strain energy of the dislocation, and if the shear stress
were not present the line would straighten out to reduce this energy. The line acts similarly to an
elastic band, with a “line tension” T that acts to return the line to a straight shortest-distance
path between pinning points. The units of dislocation energy per unit length (N-m/m) are the
same as simple tension, and we can write

T =
∂E

∂l
≈ Gb2

Figure 10: Force balance on dislocation segment.

As shown in Fig. 10, a free-body diagram of the line segment between two pinning points
gives a force balance of the form

2T sin
dθ

2
= τ b̄ · r dθ

where here r is the radius of curvature of the line (not the distance from the dislocation, as in
Eqn. 2). Rearranging and canceling the dθ factor,
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τ =
Gb̄

r
(5)

This relation gives the curvature of the dislocation in terms of the shear stress acting on it.
The maximum shear stress is that needed to bend the dislocation into a semicircle (smallest r),
after which the dislocation expands spontaneously. When the loops meet, annihilation occurs
at that point, spawning a new dislocation line embedded in a circular loop. The process can be
repeated with the new dislocation as well, and by this mechanism a large number of dislocations
can be spawned as shown in Fig. 11. This is the “Frank-Read” source, and is an important
means by which dislocations can multiply during plastic deformation. The increasing number
of dislocations leads to more and more entanglements, with jogs acting as pinning points.

Figure 11: The Frank-Read dislocation source.

Equation 5 also provides an estimate of the influence of dislocation density on yield strength.
If the obstacles pinning dislocation motion are “soft” the dislocation will be able to overcome
them at relatively low driving stress, corresponding to a low critical angle φc. But as the obstacle
becomes “harder,” i.e. provides more resistance to dislocation motion, the angle approaches zero
and the radius of curvature becomes on the order of the obstacle spacing L. The shear stress
needed to overcome such obstacles is then

τ ≈
Gb̄

L
When the hard obstacles arise from jogs created by intersections with other dislocations, the
obstacle spacing L can be written in terms of the dislocation density. If the number of disloca-
tions passing through a unit area is ρ, the number of dislocations encountered in moving along
a straight line will be proportional to

√
ρ. The spacing between them is proportional to the re-

ciprocal of this, so τ ∝ Gb̄
√
ρ. The yield stress is then the stress τ0 needed to move dislocations

in the absence of interfering dislocations, plus that needed to break through the obstacles; this
can be written as

τY = τ0 +AGb̄
√
ρ (6)

where A is a constant that has been found to vary between 0.3 and 0.6 for a number of fcc, bcc
and polycrystalline metals as well as some ionic crystals. Experimental corroboration of this
relation is provided in Fig. 12.
The action of plastic flow therefore creates new dislocations by Frank-Read and other sources,

which makes the material harder and harder, i.e. increasingly resistant to further plastic flow.
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Figure 12: Effect of dislocation density ρ on critical resolved shear stress (for copper single and
polycrystals, from T.H. Courtney, Mechanical Behavior of Materials, McGraw-Hill, 1990).

Eventually the yield stress for continued deformation becomes larger than the fracture stress,
and the material will now break before it deforms further. If continued working of the material
is desired, the number of dislocations must be reduced, for instance by thermal annealing.
Annealing can produce recovery (dislocation climb around obstacles by vacancy diffusion) or
recrystallization of new dislocation-free grains.
Grain boundaries act to impede dislocation motion, since the slip systems in adjoining grains

will usually not line up; increases in yield strength arising from this mechanism are called
boundary strengthening. Fine-grained metals have increased grain boundary area and thus have
higher yield strengths than coarse-grained ones. The influence of grain size can often be described
by the Hall-Petch formula

σY = σ0 + kY d
−1/2 (7)

where σ0 is the lattice friction stress needed to move dislocations and K is a constant. This
relation is essentially empirical, but it can be rationalized by viewing the second term as being
related to the stress needed to activate a new mobile dislocation in the unfavorably oriented
grain.

Figure 13: Dislocation pileup at a grain boundary.

As dislocations pile up against the boundary in the originally deforming grain, they act
much like a crack whose length scales with the grain size d as shown in Fig. 13: the larger
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the grain, the more dislocations in the pileup, the larger the virtual crack. Since the stress
in front of a sharp crack of length a scales2 as

√
a, the stress in front of the crack containing

the dislocation pileup is increased by a factor that scales with
√
d. When this stress exceeds

that needed to generate a new dislocation the unfavorably oriented grain begins to deform by
dislocation motion. This stress diminishes according to d−1/2 as the size of the original grain is
scaled down, thus strengthening the metal according to the Hall-Petch relationship. Grain size
is determined by the balance between nucleation and growth rates as the metal is solidified, and
these are in turn controllable by the cooling rates imposed. This is an important example of
processing-structure-property control available to the materials technologist.
A related phenomenon accounts for the very high strengths (≈ 4 GPa, or 600 kpsi ) of

piano wire, a eutectoid steel that has been drawn through a sequence of reducing dies to obtain
a small final diameter. The “pearlitic” structure obtained on cooling this steel through the
eutectoid temperature is a two-phase mixture of Fe3C (“cementite”) in bcc iron (“ferrite”). As
the diameter is reduced during drawing, the ferrite cells are reduced as well, forming a structure
analogous to a fine-grained metal. The cell boundaries restrict dislocation motion, leading to
the very high yield strengths.
Impurity atoms in solid solution can also serve to harden a crystalline material by impeding

dislocation motion; this is called solution strengthening. An impurity atom smaller than the
atoms of the host lattice will create an approximately spherical tensile field around itself which
will attract the compressive regions around mobile dislocations, and a larger impurity atom will
tend to trap the tensile region of nearby dislocations. On average, the population of dislocations
will maneuver so as to lower their strain energies by associating with the nonuniform strain fields
around impurities. This association impedes dislocation motion, which inhibits plastic flow and
increases the yield stress.
Solution hardening is not usually an especially effective strengthening mechanism in com-

mercial materials, largely because the solubility of impurity atoms is not sufficient to generate
an appreciable number of obstacles. One important exception to this is the iron-carbon, or
steel, system. If steel at approximately the eutectoid carbon composition (0.8% C) is cooled
rapidly from above the eutectoid temperature of 723◦C, the carbon atoms can become trapped
in the iron lattice at much higher concentrations than bcc iron’s equilibrium carbon solubility
would normally allow. (This tendency for trapping can be enhanced by alloying elements such
as chromium and molybdenum, which have an affinity for carbon and thus reduce its ability to
diffuse away.) To accommodate these metastable impurity atoms, the iron lattice transforms
to a body-centered tetragonal form named martensite (see Fig. 14), with a strong nonspherical
strain field around the carbon atoms. These tetragonal distortions are very effective impedi-
ments to dislocation motion, making martensite an extremely hard phase. The periodic water
quenches a blacksmith uses during metalworking is done (perhaps without the smith knowing
why it works) to tailor the material’s hardness by developing martensitic inclusions in the steel.
Martensite is so hard and brittle that the rapidly quenched steel must usually be tempered by

heating it to approximately 400◦C for an hour or so. This allows diffusion of carbon to take place,
creating a dispersion of cementite inclusions; it also permits recovery of the dislocations present
in the martensite. The resulting material is much tougher than the as-formed martensitic steel,
but still retains a high strength level due to the strengthening effect of the carbide inclusions.

2See Module 16.

11



Figure 14: The body-centered tetragonal structure of martensite.

Kinetics of creep in crystalline materials

“Creep” is the term used to describe the tendency of many materials to exhibit continuing
deformation even though the stress is held constant. Viscoelastic polymers exhibit creep, as
was discussed in Module 19. However, creep also occurs in polycrystalline metallic and ceramic
systems, most importantly when the the temperature is higher than approximately half their
absolute melting temperature. This high-temperature creep can occur at stresses less than
the yield stress, but is related to this module’s discussion of dislocation-controlled yield since
dislocation motion often underlies the creep process as well.
High-temperature creep is of concern in such applications as jet engines or nuclear reactors.

This form of creep often consists of three distinct regimes as seen in Fig. 15: primary creep,
in which the material appears to harden so the creep rate diminishes with time; secondary or
steady state creep, in which hardening and softening mechanisms appear to balance to produce
a constant creep rate ε̇II ; and tertiary creep in which the material softens until creep rupture
occurs. The entire creep curve reflects a competition between hardening mechanisms such as
dislocation pileup, and mechanisms such as dislocation climb and cross-slip which are termed
recovery and which augment dislocation mobility.

Figure 15: The three stages of creep.

In most applications the secondary regime consumes most of the time to failure, so much of
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the modeling effort has been directed to this stage. The secondary creep rate ε̇II can often be
described by a general nonlinear expression of the form

ε̇II = Aσ
m exp

−E∗c
RT

(8)

where A and m are adjustable constants, E∗c is an apparent activation energy for creep, σ is
the stress, R is the Gas Constant (to be replaced by Boltzman’s constant if a molar basis is not
used) and T is the absolute temperature. This is known as the Weertman-Dorn equation.

Figure 16: Dislocation motion and creep rate.

The plastic flow rate is related directly to dislocation velocity, which can be visualized by
considering a section of material of height h and width L as shown in Fig. 16. A single dislo-
cation, having traveled in the width direction for the full distance L will produce a transverse
deformation of δi = b̄. If the dislocation has propagated through the crystal only a fraction xi/L
of the width, the deformation can be reduced by this same fraction: δi = b̄(xi/L). The total
deformation in the crystal is then the sum of the deformations contributed by each dislocation:

δ =
∑
i

δi =
∑
i

b̄(xi/L)

The shear strain is the ratio of the transverse deformation to the height over which it is dis-
tributed:

γ =
δ

h
=
b̄

Lh

∑
i

xi

The value
∑
i xi can be replaced by the quantity Nx, where N is the number of dislocations in

the crystal segment and x is the average propagation distance. We can then write

γ = ρb̄x

where ρ = N/Lh is the dislocation density in the crystal. The shear strain rate γ̇ is then obtained
by differentiation:

γ̇ = ρb̄v (9)

where v = ẋ is the average dislocation velocity. Hence the creep rate scales directly with the
dislocation velocity.
To investigate the temperature and stress dependence of this velocity, we consider rate at

which dislocations can overcome obstacles to be yet another example of a thermally activated,
stress aided rate process and write an Eyring equation for the creep rate:
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ε̇ ∝ v ∝ exp
−(E∗d − σV

∗)

kT
− exp

−(E∗d + σV
∗)

kT

where V ∗ is an apparent activation volume. The second term here indicates that the activation
barrier for motion in the direction of stress is augmented by the stress, and diminished for
motions in the opposite direction. When we discussed yielding the stress was sufficiently high
that motion in the direction opposing flow could be neglected. Here we are interested in creep
taking place at relatively low stresses and at high temperature, so that reverse flow can be
appreciable. Factoring,

ε̇ ∝ exp
−E∗d
RT

(
exp
+σV ∗

RT
− exp

−σV ∗

RT

)

Since σV ∗ � RT , we can neglect quadratic and higher order terms in the series expansion
ex = 1 + x+ (x2/2!) + (x3/3!) + · · · to give

ε̇ = A

(
σV ∗

RT

)
exp
−(E∗d)

RT

If now we neglect the temperature dependence in the preexponential factor in comparison with
the much stronger temperature dependence of the exponential itself, this model predicts a creep
rate in agreement with the Weertman-Dorn equation with m = 1.
Creep by dislocation glide occurs over the full range of temperatures from absolute zero to the

melting temperature, although the specific equation developed above contains approximations
valid only at higher temperature. The stresses needed to drive dislocation glide are on the order
of a tenth the theoretical shear strength of G/10. At lower stresses the creep rate is lower, and
becomes limited by the rate at which dislocations can climb over obstacles by vacancy diffusion.
This is hinted at in the similarity of the activation energies for creep and self diffusion as shown in
Fig. 17. (Note that these values also correlate with the tightness of the bond energy functions, as
discussed in Module 1; diffusion is impeded in more tightly-bonded lattices.) Vacancy diffusion
is another stress-aided thermally activated rate process, again leading to models in agreement
with the Weertman-Dorn equation.

Figure 17: Correlation of activation energies for diffusion and creep.
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Problems

1. The yield stresses σY have been measured using steel and aluminum specimens of various
grain sizes, as follows:

Material d, µ σY , MPa

steel 60.5 160
136 130

aluminum 11.1 235
100 225

(a) Determine the coefficients σ0 and kY in the Hall-Petch relation (Eqn. 7) for these two
materials.

(b) Determine the yield stress in each material for a grain size of d = 30µ.
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Introduction

One particularly troublesome aspect of fracture, especially in high-strength and brittle materials,
is its variability. The designer must be able to cope with this, and limit stresses to those which
reduce the probability of failure to an acceptably low level. Selection of an acceptable level of
risk is a difficult design decision itself, obviously being as close to zero as possible in cases where
human safety is involved but higher in doorknobs and other inexpensive items where failure is
not too much more than a nuisance. The following sections will not replace a thorough study
of statistics, but will introduce at least some of the basic aspects of statistical theory needed
in design against fracture. The text by Collins1 includes an extended treatment of statistical
analysis of fracture and fatigue data, and is recommended for further reading.

Basic statistical measures

The value of tensile strength σf cited in materials property handbooks is usually the arithmetic
mean, simply the sum of a number of individual strength measurements divided by the number
of specimens tested:

σf =
1

N

N∑
i=1

σf,i (1)

where the overline denotes the mean and σf,i is the measured strength of the i
th (out of N)

individual specimen. Of course, not all specimens have strengths exactly equal to the mean;
some are weaker, some are stronger. There are several measures of how widely scattered is the
distribution of strengths, one important one being the sample standard deviation, a sort of root
mean square average of the individual deviations from the mean:

s =

√√√√ 1

N − 1

N∑
i=1

(σf − σx,i)
2 (2)

The significance of s to the designer is usually in relation to how large it is compared to the
mean, so the coefficient of variation, or C.V., is commonly used:

1Collins, J.A., Failure of Materials in Mechanical Design, Wiley, 1993.
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C.V. =
s

σf

This is often expressed as a percentage. Coefficients of variation for tensile strength are com-
monly in the range of 1–10%, with values much over that indicating substantial inconsistency
in the specimen preparation or experimental error.

Example 1

In order to illustrate the statistical methods to be outlined in this Module, we will use a sequence of
thirty measurements of the room-temperature tensile strength of a graphite/epoxy composite2. These
data (in kpsi) are: 72.5, 73.8, 68.1, 77.9, 65.5, 73.23, 71.17, 79.92, 65.67, 74.28, 67.95, 82.84, 79.83, 80.52,
70.65, 72.85, 77.81, 72.29, 75.78, 67.03, 72.85, 77.81, 75.33, 71.75, 72.28, 79.08, 71.04, 67.84, 69.2, 71.53.
Another thirty measurements from the same source, but taken at 93◦C and -59◦C, are given in Probs. 2
and 3, and can be subjected to the same treatments as homework.
There are several computer packages available for doing statistical calculations, and most of the

procedures to be outlined here can be done with spreadsheets. The Microsoft Excel functions for mean
and standard deviation are average() and stdev(), where the arguments are the range of cells containing
the data. These give for the above data

σf = 73.28, s = 4.63 (kpsi)

The coefficient of variation is C.V.= (4.63/73.28)× 100% = 6.32%.

The normal distribution

A more complete picture of strength variability is obtained if the number of individual specimen
strengths falling in a discrete strength interval ∆σf is plotted versus σf in a histogram as shown
in Fig. 1; the maximum in the histogram will be near the mean strength and its width will be
related to the standard deviation.

Figure 1: Histogram and normal distribution function for the strength data of Example 1.

2P. Shyprykevich, ASTM STP 1003, pp. 111–135, 1989.
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As the number of specimens increases, the histogram can be drawn with increasingly finer
∆σf increments, eventually forming a smooth probability distribution function, or “pdf”. The
mathematical form of this function is up to the material (and also the test method in some
cases) to decide, but many phenomena in nature can be described satisfactorily by the normal,
or Gaussian, function:

f(X) =
1
√
2π
exp
−X2

2
, X =

σf − σf
s

(3)

Here X is the standard normal variable, and is simply how many standard deviations an indi-
vidual specimen strength is away from the mean. The factor 1/

√
2π normalizes the function so

that its integral is unity, which is necessary if the specimen is to have a 100% chance of failing
at some stress. In this expression we have assumed that the measure of standard deviation de-
termined from Eqn. 2 based on a discrete number of specimens is acceptably close to the “true”
value that would be obtained if every piece of material in the universe could somehow be tested.
The normal distribution function f(X) plots as the “bell curve” familiar to all grade-

conscious students. Its integral, known as the cumulative distribution function or Pf (X), is
also used commonly; its ordinate is the probability of fracture, also the fraction of specimens
having a strength lower than the associated abscissal value. Since the normal pdf has been nor-
malized, the cumulative function rises with an S-shaped or sigmoidal shape to approach unity
at large values of X. The two functions f(X) and F (X) are plotted in Fig. 2, and tabulated
in Tables 1 and 2 of the Appendix attached to this module. (Often the probability of survival
Ps = 1−Pf is used as well; this curve begins at near unity and falls in a sigmoidal shape toward
zero as the applied stress increases.)

Figure 2: Differential f(X) and cumulative Pf (X) normal probability functions.

One convenient means of determining whether or not a particular set of measurements is
normally distributed involves using special graph paper (a copy is included in the Appendix)
whose ordinate has been distorted to make the sigmoidal cumulative distribution Pf plot as a
straight line. (Sometimes it is easier to work with straight lines on curvy paper than curvy lines
on straight paper.) Experimental data are ranked from lowest to highest, and each assigned
a rank based on the fraction of strengths having higher values. If the ranks are assigned as
i/(N + 1), where i is the position of a datum in the ordered list and N is the number of
specimens, the ranks are always greater than zero and less than one; this facilitates plotting.
The degree to which these rank-strength data plot as straight lines on normal probability

paper is then a visual measure of how well the data are described by a normal distribution. The
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best-fit straight line through the points passes the 50% cumulative fraction line at the sample
mean, and its slope gives the standard distribution. Plotting several of these lines, for instance
for different processing conditions of a given material, is a convenient way to characterize the
strength differences arising from the two conditions (See Prob. 2).

Example 2

For our thirty-specimen test population, the ordered and ranked data are:

i σf,i Pf =
i

N+1

1 65.50 0.0323
2 65.67 0.0645
3 67.03 0.0968
4 67.84 0.1290
5 67.95 0.1613
6 68.10 0.1935
7 69.20 0.2258
8 70.65 0.2581
9 71.04 0.2903
10 71.17 0.3226
11 71.53 0.3548
12 71.75 0.3871
13 72.28 0.4194
14 72.29 0.4516
15 72.5 0.4839
16 72.85 0.5161
17 72.85 0.5484
18 73.23 0.5806
19 73.80 0.6129
20 74.28 0.6452
21 75.33 0.6774
22 75.78 0.7097
23 77.81 0.7419
24 77.81 0.7742
25 77.90 0.8065
26 79.08 0.8387
27 79.83 0.8710
28 79.92 0.9032
29 80.52 0.9355
30 82.84 0.9677

When these are plotted using probability scaling on the ordinate, the graph in Fig. 3 is obtained.

The normal distribution function has been characterized thoroughly, and it is possible to
infer a great deal of information from it for strength distributions that are close to normal. For
instance, the cumulative normal distribution function (cdf) tabulated in Table 2 of the Appendix
shows that that 68.3% of all members of a normal distribution lie within ±1s of the mean, 95%
lie within ±1.96s, and 99.865% lie within ±3s. It is common practice in much aircraft design
to take σf − 3s as the safe fracture fracture strength; then almost 99.9% of all specimens will
have a strength at least this high. This doesn’t really mean one out of every thousand airplane
wings are unsafe; within the accuracy of the theory, 0.1% is a negligible number, and the 3s

4



Figure 3: Probabilty plot of cumulative probability of failure for the strength data of Example 1.
Also shown are test data taken at higher and lower temperature.

tolerance includes essentially the entire population3. Having to reduce the average strength by
3s in design can be a real penalty for advanced materials such as composites that have high
strengths but also high variability due to their processing methods being relatively undeveloped.
This is a major factor limiting the market share of these advanced materials.
Beyond the visual check of the linearity of the probability plot, several “goodness-of-fit”

tests are available to assess the degree to which the population can reasonably be defined by
the normal (or some other) distribution function. The “Chi-square” test is often used for this
purpose. Here a test statistic measuring how far the observed data deviate from those expected
from a normal distribution, or any other proposed distribution, is

χ2 =
∑ (observed− expected)2

expected

=
N∑
i=1

(ni −Npi)2

Npi

where ni is the number of specimens actually failing in a strength increment ∆σf,i,N is the
total number of specimens, and pi is the probability expected from the assumed distribution of
a specimen having having a strength in that increment.

Example 3

To apply the Chi-square test to our 30-test population, we begin by counting the number of strengths
falling in selected strength increments, much as if we were constructing a histogram. We choose five
increments to obtain reasonable counts in each increment. The number expected to fall in each increment
is determined from the normal pdf table, and the square of the difference calculated.

3“Six-sigma” has become a popular goal in manufacturing, which means that only one part out of approximately
a billion will fail to meet specification.
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Lower Upper Observed Expected
Limit Limit Frequency Frequency Chisquare
0 69.33 7 5.9 0.198

69.33 72.00 5 5.8 0.116
72.00 74.67 8 6.8 0.214
74.67 77.33 2 5.7 2.441
77.33 ∞ 8 5.7 0.909

χ2 = 3.878

The number of degrees of freedom for this Chi-square test is 4; this is the number of increments less one,
since we have the constraint that n1 + n2 + n3 + n5 = 30.
Interpolating in the Chi-Square Distribution Table (Table 3 in the Appendix), we find that a fraction

0.44 of normally distributed populations can be expected to have χ2 statistics of up to 3.88. Hence, it
seems reasonable that our population can be viewed as normally distributed.
Usually, we ask the question the other way around: is the computed χ2 so large that only a small

fraction — say 5% — of normally distributed populations would have χ2 values that high or larger? If
so, we would reject the hypothesis that our population is normally distributed.

From the χ2 Table, we read that α = 0.05 for χ2 = 9.488, where α is the fraction of the χ2 population

with values of χ2 greater than 9.488. Equivalently, values of χ2 above 9.488 would imply that there is

less than a 5% chance that a population described by a normal distribution would have the computed χ2

value. Our value of 3.878 is substantially less than this, and we are justified in claiming our data to be

normally distributed.

Several governmental and voluntary standards-making organizations have worked to develop
standardized procedures for generating statistically allowable property values for design of crit-
ical structures4. One such procedure defines the “B-allowable” strength as that level for which
we have 95% confidence that 90% of all specimens will have at least that strength. (The use of
two percentages here may be confusing. We mean that if we were to measure the strengths of 100
groups each containing 10 specimens, at least 95 of these groups would have at least 9 specimens
whose strengths exceed the B-allowable.) In the event the normal distribution function is found
to provide a suitable description of the population, the B-basis value can be computed from the
mean and standard deviation using the formula

B = σf − kB s

where kb is n
−1/2 times the 95th quantile of the “noncentral t-distribution;” this factor is tabu-

lated, but can be approximated by the formula

kb = 1.282 + exp(0.958 − 0.520 lnN + 3.19/N)

Example 4

In the case of the previous 30-test example, kB is computed to be 1.78, so this is less conservative than
the 3s guide. The B-basis value is then

B = 73.28− (1.78)(4.632) = 65.05

Having a distribution function available lets us say something about the confidence we can
have in how reliably we have measured the mean strength, based on a necessarily limited number

4Military Handbook 17B, Army Materials Technology Laboratory, Part I, Vol. 1, 1987.
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of individual strength tests. A famous and extremely useful result in mathematical statistics
states that, if the mean of a distribution is measured N times, the distribution of the means will
have its own standard deviation sm that is related to the mean of the underlying distribution s
and the number of determinations, N as

sm =
s
√
N

(4)

This result can be used to establish confidence limits. Since 95% of all measurements of a
normally distributed population lie within 1.96 standard deviations from the mean, the ratio
±1.96s/

√
N is the range over which we can expect 95 out of 100 measurements of the mean to

fall. So even in the presence of substantial variability we can obtain measures of mean strength
to any desired level of confidence; we simply make more measurements to increase the value of N
in the above relation. The “error bars” often seen in graphs of experimental data are not always
labeled, and the reader must be somewhat cautious: they are usually standard deviations, but
they may indicate maximum and minimum values, and occasionally they are 95% confidence
limits. The significance of these three is obviously quite different.

Example 5

Equation 4 tells us that were we to repeat the 30-test sequence of the previous example over and over
(obviously with new specimens each time), 95% of the measured sample means would lie within the
interval

73.278−
(1.96)(4.632)
√
30

, 73.278 +
(1.96)(4.632)
√
30

= 71.62, 74.94

The t distribution

The “t” distribution, tabulated in Table 4 of the Appendix, is similar to the normal distribution,
plotting as a bell-shaped curve centered on the mean. It has several useful applications to
strength data. When there are few specimens in the sample, the t-distribution should be used in
preference to the normal distribution in computing confidence limits. As seen in the table, the
t-value for the 95th percentile and the 29 degrees of freedom of our 30-test sample in Example 3
is 2.045. (The number of degrees of freedom is one less than the total specimen count, since the
sum of the number of specimens having each recorded strength is constrained to be the total
number of specimens.) The 2.045 factor replaces 1.96 in this example, without much change in
the computed confidence limits. As the number of specimens increases, the t-value approaches
1.96. For fewer specimens the factor deviates substantially from 1.96; it is 2.571 for n = 5 and
3.182 for n = 3.
The t distribution is also useful in deciding whether two test samplings indicate significant

differences in the populations they are drawn from, or whether any difference in, say, the means
of the two samplings can be ascribed to expected statistical variation in what are two essentially
identical populations. For instance, Fig. 3 shows the cumulative failure probability for graphite-
epoxy specimens tested at three different temperatures, and it appears that the mean strength
is reduced somewhat by high temperatures and even more by low temperatures. But are these
differences real, or merely statistical scatter?
This question can be answered by computing a value for t using the means and standard

deviations of any two of the samples, according to the formula
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t =
|σf1 − σf2|√
s21
n1−1

+
s22
n2−1

(5)

This statistic is known to have a t distribution if the deviations s1 and s2 are not too different.
The mean and standard deviation of the −59◦C data shown in Fig. 3 are 65.03 and 5.24 respec-
tively. Using Eqn. 5 to compare the room-temperature (23◦C) and −59◦C data, the t-statistic
is

t =
(73.28 − 65.03)√
(4.63)2

29 + (5.24)
2

29

= 6.354

From Table 4 in the Appendix, we now look up the value of t for 29 degrees of freedom corre-
sponding to 95% (or some other value, as desired) of the population. We do this by scanning
the column for F (t) = 0.975 rather than 0.95, since the t distribution is symmetric and another
0.025 fraction of the population lies beyond t = −0.975. The t value for 95% (F (t) = 0.975)
and 29 degrees of freedom is 2.045.
This result means that were we to select repeatedly any two arbitrary 30-specimen samples

from a single population, 95% of these selections would have t-statistics as computed with Eqn. 5
less than 2.045; only 5% would produce larger values of t. Since the 6.354 t-statistic for the
−59◦C and 23◦C samplings is much greater than 2.045, we can conclude that it is very unlikely
that the two sets of data are from the same population. Conversely, we conclude that the two
datasets are in fact statistically independent, and that temperature has a statistically significant
effect on the strength.

The Weibull distribution

Large specimens tend to have lower average strengths than small ones, simply because large ones
are more likely to contain a flaw large enough to induce fracture at a given applied stress. This
effect can be measured directly, for instance by plotting the strengths of fibers versus the fiber
circumference as in Fig. 4. For similar reasons, brittle materials tend to have higher strengths
when tested in flexure than in tension, since in flexure the stresses are concentrated in a smaller
region near the outer surfaces.

Figure 4: Effect of circumference c on fracture strength σf for sapphire whiskers. From
L.J. Broutman and R.H. Krock, Modern Composite Materials, Addison-Wesley, 1967.
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The hypothesis of the size effect led to substantial development effort in the statistical
analysis community of the 1930’s and 40’s, with perhaps the most noted contribution being that
of W. Weibull5 in 1939. Weibull postulated that the probability of survival at a stress σ, i.e.
the probability that the specimen volume does not contain a flaw large enough to fail under the
stress σ, could be written in the form

Ps(σ) = exp

[
−
(
σ

σ0

)m]
(6)

Weibull selected the form of this expression for its mathematical convenience rather than some
fundamental understanding, but it has been found over many trials to describe fracture statistics
well. The parameters σ0 and m are adjustable constants; Fig. 5 shows the form of the Weibull
function for two values of the parameter m. Materials with greater variability have smaller
values of m; steels have m ≈ 100, while ceramics have m ≈ 10. This parameter can be related
to the coefficient of variation; to a reasonable approximation, m ≈ 1.2/C.V.

8

Figure 5: The Weibull function.

A variation on the normal probability paper graphical method outlined earlier can be devel-
oped by taking logarithms of Eqn. 6:

lnPs = −
(
σ

σ0

)m

ln(lnPs) = −m ln
(
σ

σ0

)

Hence the double logarithm of the probability of exceeding a particular strength σ versus the
logarithm of the strength should plot as a straight line with slope m.

Example 6

Again using the 30-test sample of the previous examples, an estimate of the σ0 parameter can be obtained
by plotting the survival probability (1 minus the rank) and noting the value of σf at which Ps drops to
1/e = 0.37; this gives σ0 ≈ 74. (A more accurate regression method gives 75.46.) A tabulation of the
double logarithm of Ps against the logarithm of σf/σ0 is then

5See B. Epstein, J. Appl. Phys., Vol. 19, p. 140, 1948 for a useful review of the statistical treatment of the
size effect in fracture, and for a summary of extreme-value statistics as applied to fracture problems.
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i σf,i ln ln(1/Ps) ln(σf,i/σ0)
1 65.50 -3.4176 -0.1416
2 65.67 -2.7077 -0.1390
3 67.03 -2.2849 -0.1185
4 67.84 -1.9794 -0.1065
5 67.95 -1.7379 -0.1048
6 68.10 -1.5366 -0.1026
7 69.20 -1.3628 -0.0866
8 70.65 -1.2090 -0.0659
9 71.04 -1.0702 -0.0604
10 71.17 -0.9430 -0.0585
11 71.53 -0.8250 -0.0535
12 71.75 -0.7143 -0.0504
13 72.28 -0.6095 -0.0431
14 72.29 -0.5095 -0.0429
15 72.50 -0.4134 -0.0400
16 72.85 -0.3203 -0.0352
17 72.85 -0.2295 -0.0352
18 73.23 -0.1404 -0.0300
19 73.80 -0.0523 -0.0222
20 74.28 0.0355 -0.0158
21 75.33 0.1235 -0.0017
22 75.78 0.2125 0.0042
23 77.81 0.3035 0.0307
24 77.81 0.3975 0.0307
25 77.90 0.4961 0.0318
26 79.08 0.6013 0.0469
27 79.83 0.7167 0.0563
28 79.92 0.8482 0.0574
29 80.52 1.0083 0.0649
30 82.84 1.2337 0.0933

The Weibull plot of these data is shown in Fig. 6; the regression slope is 17.4.

Figure 6: Weibull plot.
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Similarly to the B-basis design allowable for the normal distribution, the B-allowable can
also be computed from the Weibull parameters m and σ0. The procedure is

6:

B = Q exp

[
−V

m
√
N

]

where Q and V are

Q = σ0 (0.10536)
1/m

V = 3.803 + exp

[
1.79 − 0.516 ln(N) +

5.1

N

]

Example 7

The B-allowable is computed for the 30-test population as

Q = 75.46 (0.10536)
1/17.4m

= 66.30

V = 3.803 + exp

[
1.79− 0.516 ln(30) +

5.1

30

]
= 5.03

B = 66.30 exp

[
−5.03

17.4
√
30

]
= 62.89

This value is somewhat lower than the 65.05 obtained as the normal-distribution B-allowable, so in this

case the Weibull method is a bit more lenient.

The Weibull equation can be used to predict the magnitude of the size effect. If for instance
we take a reference volume V0 and express the volume of an arbitrary specimen as V = nV0,
then the probability of failure at volume V is found by multiplying Ps(V ) by itself n times:

Ps(V ) = [Ps(V0)]
n = [Ps(V0)]

V/V0

Ps(V ) = exp−
V

V0

(
σ

σ0

)m
(7)

Hence the probability of failure increases exponentially with the specimen volume. This is
another danger in simple scaling, beyond the area vs. volume argument we outlined in Module 1.

Example 8

Solving Eqn. 7, the stress for a given probability of survival is

σ =

[
− ln(Ps)

(V/V0)

] 1
n

σ0

Using σ0 = 75.46 and n = 17.4 for the 30-specimen population, the stress for Ps = .5 and V/V0 = 1

is σ = 73.9kpsi. If now the specimen size is doubled, so that V/V0 = 2, the probability of survival at

this stress as given by Eqn. 7 drops to Ps = 0.25. If on the other hand the specimen size is halved

(V/V0 = 0.5), the probability of survival rises to Ps = 0.71.

6S.W. Rust, et al., ASTM STP 1003, p. 136, 1989. (Also Military Handbook 17.)
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A final note of caution, a bit along the lines of the famous Mark Twain aphorism about
there being “lies, damned lies, and statistics:” it is often true that populations of simple tensile
or other laboratory specimens can be well described by classical statistical distributions. This
should not be taken to imply that more complicated structures such as bridges and airplanes can
be so neatly described. For instance, one aircraft study cited by Gordon7 found failures to occur
randomly and uniformly over a wide range extending both above and below the statistically-
based design safe load. Any real design, especially for structures that put human life at risk,
must be checked in every reasonable way the engineer can imagine. This will include proof
testing to failure, consideration of the worst possible environmental factors, consideration of
construction errors resulting from difficult-to-manufacture designs, and so on almost without
limit. Experience, caution and common sense will usually be at least as important as elaborate
numerical calculations.

Problems

1. Ten strength measurements have produced a mean tensile strength of σf = 100 MPa, with
95% confidence limits of ±8 MPa. How many additional measurements would be necessary
to reduce the confidence limits by half, assuming the mean and standard deviation of the
measurements remains unchanged?

2. The thirty measurements of the tensile strength of graphite/epoxy composite listed in
Example 1 were made at room temperature. Thirty additional tests conducted at 93◦C
gave the values (in kpsi): 63.40, 69.70, 72.80, 63.60, 71.20, 72.07, 76.97, 70.94, 76.22,
64.65, 62.08, 61.53, 70.53, 72.88, 74.90, 78.61, 68.72, 72.87, 64.49, 75.12, 67.80, 72.68,
75.09, 67.23, 64.80, 75.84, 63.87, 72.46, 69.54, 76.97. For these data:

(a) Determine the arithmetic mean, standard deviation, and coefficient of variation.

(b) Determine the 95% confidence limits on the mean strength.

(c) Determine whether the average strengths at 23◦C and 93◦are statistically different.

(d) Determine the normal and Weibull B-allowable strengths.

(e) Plot the cumulative probability of failure Pf vs. the failure stress on normal proba-
bility paper.

(f) Do the data appear to be distributed normally, based on the χ2 test?

(g) Plot the cumulative probability of survival Ps vs. the failure stress on Weibull prob-
ability paper.

(h) Determine the Weibull parameters σ0 and m.

(i) Estimate how the mean strength would change if the specimens were made ten times
smaller, or ten times larger.

3. Repeat the previous problem, but using data for -59◦C: 55.62, 55.91, 56.73, 57.54, 58.28,
59.23, 60.39, 60.62, 61.1, 62.1, 63.69, 63.8, 64.7, 65.2, 65.33, 66.39, 66.43, 66.72, 67.05,
67.76, 68.84, 69.15, 69.3, 69.37, 69.82, 70.94, 71.39, 71.74, 72.2, 73.46.

7J.E. Gordon, Structures, Plenum Press, 1978.
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Appendix - Statistical Tables and Paper

Following are several standard tables and graph papers that can be used in performing statistical
calculations, in the event suitable software is not available.

1. Normal Distribution Table

2. Cumulative Normal Distribution Table

3. Chi-Square Table

4. t-Distribution

5. Normal Probability Paper

6. Weibull Paper
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1. Normal Distribution

X 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.3989 0.3989 0.3989 0.3988 0.3986 0.3984 0.3982 0.3980 0.3977 0.3973
0.1 0.3970 0.3965 0.3961 0.3956 0.3951 0.3945 0.3939 0.3932 0.3925 0.3918
0.2 0.3910 0.3902 0.3894 0.3885 0.3876 0.3867 0.3857 0.3847 0.3836 0.3825
0.3 0.3814 0.3802 0.3790 0.3778 0.3765 0.3752 0.3739 0.3725 0.3712 0.3697
0.4 0.3683 0.3668 0.3653 0.3637 0.3621 0.3605 0.3589 0.3572 0.3555 0.3538
0.5 0.3521 0.3503 0.3485 0.3467 0.3448 0.3429 0.3410 0.3391 0.3372 0.3352
0.6 0.3332 0.3312 0.3292 0.3271 0.3251 0.3230 0.3209 0.3187 0.3166 0.3144
0.7 0.3123 0.3101 0.3079 0.3056 0.3034 0.3011 0.2989 0.2966 0.2943 0.2920
0.8 0.2897 0.2874 0.2850 0.2827 0.2803 0.2780 0.2756 0.2732 0.2709 0.2685
0.9 0.2661 0.2637 0.2613 0.2589 0.2565 0.2541 0.2516 0.2492 0.2468 0.2444
1.0 0.2420 0.2396 0.2371 0.2347 0.2323 0.2299 0.2275 0.2251 0.2227 0.2203
1.1 0.2179 0.2155 0.2131 0.2107 0.2083 0.2059 0.2036 0.2012 0.1989 0.1965
1.2 0.1942 0.1919 0.1895 0.1872 0.1849 0.1826 0.1804 0.1781 0.1758 0.1736
1.3 0.1714 0.1691 0.1669 0.1647 0.1626 0.1604 0.1582 0.1561 0.1539 0.1518
0.4 0.1497 0.1476 0.1456 0.1435 0.1415 0.1394 0.1374 0.1354 0.1334 0.1315
1.5 0.1295 0.1276 0.1257 0.1238 0.1219 0.1200 0.1182 0.1163 0.1145 0.1127
1.6 0.1109 0.1092 0.1074 0.1057 0.1040 0.1023 0.1006 0.0989 0.0973 0.0957
I .7 0.0940 0.0925 0.0909 0.0893 0.0878 0.0863 0.0848 0.0833 0.0818 0.0804
1.8 0.0790 0.0775 0.0761 0.0748 0.0734 0.0721 0.0707 0.0694 0.0681 0.0669
1.9 0.0656 0.0644 0.0632 0.0620 0.0608 0.0596 0.0584 0.0573 0.0562 0.0551
2.0 0.0540 0.1529 0.0519 0.0508 0.0498 0.0488 0.0478 0.0468 0.0459 0.0449
2. I 0.0440 0.0431 0.0422 0.0413 0.0404 0.0396 0.0387 0.0379 0.0371 0.0363
2.2 0.0355 0.0347 0.0339 0.0332 0.0325 0.0317 0.0310 0.0303 0.0297 0.0290
2.3 0.0283 0.0277 0.0270 0.0264 0.0258 0.0252 0.0246 0.0241 0.0235 0.0229
2.4 0.0224 0.0219 0.0213 0.0208 0.0203 0.0198 0.0194 0.0189 0.0184 0.0180
2.5 0.0175 0.0171 0.0167 0.0163 0.0158 0.0154 0.0151 0.0147 0.0143 0.0139
2.6 0.0136 0.0132 0.0129 0.0126 0.0122 0.0119 0.0116 0.0113 0.0110 0.0107
2.7 0.0104 0.0101 0.0099 0.0096 0.0093 0.0091 0.0088 0.0086 0.0084 0.0081
2.8 0.0079 0.0077 0.0075 0.0073 0.0071 0.0069 0.0067 0.0065 0.0063 0.0061
2.9 0.0060 0.0058 0.0056 0.0055 0.0053 0.0051 0.0050 0.0048 0.0047 0.0046
3.0 0.0044 0.0043 0.0042 0.0040 0.0039 0.0038 0.0037 0.0036 0.0035 0.0034
3.1 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.0025 0.0025
3.2 0.0024 0.0023 0.0022 0.0022 0.0021 0.0020 0.0020 0.0019 0.0018 0.0018
3.3 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 0.0013 0.0013
3.4 0.0012 0.0012 0.0012 0.0011 0.0011 0.0010 0.0010 0.0010 0.0009 0.0009
3.5 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 0.0007 0.0007 0.0006
3.6 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0004
3.7 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003 0.0003
3.8 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002
3.9 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001



2. Cumulative Normal Distribution

X 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998



Maximum Χ 2 values for α =
Degrees of 

Freedom 0.995 0.990 0.975 0.950 0.900 0.750 0.500 0.250 0.100 0.050 0.025 0.010 0.005
1 0.0000393 0.000157 0.000982 0.00393 0.0158 0.102 0.455 1.32 2.71 3.84 5.02 6.63 7.88
2 0.0100 0.0201 0.0506 0.103 0.211 0.575 1.390 2.77 4.61 5.99 7.38 9.21 10.6
3 0.0717 0.115 0.216 0.352 0.584 1.21 2.37 4.11 6.25 7.81 9.35 11.3 12.8
4 0.207 0.297 0.484 0.711 1.06 1.92 3.36 5.39 7.78 9.49 11.1 13.3 14.9
5 0.412 0.554 0.831 1.15 1.61 2.67 4.35 6.63 9.24 11.1 12.8 15.1 16.7
6 0.676 0.872 1.24 1.64 2.20 3.45 5.35 7.84 10.6 12.6 14.4 16.8 18.5
7 0.989 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.0 14.1 16.0 18.5 20.3
8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.2 13.4 15.5 17.5 20.1 22.0
9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.4 14.7 16.9 19.0 21.7 23.6

10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.5 16.0 18.3 20.5 23.2 25.2
11 2.60 3.05 3.82 4.57 5.58 7.58 10.3 13.7 17.3 19.7 21.9 24.7 26.8
12 3.07 3.57 4.40 5.23 6.30 8.44 11.3 14.8 18.5 21.0 23.3 26.2 28.3
13 3.57 4.11 5.01 5.89 7.04 9.30 12.3 16.0 19.8 22.4 24.7 27.7 29.8
14 4.07 4.66 5.63 6.57 7.79 10.2 13.3 17.1 21.1 23.7 26.1 29.1 31.3
15 4.60 5.23 6.26 7.26 8.55 11.0 14.3 18.2 22.3 25.0 27.5 30.6 32.8
16 5.14 5.81 6.91 7.96 9.31 11.9 15.3 19.4 23.5 26.3 28.8 32.0 34.3
17 5.70 6.41 7.56 8.67 10.1 12.8 16.3 20.5 24.8 27.6 30.2 33.4 35.7
18 6.26 7.01 8.23 9.39 10.9 13.7 17.3 21.6 26.0 28.9 31.5 34.8 37.2
19 6.84 7.63 8.91 10.1 11.7 14.6 18.3 22.7 27.2 30.1 32.9 36.2 38.6
20 7.43 8.26 9.59 10.9 12.4 15.5 19.3 23.8 28.4 31.4 34.2 37.6 40.0
21 8.03 8.90 10.3 11.6 13.2 16.3 20.3 24.9 29.6 32.7 35.5 38.9 41.4
22 8.64 9.54 11.0 12.3 14.0 17.2 21.3 26.0 30.8 33.9 36.8 40.3 42.8
23 9.26 10.20 11.7 13.1 14.8 18.1 22.3 27.1 32.0 35.2 38.1 41.6 44.2
24 9.89 10.90 12.4 13.8 15.7 19.0 23.3 28.2 33.2 36.4 39.4 43.0 45.6
25 10.50 11.50 13.1 14.6 16.5 19.9 24.3 29.3 34.4 37.7 40.6 44.3 46.9
26 11.20 12.20 13.8 15.4 17.3 20.8 25.3 30.4 35.6 38.9 41.9 45.6 48.3
27 11.80 12.90 14.6 16.2 18.1 21.7 26.3 31.5 36.7 40.1 43.2 47.0 49.6
28 12.50 13.60 15.3 16.9 18.9 22.7 27.3 32.6 37.9 41.3 44.5 48.3 51.0
29 13.10 14.30 16.0 17.7 19.8 23.6 28.3 33.7 39.1 42.6 45.7 49.6 52.3
30 13.80 15.00 16.8 18.5 20.6 24.5 29.3 34.8 40.3 43.8 47.0 50.9 53.7



t -Distribution
Percentile

Degrees of 
Freedom 50 80 90 95 98 99 99.90

1 1.000 3.078 6.314 12.706 31.821 63.657 636.610
2 0.816 1.886 2.920 4.303 6.965 9.925 31.598
3 0.765 1.638 2.353 3.182 4.541 5.841 12.941
4 0.741 1.533 2.132 2.776 3.747 4.604 8.610
5 0.727 1.476 2.015 2.571 3.365 4.032 6.859
6 0.718 1.440 1.943 2.447 3.143 3.707 5.959
7 0.711 1.415 1.895 2.365 2.998 3.499 5.405
8 0.706 1.397 1.860 2.306 2.896 3.355 5.041
9 0.703 1.383 1.833 2.262 2.821 3.250 4.781

10 0.700 1.372 1.812 2.228 2.764 3.169 4.587
11 0.697 1.363 1.796 2.201 2.718 3.106 4.437
12 0.695 1.356 1.782 2.179 2.681 3.055 4.318
13 0.694 1.350 1.771 2.160 2.650 3.012 4.221
14 0.692 1.345 1.761 2.145 2.624 2.977 4.140
15 0.691 1.341 1.753 2.131 2.602 2.947 4.073
16 0.690 1.337 1.746 2.120 2.583 2.921 4.015
17 0.689 1.333 1.740 2.110 2.567 2.898 3.965
18 0.688 1.330 1.734 2.101 2.552 2.878 3.922
19 0.688 1.328 1.729 2.093 2.539 2.861 3.883
20 0.687 1.325 1.725 2.086 2.528 2.845 3.850
21 0.686 1.323 1.721 2.080 2.518 2.831 3.819
22 0.686 1.321 1.717 2.074 2.508 2.819 3.792
23 0.685 1.319 1.714 2.069 2.500 2.807 3.767
24 0.685 1.318 1.711 2.064 2.492 2.797 3.745
25 0.684 1.316 1.708 2.060 2.485 2.787 3.725
26 0.684 1.315 1.706 2.056 2.479 2.779 3.707
27 0.684 1.314 1.703 2.052 2.473 2.771 3.690
28 0.683 1.313 1.701 2.048 2.467 2.763 3.674
29 0.683 1.311 1.699 2.045 2.462 2.756 3.659
30 0.683 1.310 1.697 2.042 2.457 2.750 3.646
40 0.681 1.303 1.684 2.021 2.423 2.704 3.551
60 0.679 1.296 1.671 2.000 2.390 2.660 3.460

120 0.677 1.289 1.658 1.980 2.358 2.617 3.373
infinity 0.674 1.282 1.645 1.960 2.326 2.576 3.291
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Introduction

In 1983, the National Bureau of Standards (now the National Institute for Science and Tech-
nology) and Battelle Memorial Institute1 estimated the costs for failure due to fracture to be
$119 billion per year in 1982 dollars. The dollars are important, but the cost of many failures
in human life and injury is infinitely more so.
Failures have occurred for many reasons, including uncertainties in the loading or envi-

ronment, defects in the materials, inadequacies in design, and deficiencies in construction or
maintenance. Design against fracture has a technology of its own, and this is a very active
area of current research. This module will provide an introduction to an important aspect of
this field, since without an understanding of fracture the methods in stress analysis discussed
previously would be of little use. We will focus on fractures due to simple tensile overstress,
but the designer is cautioned again about the need to consider absolutely as many factors as
possible that might lead to failure, especially when life is at risk.
The Module on the Dislocation Basis of Yield (Module 21) shows how the strength of struc-

tural metals – particularly steel – can be increased to very high levels by manipulating the
microstructure so as to inhibit dislocation motion. Unfortunately, this renders the material in-
creasingly brittle, so that cracks can form and propagate catastrophically with very little warn-
ing. An unfortunate number of engineering disasters are related directly to this phenomenon,
and engineers involved in structural design must be aware of the procedures now available to
safeguard against brittle fracture.
The central difficulty in designing against fracture in high-strength materials is that the

presence of cracks can modify the local stresses to such an extent that the elastic stress analyses
done so carefully by the designers are insufficient. When a crack reaches a certain critical
length, it can propagate catastrophically through the structure, even though the gross stress is
much less than would normally cause yield or failure in a tensile specimen. The term “fracture
mechanics” refers to a vital specialization within solid mechanics in which the presence of a crack
is assumed, and we wish to find quantitative relations between the crack length, the material’s
inherent resistance to crack growth, and the stress at which the crack propagates at high speed
to cause structural failure.

1R.P. Reed et al., NBS Special Publication 647-1, Washington, 1983.
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The energy-balance approach

When A.A. Griffith (1893–1963) began his pioneering studies of fracture in glass in the years
just prior to 1920, he was aware of Inglis’ work in calculating the stress concentrations around
elliptical holes2, and naturally considered how it might be used in developing a fundamental
approach to predicting fracture strengths. However, the Inglis solution poses a mathematical
difficulty: in the limit of a perfectly sharp crack, the stresses approach infinity at the crack
tip. This is obviously nonphysical (actually the material generally undergoes some local yielding
to blunt the cracktip), and using such a result would predict that materials would have near-
zero strength: even for very small applied loads, the stresses near crack tips would become
infinite, and the bonds there would rupture. Rather than focusing on the crack-tip stresses
directly, Griffith employed an energy-balance approach that has become one of the most famous
developments in materials science3.
The strain energy per unit volume of stressed material is

U∗ =
1

V

∫
f dx =

∫
f

A

dx

L
=

∫
σdε

If the material is linear (σ = Eε), then the strain energy per unit volume is

U∗ =
Eε2

2
=

σ2

2E

When a crack has grown into a solid to a depth a, a region of material adjacent to the free
surfaces is unloaded, and its strain energy released. Using the Inglis solution, Griffith was able
to compute just how much energy this is.

Figure 1: Idealization of unloaded region near crack flanks.

A simple way of visualizing this energy release, illustrated in Fig. 1, is to regard two triangular
regions near the crack flanks, of width a and height βa, as being completely unloaded, while the
remaining material continues to feel the full stress σ. The parameter β can be selected so as to

2See Module 16.
3A.A. Griffith, Philosophical Transactions, Series A, Vol. 221, pp. 163–198, 1920. The importance of Griffith’s

work in fracture was largely unrecognized until the 1950’s. See J.E. Gordon, The Science of Structures and
Materials, Scientific American Library, 1988, for a personal account of the Griffith story.
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agree with the Inglis solution, and it turns out that for plane stress loading β = π. The total
strain energy U released is then the strain energy per unit volume times the volume in both
triangular regions:

U = −
σ2

2E
· πa2

Here the dimension normal to the x-y plane is taken to be unity, so U is the strain energy
released per unit thickness of specimen. This strain energy is liberated by crack growth. But in
forming the crack, bonds must be broken, and the requisite bond energy is in effect absorbed by
the material. The surface energy S associated with a crack of length a (and unit depth) is:

S = 2γa

where γ is the surface energy (e.g., Joules/meter2) and the factor 2 is needed since two free
surfaces have been formed. As shown in Fig. 2, the total energy associated with the crack is
then the sum of the (positive) energy absorbed to create the new surfaces, plus the (negative)
strain energy liberated by allowing the regions near the crack flanks to become unloaded.

Figure 2: The fracture energy balance.

As the crack grows longer (a increases), the quadratic dependence of strain energy on a

eventually dominates the surface energy, and beyond a critical crack length ac the system can
lower its energy by letting the crack grow still longer. Up to the point where a = ac, the crack
will grow only if the stress in increased. Beyond that point, crack growth is spontaneous and
catastrophic.
The value of the critical crack length can be found by setting the derivative of the total

energy S + U to zero:

∂(S + U)

∂a
= 2γ −

σ2f
E

πa = 0

Since fast fracture is imminent when this condition is satisfied, we write the stress as σf . Solving,

σf =

√
2Eγ

πa

Griffith’s original work dealt with very brittle materials, specifically glass rods. When the
material exhibits more ductility, consideration of the surface energy alone fails to provide an
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accurate model for fracture. This deficiency was later remedied, at least in part, independently
by Irwin4 and Orowan5. They suggested that in a ductile material a good deal – in fact the
vast majority – of the released strain energy was absorbed not by creating new surfaces, but
by energy dissipation due to plastic flow in the material near the crack tip. They suggested
that catastrophic fracture occurs when the strain energy is released at a rate sufficient to satisfy
the needs of all these energy “sinks,” and denoted this critical strain energy release rate by the
parameter Gc; the Griffith equation can then be rewritten in the form:

σf =

√
EGc
πa

(1)

This expression describes, in a very succinct way, the interrelation between three important
aspects of the fracture process: the material, as evidenced in the critical strain energy release
rate Gc; the stress level σf ; and the size, a, of the flaw. In a design situation, one might choose a
value of a based on the smallest crack that could be easily detected. Then for a given material
with its associated value of Gc, the safe level of stress σf could be determined. The structure
would then be sized so as to keep the working stress comfortably below this critical value.

Example 1

The story of the DeHavilland Comet aircraft of the early 1950’s, in which at least two aircraft
disintegrated in flight, provides a tragic but fascinating insight into the importance of fracture theory. It
is an eerie story as well, having been all but predicted in a 1948 novel by Nevil Shute named No Highway.
The book later became a movie starring James Stewart as a perserverant metallurgist convinced that his
company’s new aircraft (the “Reindeer”) was fatally prone to metal fatigue. When just a few years later
the Comet was determined to have almost exactly this problem, both the book and the movie became
rather famous in the materials engineering community.

The postmortem study of the Comet’s problems was one of the most extensive in engineering history6.
It required salvaging almost the entire aircraft from scattered wreckage on the ocean floor and also involved
full-scale pressurization of an aircraft in a giant water tank. Although valuable lessons were learned, it is
hard to overstate the damage done to the DeHavilland Company and to the British aircraft industry in
general. It is sometimes argued that the long predominance of the United States in commercial aircraft
is due at least in part to the Comet’s misfortune.

The Comet aircraft had a fuselage of clad aluminum, with Gc ≈ 300 in-psi. The hoop stress due to
relative cabin pressurization was 20,000 psi, and at that stress the length of crack that will propagate
catastrophically is

a =
GcE

πσ2
=
(300)(11× 106)

π(20× 103)2
= 2.62′′

A crack would presumably be detected in routine inspection long before it could grow to this length. But
in the case of the Comet, the cracks were propagating from rivet holes near the cabin windows. When
the crack reached the window, the size of the window opening was effectively added to the crack length,
leading to disaster.

Modern aircraft are built with this failure mode in mind, and have “tear strips” that are supposedly
able to stop any rapidly growing crack. But this remedy is not always effective, as was demonstrated
in 1988 when a B737 operated by Aloha Airlines had the roof of the first-class cabin tear away.. That
aircraft had stress-corrosion damage at a number of rivets in the fuselage lap splices, and this permitted

4G.R. Irwin, “Fracture Dynamics,” Fracturing of Metals, American Society for Metals, Cleveland, 1948.
5E. Orowan, “Fracture and Strength of Solids,” Report of Progress in Physics, Vol. 12, 1949.
6T. Bishop, Metal Progress, Vol. 67, pp. 79–85, May 1955.
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multiple small cracks to link up to form a large crack. A great deal of attention is currently being directed
to protection against this sort of “multi-site damage.”

It is important to realize that the critical crack length is an absolute number, not depending
on the size of the structure containing it. Each time the crack jumps ahead, say by a small
increment δa, an additional quantity of strain energy is released from the newly-unloaded ma-
terial near the crack. Again using our simplistic picture of a triangular-shaped region that is at
zero stress while the rest of the structure continues to feel the overall applied stress, it is easy
to see in Fig. 3 that much more more energy is released due to the jump at position 2 than at
position 1. This is yet another reason why small things tend to be stronger: they simply aren’t
large enough to contain a critical-length crack.

Figure 3: Energy released during an increment of crack growth, for two different crack lengths.

Example 2

Gordon7 tells of a ship’s cook who one day noticed a crack in the steel deck of his galley. His superiors

assured him that it was nothing to worry about — the crack was certainly small compared with the

vast bulk of the ship — but the cook began painting dates on the floor to mark the new length of the

crack each time a bout of rough weather would cause it to grow longer. With each advance of the crack,

additional decking material was unloaded, and the strain energy formerly contained in it released. But as

the amount of energy released grows quadratically with the crack length, eventually enough was available

to keep the crack growing even with no further increase in the gross load. When this happened, the ship

broke into two pieces; this seems amazing but there are a more than a few such occurrences that are very

well documented. As it happened, the part of the ship with the marks showing the crack’s growth was

salvaged, and this has become one of the very best documented examples of slow crack growth followed

by final catastrophic fracture.

Compliance calibration

A number of means are available by which the material property Gc can be measured. One of
these is known as compliance calibration, which employs the concept of compliance as a ratio of

7J.E. Gordon, Structures, or Why Things Don’t Fall Down, Plenum, New York, 1978.
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deformation to applied load: C = δ/P . The total strain energy U can be written in terms of
this compliance as:

U =
1

2
Pδ =

1

2
CP 2

Figure 4: Compliance as a function of crack length.

The compliance of a suitable specimen, for instance a cantilevered beam, could be measured
experimentally as a function of the length a of a crack that is grown into the specimen (see
Fig. 4. The strain energy release rate can then be determined by differentiating the curve of
compliance versus length:

G =
∂U

∂a
=
1

2
P 2

∂C

∂a
(2)

The critical value of G, Gc, is then found by measuring the critical load Pc needed to fracture
a specimen containing a crack of length ac, and using the slope of the compliance curve at this
same value of a:

Gc =
1

2
P 2c

∂C

∂a

∣∣∣∣
a=ac

(3)

Example 3

Figure 5: DCB fracture specimen.

For a double-cantilever beam (DCB) specimen such as that shown in Fig. 5, beam theory gives the
deflection as

δ

2
=

Pa3

3EI
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where I = bh3/12. The elastic compliance is then

C =
δ

P
=
2a3

3EI

If the crack is observed to jump forward when P = Pc, Eqn. 3 can be used to compute the critical strain
energy release rate as

Gc =
1

2
P 2c ·

2a2

EI
=
12P 2c a

2

b2h3E

The stress intensity approach

Figure 6: Fracture modes.

While the energy-balance approach provides a great deal of insight to the fracture process,
an alternative method that examines the stress state near the tip of a sharp crack directly has
proven more useful in engineering practice. The literature treats three types of cracks, termed
mode I, II, and III as illustrated in Fig. 6. Mode I is a normal-opening mode and is the one
we shall emphasize here, while modes II and III are shear sliding modes. As was outlined in
Module 16, the semi-inverse method developed by Westergaard shows the opening-mode stresses
to be:

σx =
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin
3θ

2

)
+ . . .

σy =
KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin
3θ

2

)
+ . . . (4)

τxy =
KI√
2πr

cos
θ

2
cos
3θ

2
sin

θ

2
. . .

For distances close to the crack tip (r ≤ 0.1a), the second and higher order terms indicated by
dots may be neglected. At large distances from the crack tip, these relations cease to apply and
the stresses approach their far-field values that would obtain were the crack not present.
The KI in Eqns. 4 is a very important parameter known as the stress intensity factor. The

I subscript is used to denote the crack opening mode, but similar relations apply in modes II
and III. The equations show three factors that taken together depict the stress state near the
crack tip: the denominator factor (2πr)−1/2 shows the singular nature of the stress distribution;
σ approaches infinity as the crack tip is approached, with a r−1/2 dependency. The angular

7



dependence is separable as another factor; e.g. fx = cos θ/2 · (1 − sin θ/2 sin 3θ/2) + · · ·. The
factor KI contains the dependence on applied stress σ∞, the crack length a, and the specimen
geometry. The KI factor gives the overall intensity of the stress distribution, hence its name.
For the specific case of a central crack of width 2a or an edge crack of length 2a in a large

sheet, KI = σ∞
√
πa, and KI = 1.12σ∞

√
πa for an edge crack of length a in the edge of a large

sheet. (The factor π could obviously be canceled with the π in the denominator of Eqn. 4, but
is commonly retained for consistency with earlier work.) Expressions for KI for some additional
geometries are given in Table 1. The literature contains expressions for K for a large number
of crack and loading geometries, and both numerical and experimental procedures exist for
determining the stress intensity factor is specific actual geometries.

Table 1: Stress intensity factors for several common geometries.

Type of Crack Stress Intensity Factor, KI
Center crack,
length 2a, in an σ∞

√
πa

infinite plate

Edge crack,
length a, in a 1.12 σ∞

√
πa

semi-infinite plate

Central penny-shaped

crack, radius a, in 2 σ∞
√
a
π

in infinite body

Center crack,

length 2a in σ∞
√
W tan

(
πa
W

)
plate of width W

2 symmetrical edge

cracks, each length a, in σ∞

√
W
[
tan

(
πa
W

)
+ 0.1 sin

(
2πa
W

)]
plate of total width W

These stress intensity factors are used in design and analysis by arguing that the material
can withstand crack tip stresses up to a critical value of stress intensity, termed KIc, beyond
which the crack propagates rapidly. This critical stress intensity factor is then a measure of
material toughness. The failure stress σf is then related to the crack length a and the fracture
toughness by

σf =
KIc

α
√
πa

(5)

where α is a geometrical parameter equal to 1 for edge cracks and generally on the order of unity
for other situations. Expressions for α are tabulated for a wide variety of specimen and crack
geometries, and specialty finite element methods are available to compute it for new situations.
The stress intensity and energy viewpoints are interrelated, as can be seen by comparing

Eqns. 1 and 5 (with α = 1):
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σf =

√
EGc
πa

=
KIc√
πa
→ K2Ic = EGc

This relation applies in plane stress; it is slightly different in plane strain:

K2Ic = EGc(1− ν2)

For metals with ν = .3, (1− ν2) = 0.91. This is not a big change; however, the numerical values
of Gc or KIc are very different in plane stress or plane strain situations, as will be described
below.
Typical values of GIc and KIc for various materials are listed in Table 2, and it is seen that

they vary over a very wide range from material to material. Some polymers can be very tough,
especially when rated on a per-pound bases, but steel alloys are hard to beat in terms of absolute
resistance to crack propagation.

Table 2: Fracture toughness of materials.

Material GIc(kJm
−2) KIc(MNm

2) E(GPa)

Steel alloy 107 150 210
Aluminum alloy 20 37 69
Polyethylene 20 (JIc) — 0.15
High-impact polystyrene 15.8 (JIc) — 2.1
Steel — mild 12 50 210
Rubber 13 — 0.001
Glass-reinforced thermoset 7 7 7
Rubber-toughened epoxy 2 2.2 2.4
PMMA 0.5 1.1 2.5
Polystyrene 0.4 1.1 3
Wood 0.12 0.5 2.1
Glass 0.007 0.7 70

Example 4

Equation 5 provides a design relation among the applied stress σ, the material’s toughness KIc, and
the crack length a. Any one of these parameters can be calculated once the other two are known. To
illustrate one application of the process, say we wish to determine the safe operating pressure in an
aluminum pressure vessel 0.25 m in diameter and with a 5 mm wall thickness. First assuming failure by
yield when the hoop stress reaches the yield stress (330 MPa) and using a safety factor of 0.75, we can
compute the maximum pressure as

p =
0.75σt

r
=
0.75× 330× 106

0.25/2
= 9.9 MPa = 1400 psi

To insure against failure by rapid crack growth, we now calculate the maximum crack length permissible
at the operating stress, using a toughness value of KIc = 41 MPa

√
m:

a =
K2Ic
πσ2

=
(41× 106)2

π (0.75× 330× 106)2
= 0.01 m = 0.4 in
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Here an edge crack with α = 1 has been assumed. An inspection schedule must be implemented that is

capable of detecting cracks before they reach this size.

Effect of specimen geometry

Figure 7: Stress limited by yield within zone rp.

The toughness, or resistance to crack growth, of a material is governed by the energy absorbed
as the crack moves forward. In an extremely brittle material such as window glass, this energy
is primarily just that of rupturing the chemical bonds along the crack plane. But as already
mentioned, in tougher materials bond rupture plays a relatively small role in resisting crack
growth, with by far the largest part of the fracture energy being associated with plastic flow
near the crack tip. A “plastic zone” is present near the crack tip within which the stresses as
predicted by Eqn. 4 would be above the material’s yield stress σY . Since the stress cannot rise
above σY , the stress in this zone is σY rather than that given by Eqn. 4. To a first approximation,
the distance rp this zone extends along the x-axis can be found by using Eqn. 4 with θ = 0 to
find the distance at which the crack tip stress reduces to σY :

σy = σY =
KI√
2πrp

rp =
K2I
2πσ2Y

(6)

This relation is illustrated in Fig. 7. As the stress intensity in increased either by raising the
imposed stress or by crack lengthening, the plastic zone size will increase as well. But the extent
of plastic flow is ultimately limited by the material’s molecular or microstructural mobility, and
the zone can become only so large. When the zone can grow no larger, the crack can no longer
be constrained and unstable propagation ensues. The value of KI at which this occurs can then
be considered a materials property, named KIc.
In order for the measured value of KIc to be valid, the plastic zone size should not be so

large as to interact with the specimen’s free boundaries or to destroy the basic nature of the
singular stress distribution. The ASTM specification for fracture toughness testing8 specifies
the specimen geometry to insure that the specimen is large compared to the crack length and
the plastic zone size (see Fig. 8):

a,B, (W − a) ≥ 2.5
(
KI
σY

)2

8E 399-83, “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials,” ASTM, 1983.
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Figure 8: Dimensions of fracture toughness specimen.

A great deal of attention has been paid to the important case in which enough ductility exists
to make it impossible to satisfy the above criteria. In these cases the stress intensity view
must be abandoned and alternative techniques such as the J-integral or the crack tip opening
displacement method used instead. The reader is referred to the references listed at the end of
the module for discussion of these approaches.

Figure 9: Effect of specimen thickness on toughness.

The fracture toughness as measured by Kc or Gc is essentially a measure of the extent
of plastic deformation associated with crack extension. The quantity of plastic flow would be
expected to scale linearly with the specimen thickness, since reducing the thickness by half would
naturally cut the volume of plastically deformed material approximately in half as well. The
toughness therefore rises linearly, at least initially, with the specimen thickness as seen in Fig. 9.
Eventually, however, the toughness is observed to go through a maximum and fall thereafter to a
lower value. This loss of toughness beyond a certain critical thickness t∗ is extremely important
in design against fracture, since using too thin a specimen in measuring toughness will yield
an unrealistically optimistic value for GC . The specimen size requirements for valid fracture
toughness testing are such that the most conservative value is measured.
The critical thickness is that which causes the specimen to be dominated by a state of plane

strain, as opposed to plane stress. The stress in the through-thickness z direction must become
zero at the sides of the specimen since no traction is applied there, and in a thin specimen the
stress will not have room to rise to appreciable values within the material. The strain in the
z direction is not zero, of course, and the specimen will experience a Poisson contraction given
by εz = ν(σx + σy). But when the specimen is thicker, material near the center will be unable
to contract laterally due to the constraint of adjacent material. Now the z-direction strain is
zero, so a tensile stress will arise as the material tries to contract but is prevented from doing
so. The value of σz rises from zero at the outer surface and approaches a maximum value given
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Figure 10: Transverse stress at crack tip.

by σz ≈ ν(σx+σy) in a distance t
∗ as seen in Fig. 10. To guarantee that plane strain conditions

dominate, the specimen thickness t must be such that t
 2t∗.
The triaxial stress state set up near the center of a thick specimen near the crack tip reduces

the maximum shear stress available to drive plastic flow, since the maximum shear stress is equal
to one half the difference of the largest and smallest principal stress, and the smallest is now
greater than zero. Or equivalently, we can state that the mobility of the material is constrained
by the inability to contract laterally. From either a stress or a strain viewpoint, the extent of
available plasticity is reduced by making the specimen thick.

Example 5

The plastic zone sizes for the plane stress and plane strain cases can be visualized by using a suitable
yield criterion along with the expressions for stress near the crack tip. The v. Mises yield criterion was
given in terms of principal stresses in Module 20 as

2σ2Y = (σ1 − σ2)
2
+ (σ1 − σ3)

2
(σ2 − σ3)

2

The principal stresses can be obtained from Eqns. 4 as

σ1 =
KI√
2πr

cos
θ

2

(
1 + sin

θ

2

)

σ2 =
KI√
2πr

cos
θ

2

(
1− sin

θ

2

)

The third principal stress is

σ3 =

{
0, plane stress
ν (σ1 + σ2) , plane strain

These stresses can be substituted into the yield criterion, which is then solved for the radius r at which
yield occurs. It is convenient to normalize this radius by the raduis of the plastic zone along the x−axis,
given by Eqn. 6. Maple commands to carry out these substitutions and plot the result are:

# Radius of plastic zone along x-axis

> rp:=K[I]^2/(2*Pi*sigma[Y]^2):

# v. Mises yield criterion in terms of principal stresses

> v_mises:=2*sigma[Y]^2= (sigma[1]-sigma[2])^2 + (sigma[1]-sigma[3])^2

+ (sigma[2]-sigma[3])^2:

# Principal stresses in crack-tip region

> sigma[1]:=(K[I]/sqrt(2*Pi*r))*cos(theta/2)*(1+sin(theta/2)):
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> sigma[2]:=(K[I]/sqrt(2*Pi*r))*cos(theta/2)*(1-sin(theta/2));

# Evaluate v. Mises for plane stress (v_strs) and plane strain (v_strn)

# Take nu = 0.3

> v_strs:=subs(sigma[3]=0,v_mises):

> v_strn:=subs(sigma[3]=.3*(sigma[1]+sigma[2]),v_mises):

# Solve for plastic zone radius, normalize by rp

# pl_strs for plane stress case, pl_strn for plane strain

> pl_strs:=solve(v_strs,r)/rp:

> pl_strn:=solve(v_strn,r)/rp:

# Plot normalized plastic zones for plane stress and plane strain

> plot({pl_strs,pl_strn},theta=0..2*Pi,coords=polar);

Figure 11: Normalized plastic zone shapes for plane strain (inner contour) and plane stress
(outer contour).

Even in a thick specimen, the z-direction stress must approach zero at the side surfaces.
Regions near the surface are therefore free of the triaxial stress constraint, and exhibit greater
shear-driven plastic flow. After a cracked specimen has been tested to failure, a flat “thumbnail”
pattern will often be visible as illustrated in Fig. 12. This is the region of slow crack growth,
where the crack is able to maintain its preferred orientation transverse to the y-direction stress.
The crack growth near the edges is retarded by the additional plastic flow there, so the crack line
bows inward. When the stress is increased enough to cause the crack to grow catastrophically, it
typically does so at speeds high enough that the transverse orientation is not always maintained.
The region of rapid fracture is thus faceted and rough, leading some backyard mechanics to claim
the material failed because it “crystallized.”
Along the edges of the specimen, “shear lips” can often be found on which the crack has

developed by shear flow and with intensive plastic deformation. The lips will be near a 45◦

angle, the orientation of the maximum shear planes.

Grain size and temperature

Steel is such an important and widely used structural material that it is easy to forget that
steel is a fairly recent technological innovation. Well into the nineteenth century, wood was the
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Figure 12: Fracture surface topography.

dominant material for many bridges, buildings, and ships. As the use of iron and steel became
more widespread in the latter part of that century and the first part of the present one, a number
of disasters took place that can be traced to the then-incomplete state of understanding of these
materials, especially concerning their tendency to become brittle at low temperatures. Many of
these failures have been described and analyzed in a fascinating book by Parker9.
One of these brittle failures is perhaps the most famous disaster of the last several centuries,

the sinking of the transatlantic ocean liner Titanic on April 15, 1912, with a loss of some 1,500
people and only 705 survivors. Until very recently, the tragedy was thought to be caused by a
long gash torn through the ship’s hull by an iceberg. However, when the wreckage of the ship
was finally discovered in 1985 using undersea robots, no evidence of such a gash was found.
Further, the robots were later able to return samples of the ship’s steel whose analysis has given
rise to an alternative explanation.
It is now well known that lesser grades of steel, especially those having large concentrations

of impurities such as interstitial carbon inclusions, are subject to embrittlement at low temper-
atures. William Garzke, a naval architect with the New York firm of Gibbs & Cox, and his
colleagues have argued that the steel in the Titanic was indeed brittle in the 31◦F waters of
the Atlantic that night, and that the 22-knot collision with the iceberg generated not a gash
but extensive cracking through which water could enter the hull. Had the steel remained tough
at this temperature, these authors feel, the cracking may have been much less extensive. This
would have slowed the flooding and allowed more time for rescue vessels to reach the scene,
which could have increased greatly the number of survivors.

Figure 13: Dislocation pileup within a grain.

In the bcc transition metals such as iron and carbon steel, brittle failure can be initiated by
dislocation glide within a crystalline grain. The slip takes place at the yield stress σY , which

9E.R. Parker, Brittle Behavior of Engineering Structures, John Wiley & Sons, 1957.
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varies with grain size according to the Hall-Petch law as described in Module 21:

σY = σ0 + kY d
−1/2

Dislocations are not able to propagate beyond the boundaries of the grain, since adjoining
grains will not in general have their slip planes suitably oriented. The dislocations then “pile
up” against the grain boundaries as illustrated in Fig. 13. The dislocation pileup acts similarly
to an internal crack with a length that scales with the grain size d, intensifying the stress in the
surrounding grains. Replacing a by d in the modified Griffith equation (Eqn. 1), the applied
stress needed to cause fracture in adjacent grains is related to the grain size as

σf = kfd
−1/2, kf ∝

√
EGc
π

The above two relations for yielding and fracture are plotted in Fig. 14 against inverse root grain
size (so grain size increases to the left), with the slopes being kY and kf respectively. When
kf > kY , fracture will not occur until σ = σY for values of d to the left of point A, since yielding
and slip is a prerequisite for cleavage. In this region the yielding and fracture stresses are the
same, and the failure appears brittle since large-scale yielding will not have a chance to occur.
To the right of point A, yielding takes place prior to fracture and the material appears ductile.
The point A therefore defines a critical grain size d∗ at which a “nil-ductility” transition from
ductile (grains smaller than d∗) to brittle failure will take place.

Figure 14: Effect of grain size on yield and fracture stress.

As the temperature is lowered, the yield stress σY will increase as described in Module 20,
and the fracture stress σf will decrease (since atomic mobility and thus GC decrease). Therefore,
point A shifts to the right as temperature is lowered. The critical grain size for nil ductility
now occurs at a smaller value; i.e. the grains must be smaller to avoid embrittling the mate-
rial. Equivalently, refining the grain size has the effect of lowering the ductile-brittle transition
temperature. Hence grain-size refinement raises both the yield and fracture stress, lowers the
ductile-brittle transition temperature, and promotes toughness as well. This is a singularly use-
ful strengthening mechanism, since other techniques such as strain hardening and solid-solution
hardening tend to achieve strengthening at the expense of toughness.
Factors other than temperature can also embrittle steel. Inclusions such as carbon and

phosphorus act to immobilize slip systems that might otherwise relieve the stresses associated
with dislocation pileups, and these inclusions can raise the yield stress and thus the ductile-brittle
transition temperature markedly. Similar effects can be induced by damage from high-energy
radiation, so embrittlement of nuclear reactor components is of great concern. Embrittlement
is also facilitated by the presence of notches, since they generate triaxial stresses that constrain
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plastic flow. High strain rates promote brittleness because the flow stress needed to accommodate
the strain rate is higher, and improper welding can lead to brittleness both by altering the steel’s
microstructure and by generating residual internal stresses.
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Problems

1. Using a development analogous to that employed in Module 21 for the theoretical yield
stress, show that the theoretical ultimate tensile strength is σth ≈ E/10 (much larger
than that observed experimentally). Assume a harmonic atomic force function σ =
σth sin(2πx/λ), where x is the displacement of an atom from its equilibrium position and
λ ≈ a0 is the interatomic spacing. The maximum stress σth can then be found by using

E =

(
dσ

dε

)
x→0

and ε =
x

a0

2. Using a safety factor of 2, find the safe operating pressure in a closed-end steel pressure
vessel 1′ in diameter and 0.2′′ wall thickness.

3. A pressure vessel is constructed with a diameter of d = 18′′ and a length of L = 6′. The
vessel is to be capable of withstanding an internal pressure of p = 1000 psi, and the wall
thickness is such as to keep the nominal hoop stress under 2500 psi. However, the vessel
bursts at an internal pressure of only 500 psi, and a micrographic investigation reveals the
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fracture to have been initiated by an internal crack 0.1′′ in length. Calculate the fracture
toughness (KIc) of the material.

4. A highly cross-linked epoxy resin has a coefficient of linear thermal expansion α = 5×10−5

K−1, GIC = 120 J/m
2, E = 3.2 GPa, and ν = 0.35. A thick layer of resin is cured and

is firmly bonded to an aluminum part (α = 2.5 × 10−5 K−1) at 180◦C. Calculate the
minimum defect size needed to initiate cracking in the resin on cooling to 20◦C. Take α in
Eqn. 5 to be 2/π for penny-shaped cracks of radius a in a wide sheet.

5. (a) A thick plate of aluminum alloy, 175 mm wide, contains a centrally-located crack
75 mm in length. The plate experiences brittle fracture at an applied stress (uniaxial,
transverse to the crack) of 110 MPa. Determine the fracture toughness of the material.

(b) What would the fracture stress be if the plate were wide enough to permit an assump-
tion of infinite width?

6. In order to obtain valid plane-strain fracture toughnesses, the plastic zone size must be
small with respect to the specimen thickness B, the crack length a, and the “ligament”
width W − a. The established criterion is

(W − a), B, a ≥
(
KIc
σY

)2

Rank the materials in the database in terms of the parameter given on the right-hand side
of this expression.

7. When a 150 kN load is applied to a tensile specimen containing a 35 mm crack, the overall
displacement between the specimen ends is 0.5 mm. When the crack has grown to 37
mm, the displacement for this same load is 0.505 mm. The specimen is 40 m thick. The
fracture load of an identical specimen, but with a crack length of 36 mm, is 175 kN. Find
the fracture toughness KIc of the material.
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Introduction

The concept of “fatigue” arose several times in the Module on Fracture (Module 23), as in the
growth of cracks in the Comet aircraft that led to disaster when they became large enough
to propagate catastrophically as predicted by the Griffith criterion. Fatigue, as understood
by materials technologists, is a process in which damage accumulates due to the repetitive
application of loads that may be well below the yield point. The process is dangerous because a
single application of the load would not produce any ill effects, and a conventional stress analysis
might lead to a assumption of safety that does not exist.
In one popular view of fatigue in metals, the fatigue process is thought to begin at an

internal or surface flaw where the stresses are concentrated, and consists initially of shear flow
along slip planes. Over a number of cycles, this slip generates intrusions and extrusions that
begin to resemble a crack. A true crack running inward from an intrusion region may propagate
initially along one of the original slip planes, but eventually turns to propagate transversely to
the principal normal stress as seen in Fig. 1.

Figure 1: Intrusion-extrusion model of fatigue crack initiation.

When the failure surface of a fatigued specimen is examined, a region of slow crack growth
is usually evident in the form of a “clamshell” concentric around the location of the initial flaw.
(See Fig. 2.) The clamshell region often contains concentric “beach marks” at which the crack
was arrested for some number of cycles before resuming its growth. Eventually, the crack may
become large enough to satisfy the energy or stress intensity criteria for rapid propagation,
following the previous expressions for fracture mechanics. This final phase produces the rough
surface typical of fast fracture. In postmortem examination of failed parts, it is often possible to
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correlate the beach marks with specific instances of overstress, and to estimate the applied stress
at failure from the size of the crack just before rapid propagation and the fracture toughness of
the material.

Figure 2: Typical fatigue-failure surfaces. From B. Chalmers, Physical Metallurgy,Wiley, p. 212,
1959.

The modern study of fatigue is generally dated from the work of A. Wöhler, a technologist in
the German railroad system in the mid-nineteenth century. Wohler was concerned by the failure
of axles after various times in service, at loads considerably less than expected. A railcar axle
is essentially a round beam in four-point bending, which produces a compressive stress along
the top surface and a tensile stress along the bottom (see Fig. 3). After the axle has rotated a
half turn, the bottom becomes the top and vice versa, so the stresses on a particular region of
material at the surface varies sinusoidally from tension to compression and back again. This is
now known as fully reversed fatigue loading.

Figure 3: Fatigue in a railcar axle.
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S-N curves

Well before a microstructural understanding of fatigue processes was developed, engineers had
developed empirical means of quantifying the fatigue process and designing against it. Perhaps
the most important concept is the S-N diagram, such as those shown in Fig. 41, in which a
constant cyclic stress amplitude S is applied to a specimen and the number of loading cycles N
until the specimen fails is determined. Millions of cycles might be required to cause failure at
lower loading levels, so the abscissa in usually plotted logarithmically.

Figure 4: S −N curves for aluminum and low-carbon steel.

In some materials, notably ferrous alloys, the S − N curve flattens out eventually, so that
below a certain endurance limit σe failure does not occur no matter how long the loads are
cycled. Obviously, the designer will size the structure to keep the stresses below σe by a suitable
safety factor if cyclic loads are to be withstood. For some other materials such as aluminum, no
endurance limit exists and the designer must arrange for the planned lifetime of the structure
to be less than the failure point on the S −N curve.
Statistical variability is troublesome in fatigue testing; it is necessary to measure the lifetimes

of perhaps twenty specimens at each of ten or so load levels to define the S − N curve with
statistical confidence2. It is generally impossible to cycle the specimen at more than approxi-
mately 10Hz (inertia in components of the testing machine and heating of the specimen often
become problematic at higher speeds) and at that speed it takes 11.6 days to reach 107 cycles
of loading. Obtaining a full S −N curve is obviously a tedious and expensive procedure.

Figure 5: Variability in fatigue lifetimes and fracture strengths.

1H.W. Hayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, John Wiley
& Sons, 1965.

2A Guide for Fatigue Testing and the Statistical Analysis of Fatigue Data, ASTM STP-91-A, 1963.
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At first glance, the scatter in measured lifetimes seems enormous, especially given the log-
arithmic scale of the abscissa. If the coefficient of variability in conventional tensile testing is
usually only a few percent, why do the fatigue lifetimes vary over orders of magnitude? It must
be remembered that in tensile testing, we are measuring the variability in stress at a given
number of cycles (one), while in fatigue we are measuring the variability in cycles at a given
stress. Stated differently, in tensile testing we are generating vertical scatter bars, but in fatigue
they are horizontal (see Fig. 5). Note that we must expect more variability in the lifetimes as
the S−N curve becomes flatter, so that materials that are less prone to fatigue damage require
more specimens to provide a given confidence limit on lifetime.

Effect of mean load

Of course, not all actual loading applications involve fully reversed stress cycling. A more general
sort of fatigue testing adds a mean stress σm on which a sinusoidal cycle is superimposed, as
shown in Fig. 6. Such a cycle can be phrased in several ways, a common one being to state the
alternating stress σalt and the stress ratio R = σmin/σmax. For fully reversed loading, R = −1.
A stress cycle of R = 0.1 is often used in aircraft component testing, and corresponds to a
tension-tension cycle in which σmin = 0.1σmax.

Figure 6: Simultaneous mean and cyclic loading.

A very substantial amount of testing is required to obtain an S − N curve for the simple
case of fully reversed loading, and it will usually be impractical to determine whole families of
curves for every combination of mean and alternating stress. There are a number of strategems
for finessing this difficulty, one common one being the Goodman diagram. shown in Fig. 7. Here
a graph is constructed with mean stress as the abscissa and alternating stress as the ordinate,
and a straight “lifeline” is drawn from σe on the σalt axis to the ultimate tensile stress σf on the
σm axis. Then for any given mean stress, the endurance limit — the value of alternating stress
at which fatigue fracture never occurs — can be read directly as the ordinate of the lifeline at
that value of σm. Alternatively, if the design application dictates a given ratio of σe to σalt, a
line is drawn from the origin with a slope equal to that ratio. Its intersection with the lifeline
then gives the effective endurance limit for that combination of σf and σm.

Miner’s law for cumulative damage

When the cyclic load level varies during the fatigue process, a cumulative damage model is often
hypothesized. To illustrate, take the lifetime to be N1 cycles at a stress level σ1 and N2 at σ2.
If damage is assumed to accumulate at a constant rate during fatigue and a number of cycles n1
is applied at stress σ1, where n1 < N1 as shown in Fig. 8, then the fraction of lifetime consumed
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Figure 7: The Goodman diagram.

Figure 8: The concept of fractional lifetime.

will be n1/N1. To determine how many additional cycles the specimen will survive at stress σ2,
an additional fraction of life will be available such that the sum of the two fractions equals one:

n1
N1
+
n2
N2
= 1

Note that absolute cycles and not log cycles are used here. Solving for the remaining cycles
permissible at σ2:

n2 = N2

(
1−
n1
N1

)

The generalization of this approach is called Miner’s Law, and can be written

∑ nj
Nj
= 1 (1)

where nj is the number of cycles applied at a load corresponding to a lifetime of Nj .

Example 1

Consider a hypothetical material in which the S-N curve is linear from a value equal to the fracture stress
σf at one cycle (logN = 0), falling to a value of σf/2 at logN = 7 as shown in Fig. 9. This behavior can
be described by the relation

logN = 14

(
1−

S

σf

)

The material has been subjected to n1 = 10
5 load cycles at a level S = 0.6σf , and we wish to estimate

how many cycles n2 the material can now withstand if we raise the load to S = 0.7σf . From the S-N
relationship, we know the lifetime at S = 0.6σf = constant would be N1 = 3.98× 105 and the lifetime at
S = 0.7σf = constant would be N2 = 1.58× 104. Now applying Eqn. 1:
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Figure 9: Linear S-N curve.

n1

N1
+
n2

N2
=
1× 105

3.98× 105
+

n2

1.58× 104
= 1

n2 = 1.18× 10
4

Miner’s “law” should be viewed like many other material “laws,” a useful approximation,
quite easy to apply, that might be accurate enough to use in design. But damage accumulation
in fatigue is usually a complicated mixture of several different mechanisms, and the assumption
of linear damage accumulation inherent in Miner’s law should be viewed skeptically. If portions
of the material’s microstructure become unable to bear load as fatigue progresses, the stress
must be carried by the surviving microstructural elements. The rate of damage accumulation
in these elements then increases, so that the material suffers damage much more rapidly in
the last portions of its fatigue lifetime. If on the other hand cyclic loads induce strengthening
mechanisms such as molecular orientation or crack blunting, the rate of damage accumulation
could drop during some part of the material’s lifetime. Miner’s law ignores such effects, and
often fails to capture the essential physics of the fatigue process.

Crack growth rates

Certainly in aircraft, but also in other structures as well, it is vital that engineers be able to
predict the rate of crack growth during load cycling, so that the part in question be replaced
or repaired before the crack reaches a critical length. A great deal of experimental evidence
supports the view that the crack growth rate can be correlated with the cyclic variation in the
stress intensity factor3:

da

dN
= A∆Km (2)

where da/dN is the fatigue crack growth rate per cycle, ∆K = Kmax − Kmin is the stress
intensity factor range during the cycle, and A and m are parameters that depend the material,
environment, frequency, temperature and stress ratio. This is sometimes known as the “Paris
law,” and leads to plots similar to that shown in Fig. 10.

3See Module 23.
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Figure 10: The Paris law for fatigue crack growth rates.

The exponent m is often near 4 for metallic systems, which might be rationalized as the
damage accumulation being related to the volume Vp of the plastic zone: since the volume Vp of
the zone scales with r2p and rp ∝ K

2
I , then da/dn ∝ ∆K

4. Some specific values of the constants
m and A for various alloys in given in Table 1.

Table 1: Numerical parameters in the Paris equation.

alloy m A

Steel 3 10−11

Aluminum 3 10−12

Nickel 3.3 4× 10−12

Titanium 5 10−11

Problems

1. A steel has an ultimate tensile strength of 110 kpsi and a fatigue endurance limit of 50
kpsi. The load is such that the alternating stress is 0.4 of the mean stress. Using the
Goodman method with a safety factor of 1.5, find the magnitude of alternating stress that
gives safe operation.

2. A titanium alloy has an ultimate tensile strength of 120 kpsi and a fatigue endurance limit
of 60 kpsi. The alternating stress is 20 kpsi. Find the allowable mean stress, using a safety
factor of 2.

3. A material has an S-N curve that is linear from a value equal to the fracture stress σf
at one cycle (logN = 0), falling to a value of σf/3 at logN = 7. The material has been
subjected to n1 = 1000 load cycles at a level S = 0.7σf . Estimate how many cycles n2 the
material can withstand if the stress amplitude is now raised to S = 0.8σf .
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Prob. 3

4. A steel alloy has an S-N curve that falls linearly from 240 kpsi at 104 cycles to 135 kpsi at
106 cycles. A specimen is loaded at 160 kpsi alternating stress for 105 cycles, after which
the alternating stress is raised to 180 kpsi. How many additional cycles at this higher
stress would the specimen be expected to survive?

Prob. 4

5. Consider a body, large enough to be considered infinite in lateral dimension, containing a
central through-thickness crack initially of length 2a0 and subjected to a cyclic stress of
amplitude ∆σ. Using the Paris Law (Eqn. 2), show that the number of cycles Nf needed
for the crack to grow to a length 2af is given by the relation

ln

(
af
a0

)
= A (∆σ)2πNf

when m = 2, and for other values of m

∣∣∣a1−m/2f − a
1−m/2
0

∣∣∣ = 2−m
2m

A (∆σ)mπm/2Nf

6. Use the expression obtained in Prob. 5 to compute the number of cycles a steel component
can sustain before failure, where the initial crack halflength is 0.1 mm and the critical
crack halflength to cause fracture is 2.5 mm. The stress amplitude per cycle is 950 MPa.
Take the crack to be that of a central crack in an infinite plate.

7. Use the expression developed in Prob. 5 to investigate whether it is better to limit the
size a0 of initial flaws or to extend the size af of the flaw at which fast fracture occurs.
Limiting a0 might be done with improved manufacturing or better inspection methods,
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and increasing af could be done by selecting a material with greater fracture toughness.
For the “baseline” case, take m = 3.5, a0 = 2 mm, af = mm. Compute the percentage
increase in Nf by letting (a) the initial flaw size to be reduced to a0 = 1 mm, and (b)
increasing the final flaw size to Nf = 10 mm.
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MATERIAL Type
 Cost 
($/kg) 

Density 
(ρ ,Mg/m3)

Young's 
Modulus 
(E , GPa)

Shear 
Modulus 
(G , GPa)

Poisson's 
Ratio (ν )

Yield Stress 
(σ Y , MPa)

UTS 
(σ f ,MPa)

Breaking 
strain 

(ε f , %)

Fracture 
Toughness 

(K c ,MN m-3/2)

Thermal 
Expansion 
(α ,10-6/C)

Alumina (Al2O3) ceramic 1.90     3.9 390 125 0.26 4800 35 0.0 4.4 8.1
Aluminum alloy (7075-T6) metal 1.80     2.7 70 28 0.34 500 570 12 28 33
Beryllium alloy metal 315.00  2.9 245 110 0.12 360 500 6.0 5.0 14
Bone (compact) natural 1.90     2.0 14 3.5 0.43 100 100 9.0 5.0 20
Brass (70Cu30Zn, annealed) metal 2.20     8.4 130 39 0.33 75 325 70.0 80 20
Cermets (Co/WC) composite 78.60   11.5 470 200 0.30 650 1200 2.5 13 5.8
CFRP Laminate (graphite) composite 110.00  1.5 1.5 53 0.28 200 550 2.0 38 12
Concrete ceramic 0.05     2.5 48 20 0.20 25 3.0 0.0 0.75 11
Copper alloys metal 2.25     8.3 135 50 0.35 510 720 0.3 94 18
Cork natural 9.95     0.18 0.032 0.005 0.25 1.4 1.5 80 0.074 180
Epoxy thermoset polymer 5.50     1.2 3.5 1.4 0.25 45 45 4.0 0.50 60
GFRP Laminate (glass) composite 3.90     1.8 26 10 0.28 125 530 2.0 40 19
Glass (soda) ceramic 1.35     2.5 65 26 0.23 3500 35 0.0 0.71 8.8
Granite ceramic 3.15     2.6 66 26 0.25 2500 60 0.1 1.5 6.5
Ice (H2O) ceramic 0.23     0.92 9.1 3.6 0.28 85 6.5 0.0 0.11 55
Lead alloys metal 1.20     11.1 16 5.5 0.45 33 42 60 40 29
Nickel alloys metal 6.10     8.5 180 70 0.31 900 1200 30 93 13
Polyamide (nylon) polymer 4.30     1.1 3.0 0.76 0.42 40 55 5.0 3.0 103
Polybutadiene elastomer polymer 1.20     0.91 0.0016 0.0005 0.50 2.1 2.1 500 0.087 140
Polycarbonate polymer 4.90     1.2 2.7 0.97 0.42 70 77 60 2.6 70
Polyester thermoset polymer 3.00     1.3 3.5 1.4 0.25 50 0.7 2.0 0.70 150
Polyethylene (HDPE) polymer 1.00     0.95 0.7 0.31 0.42 25 33 90 3.5 225
Polypropylene polymer 1.10     0.89 0.9 0.42 0.42 35 45 90 3.0 85
Polyurethane elastomer polymer 4.00     1.2 0.025 0.0086 0.50 30 30 500 0.30 125
Polyvinyl chloride (rigid PVC) polymer 1.50     1.4 1.5 0.6 0.42 53 60 50 0.54 75
Silicon ceramic 2.35     2.3 110 44 0.24 3200 35 0.0 1.5 6
Silicon Carbide (SiC) ceramic 36.00   2.8 450 190 0.15 9800 35 0.0 4.2 4.2
Spruce (parallel to grain) natural 1.00     0.60 9 0.8 0.30 48 50 10 2.5 4
Steel, high strength 4340 metal 0.25     7.8 210 76 0.29 1240 1550 2.5 100 14
Steel, mild 1020 metal 0.50     7.8 210 76 0.29 200 380 25 140 14
Steel, stainless austenitic 304 metal 2.70     7.8 210 76 0.28 240 590 60 50 17
Titanium alloy (6Al4V) metal 16.25   4.5 100 39 0.36 910 950 15 85 9.4
Tungsten Carbide (WC) ceramic 50.00   15.5 550 270 0.21 6800 35 0.0 3.7 5.8
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A vector can be described by listing its components along the xyz cartesian axes; for in-
stance the displacement vector u can be denoted as ux, uy, uz , using letter subscripts to indicate
the individual components. The subscripts can employ numerical indices as well, with 1, 2,
and 3 indicating the x, y, and z directions; the displacement vector can therefore be written
equivalently as u1, u2, u3.
A common and useful shorthand is simply to write the displacement vector as ui, where the

i subscript is an index that is assumed to range over 1,2,3 ( or simply 1 and 2 if the problem is
a two-dimensional one). This is called the range convention for index notation. Using the range
convention, the vector equation ui = a implies three separate scalar equations:

u1 = a

u2 = a

u3 = a

We will often find it convenient to denote a vector by listing its components in a vertical list
enclosed in braces, and this form will help us keep track of matrix-vector multiplications a bit
more easily. We therefore have the following equivalent forms of vector notation:

u = ui =



u1
u2
u3


 =



ux
uy
uz




Second-rank quantities such as stress, strain, moment of inertia, and curvature can be de-
noted as 3×3 matrix arrays; for instance the stress can be written using numerical indices as

[σ] =


 σ11 σ12 σ13σ21 σ22 σ23
σ31 σ32 σ33




Here the first subscript index denotes the row and the second the column. The indices also have
a physical meaning, for instance σ23 indicates the stress on the 2 face (the plane whose normal
is in the 2, or y, direction) and acting in the 3, or z, direction. To help distinguish them, we’ll
use brackets for second-rank tensors and braces for vectors.
Using the range convention for index notation, the stress can also be written as σij , where

both the i and the j range from 1 to 3; this gives the nine components listed explicitly above.
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(Since the stress matrix is symmetric, i.e. σij = σji, only six of these nine components are
independent.)
A subscript that is repeated in a given term is understood to imply summation over the range

of the repeated subscript; this is the summation convention for index notation. For instance, to
indicate the sum of the diagonal elements of the stress matrix we can write:

σkk =
3∑
k=1

σkk = σ11 + σ22 + σ33

The multiplication rule for matrices can be stated formally by taking A = (aij) to be an
(M × N) matrix and B = (bij) to be an (R × P ) matrix. The matrix product AB is defined
only when R = N , and is the (M × P ) matrix C = (cij) given by

cij =
N∑
k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ aiNbNk

Using the summation convention, this can be written simply

cij = aikbkj

where the summation is understood to be over the repeated index k. In the case of a 3 × 3
matrix multiplying a 3× 1 column vector we have


 a11 a12 a13a21 a22 a23
a31 a32 a33





b1
b2
b3


 =



a11b1 + a12b2 + a13b3
a21b1 + a22b2 + a23b3
a31b1 + a32b2 + a33b3


 = aijbj

The comma convention uses a subscript comma to imply differentiation with respect to the
variable following, so f,2 = ∂f/∂y and ui,j = ∂ui/∂xj . For instance, the expression σij,j = 0
uses all of the three previously defined index conventions: range on i, sum on j, and differentiate:

∂σxx
∂x
+
∂σxy
∂y
+
∂σxz
∂z
= 0

∂σyx
∂x
+
∂σyy
∂y
+
∂σyz
∂z
= 0

∂σzx
∂x
+
∂σzy
∂y
+
∂σzz
∂z
= 0

The Kroenecker delta is a useful entity is defined as

δij =

{
0, i 6= j
1, i = j

This is the index form of the unit matrix I:

δij = I =


 1 0 00 1 0
0 0 1




So, for instance
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σkkδij =


 σkk 0 0
0 σkk 0
0 0 σkk




where σkk = σ11 + σ22 + σ33.
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Modules in Mechanics of Materials

List of Symbols

A area, free energy, Madelung constant
A transformation matrix
A plate extensional stiffness
a length, transformation matrix, crack length
aT time-temperature shifting factor
B design allowable for strength
B matrix of derivatives of interpolation functions
B plate coupling stiffness
b width, thickness
C stress optical coefficient, compliance
C viscoelastic compliance operator
c numerical constant, length, speed of light
C.V. coefficient of variation
D stiffness matrix, flexural rigidity of plate
D plate bending stiffness
d diameter, distance, grain size
E modulus of elasticity, electric field
E∗ activation energy
E viscoelastic stiffness operator
e electronic charge
eij deviatoric strain
F force
fs form factor for shear
G shear modulus
G viscoelastic shear stiffness operator
Gc critical strain energy release rate
g acceleration of gravity
GF gage factor for strain gages
H Brinell hardness
h depth of beam
I moment of inertia, stress invariant
I identity matrix
J polar moment of inertia
K bulk modulus, global stiffness matrix, stress intensity factor
K viscoelastic bulk stiffness operator
k spring stiffness, element stiffness, shear yield stress, Boltzman’s constant
L length, beam span
L matrix of differential operators
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M bending moment
N crosslink or segment density, moire fringe number, interpolation function, cycles to failure
N traction per unit width on plate
NA Avogadro’s number
N viscoelastic Poisson operator
n refractive index, number of fatigue cycles
n̂ unit normal vector
P concentrated force
Pf fracture load, probability of failure
Ps probability of survival
p pressure, moire gridline spacing
Q force resultant, first moment of area
q distributed load
R radius, reaction force, strain or stress rate, gas constant, electrical resistance
R Reuter’s matrix
r radius, area reduction ratio
S entropy, moire fringe spacing, total surface energy, alternating stress
S compliance matrix
s Laplace variable, standard deviation
SCF stress concentration factor
T temperature, tensile force, stress vector, torque
Tg glass transition temperature
t time, thickness
tf time to failure
U strain energy
U∗ strain energy per unit volume
UTS ultimate tensile stress
ũ approximate displacement function
V shearing force, volume, voltage
V ∗ activation volume
v velocity
W weight, work
u, v,w components of displacement
x, y, z rectangular coordinates
X standard normal variable
α, β curvilinear coordinates
αL coefficient of linear thermal expansion
γ shear strain, surface energy per unit area, weight density
δ deflection
δij Kroenecker delta
ε normal strain
ε strain pseudovector
εij strain tensor
εT thermal strain
η viscosity
θ angle, angle of twist per unit length
κ curvature
λ extension ratio, wavelength
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ν Poisson’s ratio
ρ density, electrical resistivity
Σij distortional stress
σ normal stress
σ stress pseudovector
σij stress tensor
σe endurance limit
σf failure stress
σm mean stress
σM Mises stress
σt true stresss
σY yield stresss
τ shear stress, relaxation time
φ Airy stress function
ξ dummy length or time variable
Ω configurational probability
ω angular frequency
∇ gradient operator
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Modules in Mechanics of Materials

Unit Conversion Factors

Density 1 Mg/m3 = 1 gm/cm3

= 62.42 lb/ft3

= 0.03613 lb/in3

= 102.0 N/m3

Energy 1 J = 0.2390 calorie
= 9.45×10−4 Btu
= 107 erg
= 0.7376 ft-lb
= 6.250×1018 ev

Force 1 N = 105 d (dyne)
= 0.2248 lbf
= 0.1020 kg
= 3.597 oz
= 1.124×10−4 ton (2000lb)

Length 1 m = 39.37 in
= 3.281 ft
= 1010 Å

Mass 1 kg = 2.205 lb
= 35.27 oz
= 1.102×10−3 ton (2000lb)

Power 1 W = 1 J/s
= 0.7378 ft-lb/s
= 1.341× 10−3 hp

Stress 1 Pa = 1 N/m2

= 10 d/cm2

= 1.449×10−4 psi
= 1.020×10−7 kg/mm2

Toughness 1 MPa
√
m = 0.910 ksi

√
in

Physical constants:
Boltzman constant k = 1.381× 10−23 J/K
Gas constant R = 8.314 J/mol-K
Avogadro constant NA = 6.022× 1023 /mol
Acceleration of gravity g = 9.805 m/s2
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