
15 Plastic bending of mild-steel beams 

15.1 Introduction 

We have seen that in the bending of a beam the greatest direct stresses occur in the extreme 
longitudinal fibres; when these stresses attain the yield-point values, or exceed the limit of 
proportionality, the distribution of stresses over the depth of the beams no longer remains linear, 
as in the case of elastic bending. 

The general problem of the plastic bending of beams is complicated; plastic bending of a beam 
is governed by the forms of the stress-strain curves of the material in tension and compression. 
Mild steel, which is used extensively as a structural material, has tensile and compressive 
properties which lend themselves to a relatively simple treatment of the plastic bending of beams 
of this material. The tensile and compressive stress-strain curves for an annealed mild steel have 
the forms shown in Figure 15.1; in the elastic range Young's modulus is the same for tension and 
compression, and of the order of 300 MNIm2. The yield point corresponds to a strain of the order 
0.001 5. When the strain corresponding with the upper yield point is exceeded straining takes place 
continuously at a constant lower yield stress until a strain of about 0.015 is attained; at this stage 
further straining is accompanied by an increase in stress, and the material is said to strain-harden. 
This region of strain-hardening begins at strains about ten times larger than the strains at the yield 
point of the material. 

Figure 15.1 Tensile and compressive stress-strain curves of an annealed mild steel. 

In applying these stress-strain curves to the plastic bending of mild-steel beams we simplify the 
problem by ignoring the upper yield point of the material; we assume the material is elastic, with 
a Young's modulus E, up to a yield stress 0,; Figure 15.2. We assume that the yield stress, cy, and 
Young's modulus, E, are the same for tension and compression. These idealised stress-strain 
curves for tension and compression are then similar in form. 
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Figure 15.2 Idealized tensile and compressive stress-strain curves of annealed mild steel. 

15.2 Beam of rectangular cross-section 

As an example of the application of these idealised stress-strain curves for mild steel, consider the 
uniform bending of a beam of rectangular cross-section; b is the breadth of the cross-section and 
h its depth, Figure 15.3(i). Equal and opposite moments Mare applied to the ends of a length of 
the beam. We found that in the elastic bending of a rectangular beam there is a linear distribution 
of direct stresses over a cross-section of the beam; an axis at the mid-depth of the cross-section is 
unstrained and therefore a neutral axis. The stresses are greatest in the extreme fibres of the beam; 
the yield stress, oy, is attained in the extreme fibres, Figure 15.3(ii), when 

20,I M = - -  - My (say) 
h 

where I is the second moment of area of the cross-section about the axis of bending. But 
I = bh3/12, and so 

1 
6 

M y  = -bh20y  (15.1) 

As the beam is bent beyond this initial yielding condition, experiment shows that plane cross- 
sections of the beam remain nearly plane as in the case of elastic bending. The centroidal axis 
remains a neutral axis during inelastic bending, and the greatest strains occur in the extreme tension 
and compression fibres. But the stresses in these extreme fibres cannot exceed oy, the yield stress; 
at an intermediate stage in the bending of the beam the central core is still elastic, but the extreme 
fibres have yielded and become plastic, Figure 15.3(iii). 
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Figure 15.3 Stages in the elastic and plastic bending of a rectangular mild-steel beam. 

If the curvature of the beam is increased the elastic core is diminished in depth; finally a 
condition is reached where the elastic core is reduced to negligible proportions, and the beam is 
more or less wholly plastic, Figure 15.3(iv); in this final condition there is still a central unstrained, 
or neutral, axis; fibres above the neutral axis are stressed to the yield point in tension, whereas 
fibres below the neutral axis to the yield point are in compression. In the ultimate fully plastic 
condition the resultant longitudmal tension in the upper half-depth of the beam is 

1 - bho, 
2 

There is an equal resultant compression in the lower half-depth. There is, therefore, no resultant 
longitudinal thrust in the beam; the bendmg moment for this fully plastic condition is 

(15.2) Mp = ( ; b h o , ) ( f h )  = -bh20, 1 
4 

This ultimate moment is usually called thefirllyplastic moment of the beam; comparing equations 
(15.1) and (15.2) we get 

(15.3) 
3 

Mp = TMy 
Thus plastic collapse of a rectangular beam occurs at a moment 50% greater than the bending 
moment at initial yielding of the beam. 

15.3 Elastic-plastic bending of a rectangular mild-steel beam 

In section 15.2 we introduced the concept of a fully plastic moment, Mm of a rmld-steel beam; this 
moment is attained when all longitudinal fibres of the beam are stressed into the plastic range of 
the material. Between the stage at which the yield stress is first exceeded and the ultimate stage 
at which the fully plastic moment is attained, some fibres at the centre of the beam are elastic and 
those remote from the centre are plastic. At an intermediate stage the bending is elastic-plastic. 
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Figure 15.4 Elastic-plastic bending of a rectangular section beam. 

Consider again a mild-steel beam of rectangular cross-section, Figure 15.4, which is bent about 
the centroidal axis Cx. In the elastic-plastic range, a central region of depth h, remains elastic; 
the yield stress a,is attained in fibres beyond h s  central elastic core. If the central region of depth 
h, behaves as an elastic beam, the r a d u  of curvature, R, is given by 

E 
(15.4) 20, - 

h0 R 
- - -  

where E is Young's modulus in the elastic range of the material. Then 

LKO, 
h, = - (15.5) 

E 

Now, the bending moment carried by the elastic cor: of the beam is 

bhi 

6 
M, = Or - (15.6) 

and the moment due to the stresses in the extreme plastic regions is 

M2 = ..[$ - $1 (15.7) 

The total moment is, therefore, 

M = M, + M, = 0 ~ 4  bh ' + O y  [b: - - $1 
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whch gives 

(15.8) 

But the fully plastic moment, Mp, of the beam is 

Thus equation (15.8) may be written 

M = M p l  - -  I :;I 
On substituting for h,  from equation (15.5), 

At the onset of plasticity in the beam, 

- - - -  h - 'OY - (i) (say) 
Y R E 

Then equation ( 15.10) may be written 

1 (hlR): 

Mf 3 (hlR)' 
- -  M -  1 - - -  

(15.9) 

(15.10) 

(15.11) 

(15.12) 

Values of (M/Mp) for different values of (h/R)/(h/R), are given in Figure 15.5; the elastic limit of 
the beam is reached when 

2 
3 

M = -Mp = MY (say) 

As M is increased beyond My, the fully plastic moment M p  is approached rapidly with increase of 
curvature (I&) of the beam; M is greater than 99% of the fully plastic moment when the curvature 
is only five times as large as the curvature at the onset of plasticity. 
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Figure 15.5 Moment-curvature relation for the elastic-plastic 
bending of a rectangular mild-steel beam. 

15.4 Fully plastic moment of an I-section; shape factor 

The cross-sectional dimensions of an I-section are shown in Figure 15.6; in the fully plastic 
condition, the centroidal axis Cx is a neutral axis of bending. The tensile fibres of the beam all 
carry the same stress or; the total longitudinal force in the upper flange is 

Grbt/ 

and its moment about Cx is 

orb{ 3h - +/) = Za,btf 1 (h - t,) 

Similarly, the total force in the tensile side of the web is 

or(; - t/) tw 

and its moment about Cx is 

1 ' ( i  ) *  8 
70' -h - tf t,,, = -ort,,(h - 2tJ' 

The compressed longitudinal fibres contribute moments of the same magnitudes. The total 
moment carried by the beam is therefore 



356 Plastic bending of mild-steel beams 

(15.13) I 1 
M,, = o,bgh - t,) + -tw (h - 2fx [ 4 

Figure 15.6 Fully plastic moment of an I-section beam. 

In the case of elastic bending we defined the elastic section modulus, Z,, as a geometrical 
property, which, when multiplied by the allowable bending stress, gives the allowable bending 
moment on the beam. In equation ( 15.13) suppose 

(15.14) 
1 
4 Z, = b$(h - t,) + -tw (h - 2'1 

Then Z, is the plastic section modulus of the I-beam, and 

Mp = oyzp (15.15) 

As a particular case consider an I-section having dimensions: 

h = 20cm, 

b = lOcm, 

t, = 0.70cm 

fr = 1.00cm 

Then 

1 
4 

Z,, = (0.1)(0.010)(0.2 - 0.010) + -(0.007)(0.2 - 0.020)2 = 0.247 x l O - 3  m 3  

The elastic section modulus is approximately 

Z, = 0.225 x l O - 3  m 3  

If M, is the bending moment at which the yield stress o, is first reached in the extreme fibres of the 
beam, then 
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zp 0247 
(15.16) - - - - -  - - 1.10 M P  - -  

M y  Z, 0225 

Thus, in this case, the fully plastic moment is only 10% greater than the moment at initial yielding. 
The ratio (Z&J is sometimes called the shapefactor. 

15.5 More general case of plastic bending 

In the case of the rectangular and I-section beams treated so far, the neutral axis of bending 
coincided with an axis of symmetry of the cross-section. For a section that is unsymmetrical about 
the axis of bending, the position of the neutral axis must be found first. The beam in Figure 15.7 
has one axis of symmetry, Oy; the beam is bent into the fully plastic condition about Ox, whch is 
perpendicular to Oy. The axis Ox is the neutral axis of bending; the total longitudinal force on the 
fibres above Ox is A l a ,  where A ,  is the area of the cross-section of the beam above Ox. If A2 is 
the area of the cross-section below Ox, the total longitudinal force on the fibres below Ox is A p U  
If there is no resultant longitudinal thrust in the beam, then 

A 0  = A o  1 Y  2 Y  

that is, 

A ,  = A ,  (15.17) 

Figure 15.7 Plastic bending of a beam having one axis of symmetry in the 
cross-section, but unsymmetrical about the axis of bending. 

The neutral axis Ox divides the beam cross-section into equal areas, therefore. If the total area 
of cross-section is A ,  then 

1 
1 2 2  

A = A  = - A  



358 

Then 
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1 
2 

A , o ,  = A,o, = -Ao, 

Suppose C, is the centroid of the area A ,  and C, the centroid of A,; if the centroids C, and C, are 
distances F, and y2, respectively, from the neutral axis Ox, then 

(15.18) 
1 

Mp = ,A.,(Y, + E )  

The plastic section modulus is 

(15.19) 
MP I - -  
0, 2 

Z,, = - = - A (  y ,  + y, ) 

Problem 15.1 A 10 cm by 10 cm T-section is of uniform thickness 1.25 cm. Estimate the 
plastic section modulus for bending about an axis perpendicular to the web. 

Solution 

The neutral axis of plastic bending divides the section into equal areas. If the neutral axis is a 
distance h below the extreme edge of the flange, 

(O.l)h = (0.0875)(0.0125) + (0.1)(0.0125 - h)  

Then 

h = 0.0117 m 

Then 
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Mp = -(0.1)(0.0117)'oy 1 + -(0.0875)(0.0008)'oy 1 
2 2 

1 
2 

+ -(0.0883)2(0.0 1230, 

= (0.0557 x 10-3)o, 

The plastic section modulus is then 

The elastic section modulus is 

Ze = 0.0311 x m 3  

Then 

15.6 Comparison of elastic and plastic section moduli 

For bending of a beam about a centroidal axis Cx, the elastic section modulus is 

I z, = - 
Y,, 

(15.20) 

where I is the second moment of area of the cross-section about the axis of bending, andy,, is the 
distance of the extreme fibre from the axis of bending. 

From equation (15.19) the plastic section modulus of a beam is 

1 -  - 
A Z P  = -( Y, + Y2 ) (15.21) 

Values of Z, and Z, for some simple cross-sectional forms are shown in Table 15.1. In the solid 
rectangular and circular sections Z,, is considerably greater than Z,; the difference between Z,, and 
Z, is less marked in the case of thin-walled sections. 
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Table 15.1 Comparison of elastic and plastic section moduli for some simple cross-sectional forms 
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15.7 Regions of plasticity in a simply-supported beam 

The mild-steel beam shown in Figure 15.8 has a rectangular cross-section; it is simply-supported 
at each end, and carries a central lateral load W. The variation of bendmg moment has the form 
shown in Figure 15.8@); the greatest bending moment occurs under the central load and has the 
value W 4 .  From the preceding analysis we see that a section may take an increasing bending 
moment until the fully plastic moment Mp of the section is reached. The ultimate strength of the 
beam is reached therefore when 

(15.22) 
WL 
4 

Mp = - 

Figure 15.8 Plastic bending of a simply-supported beam. 

If b is the breadth and h the depth of the rectangular cross-section, the bending moment, My, 
at which the yield stress, or, is frrst attained in the extreme fibres is 

M y  = O y -  6 - TM' bh2 - 2 

At the ultimate strength of the beam 

(15.23) w = - 4 4  - - #iyT] bh 2 

L 

The beam is wholly elastic for a distance of 

(15.24) 2(L )  = -L 1 
3 2  3 

from each end support, Figure 15.9, as the bending moments in these regions are not greater than 
My. The middle-hrd length of the beam is in an elastic-plastic state; in this central region 
consider a transverse section a-a of the beam, a distance z from the mid-length. The bending 
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moment at this section is 
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M = &(fL - 2 )  (15.25) 
2 

If Whas attained its ultimate value given by equation (15.22), 

M = Z M p ( t L - 2 )  L (15.26) 

Suppose the depth of the elastic core of the beam at this section is h,  Figure 15.9; then from 
equation (15.9), 

M = M p  1 - -  [ :;I 

Figure 15.9 Regions of plasticity in a simply-supported beam carrying a 
distributed load; in the figure the depth of the beam is exaggerated. 

On substituting this value of M into equation (15.26), we have 

I - -  h,Z = I - -  22 (15.27) 
3h’ L 

and thus 

(15.28) 6h’ z h,Z = - 
L 
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The total depth h, of the elastic core varies parabolically with z, therefore; from equation (1 5.28), 
h, = h when z = 1/6L. The regions of full plasticity are wedge-shaped; the shapes of the regions 
developed in an actual mild-steel beam may be affected by, first, the stress-concentrations under 
the central load W, and, second, the presence of shearing stresses on sections such as a-a, Figure 
15.9; equation (15.28) is true strictly for conditions of pure bending only. 

For a simply-supported rectangular beam carrying a total uniformly distributed load W, Figure 
15.10, the bending moment at the mid-length is 

WL 

8 
M ,  = - 

at the ultimate load-carrying capacity of the beam. At a transverse section a-a, a distance z from 
the mid-length, the moment is 

M = “(L’ 8 L  - 4z2) = F (L2 - 4z2) = Mp[l-4(:)2] (15.29) 

Figure 15.10 Regions of plasticity in a simply-supported beam carrying a 
distributed load; in the figure the depth of the beam is exaggerated. 

From equation (15.9), the depth h, of the elastic core at the section a-a is given by 

M = Mp 1 - -  [ :j 
Then 

hi = 12h2 (;)* 
or 
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h, = 2& h(:) (15.30) 

The limit of the wholly elastic length of the beam is given by h = h,  or z = W(2 4). The regions 
of plasticity near the mid-section are triangular-shaped, Figure 15.10. 

15.8 Plastic collapse of a built-in beam 

A uniform beam of length L is built-in at each end to rigid walls, and carries a uniformly 
distributed load w per unit length, Figure 15.1 1. If the material remains elastic, the bending 
moment at each end is wL2/12, and at the mid-length wL2/24. The bending moment is therefore 
greatest at the end supports; if yielding occurs first at a bending moment My, then the lateral load 
at this stage is given by 

WL 2 My = - 
12 

(15.31) 

Figure 15.11 Plastic regions of a uniformly loaded built-in beam. 

or 

1 2 4  
WL = - (15.32) 

L 
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If the load w is increased beyond the limit of elasticity, plastic hinges first develop at the remote 
ends. The beam only becomes a mechanism when a h r d  plastic hinge develops at the mid-length. 
On considering the statical equilibrium of a half-span of the beam we find that the moments at the 
ends and the mid-length, for plastic hinges at these sections, are 

(15.33) W L  2 MI. = - 
16 

or 

16M, 

L 
W L  = - (15.34) 

Clearly, the load causing complete collapse is at least one-third greater than that at which initial 
yielding begins because Mp is greater than My. 

Another method ofplastically analysing the beam of Figure 15.1 1 is by the principle of virtual 
work described in Chapter 17. In this case the beam is assumed to collapse in the form of a 
mechanism, when three plastic hmges form, as shown in Figure 15.12. 

As the beam is encastrk at both ends, it is statically indeterminate to the second degree, 
therefore three hinges are required to change it from a beam structure to a mechanism. 

Figure 15.12 Plastic collapse of a beam. 

Thus, because the beam cannot resist further loading at the three hinges, the slightest increase 
in load causes the hinges to rotate like 'rusty' hinges. Additionally, as the bending moment 
mstribution is constant during this collapse, the curvature of the beam remains constant during 
collapse. Hence, for the purpose of analysis, the beam's two sections can be assumed to remain 
straight during collapse. 

Work done by the three hinges during collapse 

= MpO + Mp 20 + MpO (15.35) 
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Work done by the distributed load 

L 
4 

W L  x -e 

Equating (15.35) and (15.36) 

W L  W L  

4 16 
4Mp8 = -8 or Mp = - 

(15.36) 

(15.37) 

which is identical to equation (15.33). This method of solution is discussed in greater detail in 
Chapter 17. 

Further problems (answers on page 693) 

15.2 

15.3 

15.4 

15.5 

15.6 

15.7 

A uniform mild-steel beam A B  is 4 m long; it is built-in at A and simply-supported at B .  
It carries a single concentrated load at a point 1.5 m from A .  if the plastic section 
modulus of the beam is 0.433 x 10.’ m’, and the yield stress of the material is 235 
MN/m2, estimate the value of the concentrated load causing plastic collapse. 

A uniform mild-steel beam is supported on four knife edges equally spaced a distance 
8 m apart. Estimate the intensity of uniformly distributed lateral load over the whole 
length causing collapse, if the plastic section modulus of the beam is 1.690 x 10.’ m’, 
and the yield stress of the material is 235 MN/m2. 

A uniform beam rests on three supports A, B and C with two spans each 5 m long. The 
collapse load is to be 100 kN per metre, and oy = 235 MN/mZ. What will be a suitable 
mild-steel section using a shape factor 1.15? 

If, in Problem 15.4, A B  is 8 m and B C  is 7 m, and the collapse loads are to be 100 kN/m 
on AB, 50 kN/m on BC, find a suitable mild-steel section I-beam, with o,, = 235 
MN/m2. 

A continuous beam ABCQ has spans each 8 m long, it is 45 cm by 15 cm, with flanges 
2.5 cm thick and web 1 em thick. Find the collapse load if the whole beam cames a 
uniformly-distributed load. Which spans collapse? oy = 235 MN/m2. 

A mild-steel beam 5 cm square section is subjected to a thrust of 200 kN acting in the 
plane of one of the principal axes, but may be eccentric. What eccentricity will cause 
the whole section to become plastic if oy = 235 MN/mZ? 


