
9 Longitudinal stresses in beams 

9.1 Introduction 

We have seen that when a straight beam carries lateral loads the actions over any cross-section of 
the beam comprise a bending moment and shearing force; we have also seen how to estimate the 
magnitudes of these actions. The next step in discussing the strength of beams is to consider the 
stresses caused by these actions. 

As a simple instance consider a cantilever carrying a concentrated load Wat its free end, Figure 
9.1. At sections of the beam remote from the fiee end the upper longitudinal fibres of the beam 
are stretched, i.e. tensile stresses are induced; the lower fibres are compressed. There is thus a 
variation of h e c t  stress throughout the depth of any section of the beam. In any cross-section of 
the beam, as in Figure 9.2, the upper fibres whch are stretched longitudinally contract laterally 
owing to the Poisson ratio effect, while the lower fibres extend laterally; thus the whole cross- 
section of the beam is distorted. 

In addition to longitudinal direct stresses in the beam, there are also shearing stresses over any 
cross-section of the beam. h most engineering problems shearing distortions in beams are 
relatively unimportant; this is not true, however, of shearing stresses. 

Figure 9.1 Bending strains in a Figure 9.2 Cross-sectional distortion of 
loaded cantilever. a bent beam. 

9.2 Pure bending of a rectangular beam 

An elementary bending problem is that of a rectangular beam under end couples. Consider a 
straight uniform beam having a rectangular cross-section ofbreadth b and depth h, Figure 9.3; the 
axes of symmetry of the cross-section are Cx, Cy. 

A long length of the beam is bent in theyz-plane, Figure 9.4, in such a way that the longitudinal 
centroidal axis, Cz, remains unstretched and takes up a curve of uniform radius of curvature, R. 

We consider an elemental length Sz of the beam, remote from the ends; in the unloaded 
condition, AB and FD are transverse sections at the ends of the elemental length, and these sections 
are initially parallel. In the bent form we assume that planes such as AB and FD remain flat 
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planes; A ’B ’and F ‘D ‘in Figure 9.4 are therefore cross-sections of the bent beam, but are no 
longer parallel to each other. 

Figure 9.3 Cross-section of a 
rectangular beam. 

Figure 9.4 Beam bent to a uniform radius of 
curvature R in the yz-plane. 

In the bent form, some of the longitudinal fibres, such as A ‘F ; are stretched, whereas others, 
such as B ‘D ’are compressed. The unstrained middle surface of the beam is known as the neutral 
axis. Now consider an elemental fibre HJof the beam, parallel to the longitudinal axis Cz, Figure 
9.5; this fibre is at a distance y from the neutral surface and on the tension side of the beam. The 
original length of the fibre HJ in the unstrained beam is Sz; the strained length is 

1 1  - 6Z H J  - ( R + y ) -  
R 

because the angle between A ’B ’and F ‘D ‘in Figure 9.4 and 9.5 is (6zR).  Then during bending 
HJ stretches an amount 

6Z Y H’J’ - HJ = (R + y )  - - SZ = - 6~ 
R R 

The longitudinal strain of the fibre HJ is therefore 

E = ( ; t iz)  / s z  = - Y 
R 
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Figure 9.5 Stresses on a bent element of the beam. 

Then the longitudinal strain at any fibre is proportional to the distance of that fibre from the neutral 
surface; over the compressed fibres, on the lower side of the beam, the strains are of course 
negative. 

If the material of the beam remains elastic during bending then the longitudinal stress on the 
fibre HJ is 

(9.1) 
o = E c = -  EY 

R 

The distribution of longitudinal stresses over the cross-section takes the form shown in Figure 9.6; 
because of the symmetrical distribution ofthese stresses about Cx, there is no resultant longitudinal 
thrust on the cross-section of the beam. The resultant hogging moment is 

1 + -h 

M = /-i ObYdV (9.2) 
2 

On substituting for o from equation (9.1), we have 
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(9.3) 
EIX 

R - 1 h  R 

*L 
M = “[ 2 by2& = __ 

Figure 9.6 Distribution of bending stresses giving zero resultant 
longitudinal force and a resultant couple M. 

where I, is the second moment of area of the cross-section about Cx. From equations (9.1) and 
(9.3), we have 

A4 
(9.4) 

- _ - _ -  D -  E -  
Y R 4 

We deduce that a uniform radius of curvature, R, of the centroidal axis Cz can be sustained by end 
couples M, applied about the axes Cx at the ends of the beam. 

Equation (9.3) implies a linear relationship between M, the applied moment, and (l/R), the 
curvature of the beam. The constant EI, in this linear relationship is called the bending stiffness 
or sometimes thejlexural stiffness of the beam; thls stiffness is the product of Young’s modulus, 
E,  and the second moment of area, Ix, of the cross-section about the axis of bending. 

Problem 9.1 A steel bar of rectangular cross-section, 10 cm deep and 5 cm wide, is bent in 
the planes of the longer sides. Estimate the greatest allowable bending moment 
if the bending stresses are not to exceed 150 MN/m2 in tension and 
compression. 
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Solution 

The bending moment is applied about Cx. The second moment of area about h s  axis is 

1 
12 

Z, = - (0.05) (0.10)3 = 4.16 x m2 

The bending stress, o, at a fibre a distancey from Cx is, by equation (9.4) 

where M is the applied moment. If the greatest stresses are not to exceed 150 MN/m2, we must 
have 

- M y  2 150 MN/m* 

The greatest bending stresses occur in the extreme fibres where y = 5 cm. Then 

(150 lo6) 1, - (150 x lo6) (4.16 x 

(0.05) (0.05) 
M <  - 

= 12500 Nm 

The greatest allowable bending moment is therefore 12 500 Nm. (The second moment of area 
about Cy is 

1 
12 

Zy = - (0.10) (0.05)3 = 1.04 x m2 

The greatest allowable bending moment about Cy is 

(150 lo6) IY - (150 x lo6) (1.04 x 

(0.025) (0.025) 
M = - -  

= 6250 Nm 

which is only half that about Cx. 

9.3 Bending of a beam about a principal axis 

In section 9.2 we considered the bending of a straight beam of rectangular cross-section; this form 
of cross-section has two axes of symmetry. More generally we are concerned with sections having 
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only one, or no, axis of symmetry. 
Consider a long straight uniform beam having any cross-sectional form, Figure 9.7; the axes 

Cx and Cy are principal axes of the cross-section. The principal axes of a cross-section are those 
centroid axes for which the product second moments of area are zero. In Figure 9.7, C is the 
centroidal of the cross-section; Cz is the longitudinal centroidal axis. 

Figure 9.7 General cross-sectional Figure 9.8 Elemental length of a beam. 
form of a beam. 

When end couples Mare applied to the beam, we assume as before that transverse sections of the 
beam remain plane during bending. Suppose further that, if the beam is bent in the yz-plane only, 
there is a neutral axis C ' x  ; Figure 9.7, which is parallel to Cx and is unstrained; radius of 
curvature of this neutral surface is R, Figure 9.8. As before, the strain in a longitudinal fibre at a 
distance y 'from C ' x  'is 

- Y '  & - -  
R 

If the material of the beam remains elastic during bending the longitudinal stress on this fibre is 

o = -  EY I 

R 

If there is to be no resultant longitudinal thrust on the beam at any transverse section we must have 

/ A  ob@' = 0 

Where b is the breadth of an elemental strip of the cross-section parallel to Cx, and the integration 
is performed over the whole cross-sectional area, A. But 

E obdy' = - / y'bdy' 
/ A  R A  

This can be zero only if C ' x  'is a centroidal axis; now, Cx is a principal axis, and is therefore a 
centroidal axis, so that C ' x  'and Cx are coincident, and the neutral axis is Cx in any cross-section 
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of the beam. The total moment about Cx of the internal stresses is 

E 
R A  

M = lA o b y 4  = - [ by2+ 

But J A  by dy is the second moment of area of the cross-section about Cx; if h s  is denoted by I,, 
then 

(9.5) 
M = -  EIX 

R 

The stress in any fibre a distance y from Cx is 

(9.6) 
o = - - -  EY - MY 

R I X  

No moment about Cy is implied by this stress system, for 

/AmdA = -/-xydA E = 0 
R A  

because Cx and Cy are principal axes for which J A  xy dA, or the product second moment of area, 
is zero; 6A is an element of area of the cross-section. 

9.4 Beams having two axes of symmetry in the cross-section 

Many cross-sectional forms used in practice have two axes of symmetry; examples are the 
I-section and circular sections, Figure 9.9, besides the rectangular beam already discussed. 

Figure 9.9 (i) I-section beam. (ii) Solid circular cross-section. 
(iii) Hollow circular cross-section. 

An axis of symmetry of a cross-section is also a principal axis; then for bending about the axis Cx 
we have, from equation (9.6), 
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(9.7) 
o = E y = -  %Y 

RX I,  

where R, is the radius of curvature in the yz-plane, M, is the moment about Cx, and I, is the second 
moment of area about Cx. Similarly for bending by a couple My about Cy, 

(9.8) 
o = - - -  Ex - MYx 

RY 'Y  

where R,, is the radius of curvature in the xz-plane, and I, is the second moment of area about Cy. 
The longitudinal centroid axis is Cz. From equations (9.7) and (9.8) we see that the greatest 
bending stresses occur in the extreme longitudinal fibres of the beams. 

Problem 9.2 A light-alloy I-beam of 10 cm overall depth has flanges of overall breadth 5 cm 
and thickness 0.625 cm, the thlckness of the web is 0.475 cm. If the bending 
stresses are not to exceed 150 MN/m2 in tension and compression estimate the 
greatest moments which may be applied about the principal axes of the cross- 
section. 

Solution 

Consider, first, bending about Cx. From equation (8. lo), the second moment of area about Cx is 

I, = 0.05 x 0.13/12 - (0.05 - 0.00475) x (0.1 - 2 x 0.00625)3/12 

= 4.167 x 1O-6 - 0.04525 x 0.087S3/12 

= 4.167 x 1O-6 - 2.526 x 1O-6 

I ,  = 1.641 x 1O-6 m 4  

The above calculation has been obtained by taking away the second moments of area of the two 
inner rectangles from the second moment of area of the outer rectangle, as previously 
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demonstrated in Chapter 8. The allowable moment M, is 

& f x = - -  Orx - (150 x lo6) (1.64 x 1O-6) = 4926 Nm 
Y 0.05 

Second, for bending about Cy. 
I,, = (0.1-2~0.00625) x 0.004753 / 12+2 x 0.00625 x 0.0S3 / 12 

The first term, which is the contribution of the web, is negligible compared with the second. With 
sufficient accuracy 

Zy = 2( $) (0.00625) (0.05)3 = 0.130 x 1O-6 m 4  

The allowable moment about Cy is 

GIy - (150 x lo6) (0.130 x l@-6) = 780 Nm 
% = - -  X 0.025 

Problem 9.3 A steel scaffold tube has an external diameter of 5 cm, and a thickness of 0.5 
cm. Estimate the allowable bending moment on the tube if the bending stresses 
are limited to 100 MN/m2. 

Solution 

From equation (8.19), the second moment of area about a centroid axis Cx is 
7c 4 4 

4 

The allowable bending moment about Cx is 

I ,  = -[(0.025) - (0.020) ] = 0.181 x 1o-6 m4 

(100 x lo6) (0.181 x 1O-6) = 724 Nm M, = 
0.025 
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9.5 Beams having only one axis of symmetry 

Other common sections in use, as shown in Figure 9.10, have only one axis of symmetry Cx. In 
each of these, Cx is the axis of symmetry, and Cx and Cy are both principal axes. When bending 
moments M, and My are applied about Cx and Cy, respectively, the bending stresses are again 
given by equations (9.7) and (9.8). However, an important feature of beams of this type is that 
their behaviour in bending when shearing forces are also present is not as simple as that of beams 
having two axes of symmetry. This problem is discussed in Chapter 10. 

Figure 9.10 (i) Channel section. (ii) Equal angle section. (iii) T-secuon. 

Problem 9.4 A T-section of uniform thickness 1 cm has a flange breadth of 10 cm and an 
overall depth of 10 cm. Estimate the allowable bending moments about the 
principal axes if the bending stresses are limited to 150 MN/m2. 

Solution 

Suppose 7 is the distance of the principal axis Cx from the remote edge of the flange. The total 
area of the section is 

A = (0.10) (0.01) + (0.09) (0.01) = 1.90 x lO-3 m 2  

OII taking first moments of areas about the upper edge of the flange, 

A i  = (O.lO)(O.Ol)(O.OOS) + (0.09)(0.01)(0.055) = 0.0545 x 10-3m3 
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Then 

- 0.0545 x = 0.0287 
Y =  

1.9 10-3 

The second moment of area of the flange about Cx is 

1 - (0.10) (0.01)3 + (0.10) (0.01) (0.0237)' = 0.570 x m 4  
12 

The second moment of area of the web about Cx is 

1 - (0.01) (0.09)3 + (0.09) (0.01) (0.0263)' = 1.230 x m 4  
12 

Then 

1, = (0.570 + 1.230) = 1.800 x m4 

For bending about Cx, the greatest bending stress occurs at the toe of the web, as shown in the 
figure. The maximum allowable moment is 

(150 x lo6) (1.800 x 
= 3790 Nm M, = 

0.07 13 

The bending stress in the extreme fibres of the flange is only 60.4 MN/m2 at this bending moment. 
The second moment of area about Cy is 

1 1 
12 12 

I,, = - (0.01) (0.10)3 + - (0.09) (0.01)3 = 0.841 x m 4  

The T-section is symmetrical about Cy, and for bending about this axis equal tensile and 
compressive stresses are induced in the extreme fibres of the flange; the greatest allowable moment 
is 

= 2520 Nm (150 x lo6) (0.841 x M,, = 
0.05 

9.6 More general case of pure bending 

In the analysis of the preceding sections we have assumed either that the cross-section has two 
axes of symmetry, or that bending takes place about a principal axis. In the more general case we 
are interested in bending stress in the beam when moments are applied about any axis of the cross- 
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section. Consider a long uniform beam, Figure 9.11, having any cross-section; the centroid of a 
cross-section is C, and Cz is the longitudinal axis of the beam; Cx and Cy are any two mutually 
perpendicular axes in the cross-section. The axes Cx, Cy and Cz are therefore centroidal axes of 
the beam. 

Figure 9.11 Co-ordinate system for a beam of any cross-sectional form. 

We suppose first that the beam is bent in the yz-plane only, in such a way that the axis Cz takes 
up the form of a circular arc of radius R,, Figure 9.12. Suppose further there is no longitudinal 
strain of Cx; this axis is then a neutral axis. The strain at a distance y from the neutral axis is 

E = -  Y 
RX 

If the material of a beam is elastic, the longitudinal stress in this fibre is 

o = -  EY 
RX 

Figure 9.12 Bending in the yz-plane. Figure 9.13 Bending moments about the 
axes C, and Cy. 

Suppose 6A is a small element of area of the cross-section of the beam acted upon by the direct 
stress 6, Figures 9.12 and 9.13. Then the total thrust on any cross-section in the direction Cz is 
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where the integration is performed over the whole area A of the beam. But, as Cx is a centriodal 
axis, we have 

JAY& = 0 

and no resultant longitudinal thrust is implied by the stresses cs. The moment about Cx due to the 
stresses cs is 

E EIX 

Rx A RX 
Mx = JAW& = -1 y*dA = - (9.9) 

where I, is the second moment of area of the cross-section about Cx. For the resultant moment 
about Cy we have 

(9.10) My = I , c s x d A  = - J  E X y d A  - - - EIV 
Rx A RX 

where I, is the product second moment of area of the cross-section about Cx and Cy. Unless I, 
is zero, in which case Cx and Cy are the principal axes, bending in the yz-plane implies not only 
a couple M, about the Cx axis, but also a couple My about Cy. 

Figure 9.14 Bending in the xz-plane. 

When the beam is bent in the xz-plane only, Figure 9.14, so that Cz again lies in the neutral 
surface, and takes up a curve of radius R,,, the longitudinal stress in a fibre a distance x from the 
neutral axis is 
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The thrust implied by these stresses is again zero as 

I,odA = -[ E X d A  = 0 
RY A 

because Cy is a centroidal axis of the cross-section. The bending moment about Cy due to stresses 
o is 

E 

R.V 

where I, is the second moment of area of the cross-section about Cy. Furthermore, 

(9.1 1 )  

(9.12) 

where I, is again the product second moment of area. 

Cy, respectively, are 
If we now superimpose the two loading conditions, the total moments about the axes Cx and 

EIx EIv 
Mx = -i- 

RX RY 

EIY EIv 
MY = -i- 

RY RX 

These equations may be rearranged in the forms 

- -  1 -  M x  'y - My 4 y  

Rx E (Ix Iy - IxL) 

(9.13) 

(9.14) 

(9.15) 

(9.16) 

where ( l /RJ  and ( l /RJ  are the curvatures in the yz-and xz-planes caused by any set of moments 
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M, and My. If C, and Cy are the principal centroid axes then IT = 0, and equations (9.15) and 
(9.16) reduce to 

(9.17) 1 - MY - - -  1 -  MX 

RX EIx ’ RY E’Y 

- - -  

In general we require a knowledge of three geometrical properties of the cross-section, namely Z, 
I, and I,. The resultant longitudinal stress at any point (x, y )  of the cross-section of the beam is 

Ex Ey x ( M y  I x  - M x  Ixy)+Y( M x  I y  - M y  I x y  ) 
(9.18) (3 = -+-= 

Ry Rx ( Ix I y  - I x y  * )  

This stress is zero for points of the cross-section on the line 

X(!” Ix - Mx 1,) + y (Mx ‘y - !” 1,) = O (9.19) 

which is the equation of the unstressed fibre, or neutral axis, of the beam. 

Problem 9.5 The I-section of Problem 9.2 is bent by couples of 2500 Nm about Cx and 500 
Nm about Cy. Estimate the maximum bending stress in the cross-section, and 
find the equation of the neutral axis of the beam. 
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Solution 

From Problem 9.2 

Ix  = 1.641 x m4,  Iy = 0.130 x m 4  

For bending about Cx the bending stresses in the extreme fibres of the flanges are 

For bending about Cy the bending stresses at the extreme ends of the flanges are 

On superposing the stresses due to the separate moments, the stress at the comer a is tensile, and 
of magnitude 

oa = (76.1 + 96.1) = 172.2 m / m 2  

The total stress at the comer a 'is also 172.2 MN/m2, but compressive. The total stress at the 
comer b is compressive, and of magnitude 

cr,, = (96.1 - 76.1) = 20.2 MN/m2 

The total stress at the comer b 'is also 20.0 MN/m2, but tensile. The equation of the neutral axis 
is given by 

X M ,  Ix + yMx Iv = 0 

Then 

The greatest bending stresses occur at points most remote from the neutral axis; these are the 
points a and a < the greatest bending stresses are therefore + 172.2 MN/m'. 
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9.7 Elastic section modulus 

For bending of a section about a principal axis Cx, the longitudinal bending stress at a fibre a 
distance y from Cx, due to a moment M, is from equation (9.18) (in which we put IV = 0 and My 
= 01, 

where I, is the second moment of area about Cx. The greatest bending stress occurs at the fibre 
most remote from Cx. If the distance to the extreme fibre is y,,, the maximum bending stress is 

The allowable moment for a given value of om is therefore 

The geometrical quantity (IJy-) is the elastic section modulus, and is denoted by Z,. 

(9.20) 

(9.21) 

The allowable bending moment is therefore the product of a geometrical quantity, Z,, and the 
maximum allowable stress, om. The quantity Z, a,, is frequently called the elastic moment of 
resistance. 

Problem 9.6 A steel I-beam is to be designed to carry a bending moment of los Nm, and the 
maximum bending stress is not to exceed 150 MN/m2. Estimate the required 
elastic section modulus, and find a suitable beam. 

Solution 

The required elastic section modulus is 

= 0.667 x m 3  z , = - -  M -  105 

o 150 x lo6 
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The elastic section modulus of a 22.8 cm by 17.8 cm standard steel I-beam about its axis of 
greatest bending stdfhess is 0.759 x lo-’ m’, which is a suitable beam. 

9.8 Longitudinal stresses while shearing forces are present 

The analysis of the proceeding paragraphs deals with longitudinal stresses in beams under uniform 
bending moment. No shearing forces are present at cross-sections of the beam in this case. 

When a beam carries lateral forces, bending moments may vary along the length of the beam. 
Under these conditions we may assume with sufficient accuracy in most engineering problems that 
the longitudinal stresses at any section are dependant only on the bending moment at that section, 
and are unaffected by the shearing force at that section. 

Where a shearing force is present at the section of a beam, an elemental length of the beam 
undergoes a slight shearing distortion; these shearing distortions make a negligible contribution 
to the total deflection of the beam in most engineering problems. 

Problem 9.7 A 4 m length of the I-beam of Problem 9.2 is simply-supported at each end. 
What maximum central lateral load may be applied if the bending stresses are 
not to exceed 150 MNIm’? 

Solution 

Suppose W is the central load. If this is applied in the plane of the web, then bending takes place 
about Cx. The maximum bending moment is 

1 
2 

M, = -W(2) = W N m  

From Problem 9.2, 

I, = 1.641 x 1O-6 m 4  
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Then, the greatest bending stress is 

f J = - -  Mx Ymax - (w) (0.05) 
I ,  1.641 x 1O-6 

If this is equal to 150 MN/m2, then 

= 4920 N (I50 x lo6) (1.641 x 1O-6) 
0.05 

w =  

Problem 9.8 If  the bending stresses are again limited to 150 MN/m2, what total uniformly- 
distributed load may be applied to the beam of Problem 9.7? 

Solution 

The maximum bending moment occurs at mid-span, and has the value 

WL 1 
8 2 

M, = - = - W N m  

Then 

-w 1 = (150 x IO6) (1.641 x 1O-6) = 4920 N 
2 0.05 

and 

W = 9840 N 

9.9 Calculation of the principal second moments of area 

In problems of bending involving beams of unsymmetrical cross-section we have frequently to 
find the principal axes of the cross-section. 

Suppose Cx and Cy are any two centroidal axes of the cross-section of the beam, Figure 9.15. 
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Figure 9.15 Derivation of the principal axes of a section. 

If 6A is an elemental area of the cross-section at the point (x, y) ,  then the property of the axes Cx 
and Cy is that 

/ A X d A  = / A Y d A  = O 

The second moments of area about the axes Cx and Cy, respectively, are 

zx = / A  y2dA, Iy = I, xzdA (9.22) 

The product second moment of area is 

4." = I, XYd (9.23) 

Now consider two mutually perpendicular axes Cx 'and Cy < which are the principal axes of 
bending, inclined at an angle 0 to the axes Cx and Cy. A point having co-ordinates (x ,  y )  in the xy- 
system, now has co-ordinates (x  ; y 3 in the x 'y '-system. Further, we have 

X I  = x cos8 + y sine 

y' = y cos8 - x sine 

The second moment of area of the cross-section about Cx 'is 

IT, = 1, y'12dA 

which becomes 
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This may be written 

Similarly, the second moment of area about Cy 'is 

Then 

I,,, = I,, cos2e + 21,.,, case sine + I, sin2e 

Finally, the product second moment of area about Cx 'and Cy 'is 

Then 

I , , = I~ sine case + I cos2e - sin2e - I case sine 
= Y  4 ) Y  

(9.24) 

(9.25) 

(9.26) 

We note from equations (9.24) and (9.25), that 

I,, + Iy ,  = I, + I ,  (9.27) 

that is, the sum ofthe second moments of area about any perpendicular axes is independent of 8. 
The sum is in fact the polar second moment of area, or the second moment of area about an axis 
through C, perpendicular to the xy-plane. 

We may write equation (9.26) in the form 
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(9.28) 1 
2 zX,,,/ = - F~ - z,) sin 28 + zv cos 28 

The principal axes Cx 'and Cy 'are defined as those for which IxL I = 0; then for the principal axes 

1 - (zI - I,) sin 28 + COS 28 = o 
2 

or 

(9.29) 

This relationshlp gives two values of 0 differing by 90". On malung use of equation (9.27), we 
may write equations (9.24) and (9.25) in the forms 

(9.30) 

Now 

1 + (rX + zy) COS 28 . (/x - 1,) 
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1 1 
4 2 

1 1 
2 

-- (zX - I,P cos' 28 + - ( I ~  - I,) cos 28 . 'I.v . sin 28 

-2 zX," (zX + ZJ sin 28 + - z~! ( I ~  - 'J sin 28 cos 28 - I; sin2 28 

I 1 = - ( I ~  + I$ - T ( I ~  - z,,? cos' 28 - zX; sin' 28 
4 

+ Ixy (IX - fv) sin 28 COS 28 

or 

1)' (9.3 1) 
2 

I ~ ,  I , , ,=[+(I~ + I J ]  -{+[(I. -1,,)co~2e-2z,~in2e 

From equation (9.29), the mathematical triangle of the figure below is obtained: 

From the mathematical triangle 

(/v - 4)  
COS 28 = 

/- 

6 7 F - q  
2 IX? and sin 28 = 



Calculation of the principal second moments of area 235 

2 Ix#  I y .  = I I - I  X Y  Xy 
or 

Substituting equation (9.27) into equation (9.32) we get 

2 
(rx + IY - ZY/) IY/ = I, ‘” - IV 

or IY2/ - Q + l y )  ‘,I + Cr, ‘v - 43 

Similarly, 

IX2/ - (4 + ‘v) 1,) + (Ix ‘v - I;), 

(9.32) 

(9.3 3 a) 

(9.33b) 

which are both quadratic equations. 

where I = a principal second moment of area 
In general, equations (9.33a) and (9.33b) can be written as the following quadratic equation, 

I 2  - (Ix + IY) 1 + (I, /” - 1;) = 0 (9.34) 
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Then 

I = 1 2 (I, + I,) f 4- (9.35) 

which may be written 

1 
I = - 2 (I, - Iy)* J- (9.36) 

Equations (9.30) and (9.26) may be written in the form 

1 I y  - - 2 (  I x + I y  ) = $(I, - 1 , ) ) w s 2 e -  rV sin28 

1 
2 

I , ~  = -( z, - I,,) sin 28 + I~ cos 28 (9.37) 

Square each equation, and then add; we have 
2 2 [~x~-3(1.-Iy)] +[I”’ , ’ ]  = [+(IX - 1,)12 +[zxy]2 (9.38) 

Figure 9.1 6 Graphical representation of the second moments of area. 

Then I,, 1, p I lie on a circle of radius 

I [; ( I x  - G I  + [I$ (9.39) 

and centre 
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[+ ( rx  + ZY), 01 (9.40) 

in the I, ,, Z, ,y I diagram. 
Suppose OIx and OZx 'u are  mutually perpendicular axes; then equation (9.38) has the graphical 

representation shown in Figure 9.16. To find the principal second moments of area, locate the 
points (I, Z,) and (I,, - I,) in the (I, I ZxJ. .) plane. With the line joining these points as a diameter 
construct a circle. The principal second moments of area, Z, and Z,, are given by the points where 
the circle cuts the axis OZx . Figure 9.16 might be referred to as the circle of second moments of 
area. 

Problem 9.9 An unequal angle section of uniform hckness 0.5 cm has legs of iengths 6 cm 
and 4 cm. Estimate the positions of the principal axes, and the principal second 
moments of area. 

Solution 

Firstly, find the position of the centroid of the cross-section. Total area is 

A = (0.06) (0.005) + (0.035) (0.005) 

= 0.475 x l O - 3  m z  

Now 

& = (0.055) (0.005) (0.0025) + (0.04) (0.005) (0.02) 

= 4.69 x 1O-6 m 3  
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Then 

Again 

A: = (0.035) (0.005) (0.0025) + (0.06) (0,005) (0.03) = 9.44 x m 3  

Then 

Now 

1 1 - (0.005) (0.06)3 + - (0.035) (0.005)3 - (0.475 x 
3 3 fx = (0.01985)’ 

= 0.174 x m 4  

and 

1 1 
3 3 

f, = -(0.005)(0.04)’ + -(0.055)(0.005)’ - (0.475 x 10-3)(0.00986)2 

= 0.063 x m 4  

With the axes Cx and Cy having the positive directions shown, 

= 1 ([(0.04 - i), - (-;)’I [(0.005 - y)’ - (-,)’I 
4 

+ [(0.005 - 3’ - (-ir] [(0.06 - ,)I - (-; + O.O05)’]]r 

= -0.06 x low6 m 4  



Elastic strain energy of bending 239 

From equation (9.29), 

Then 

28 = 47.2" 

and 

e = 23.6" 

From equations (9.36) the principal second moments of area are 

= 0.2173 or 0.0197 x m 4  

9.10 Elastic strain energy of bending 

As couples are applied to a beam, strain energy is stored in the fibres. Consider an elemental 
length 6z of a beam, which is bent about a principal axis Cx by a moment M,, Figure 9.17. During 
bending, the moments M, at each end of the element are displaced with respect to each other an 
angular amount 

6 Z  
f j x -  

RX 

where R, is the radius of curvature in the yz-plane. But from equation (9.6) 

(9.41) 

and thus 
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M, 6z 

Er, 
(9.42) e = -  

Figure 9.17 Bent form of an elemental length of beam. 

As there is a linear relation between 9 and M,, the total work done by the moments M, during 
bending of the element is 

Mx2 6z 
(9.43) 1 

2 2EIx 
- MX0 = - 

which is equal to the strain energy of bending of the element. For a uniform beam of length L 
under a moment M,, constant throughout its length, the bending strain energy is then 

M,’ L u = -  
2EIx (9.44) 

When the bending moment varies along the length, the total bending strain energy is 
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M,' dr 
(9.45) 

u = f L 2 y  

where the integration is canied out over the whole length L of the beam. 

9.1 1 Change of cross-section in pure bending 

In Section 9.1 we pointed out the change which takes place in the shape of the cross-section when 
a beam is bent. Th~s  change involves lnfmitesimal lateral strains in the beam. The upper and 
lower edges of a cross-section which was originally rectangular, are strained into concentric 
circular arcs with their centre on the opposite side of the beam to the axis of bending. The upper 
and lower surfaces of the beam then have anticlastic curvature, the general nature of the strain 
being as shown in Figure 9.18. The anticlastic curvature effect can be readily observed by bending 
a flat piece of india-rubber. If the beam is bent to a mean radius R,  we find that cross-sections are 
bent to a mean radius (Wv). 

Figure 9.18 Anticlastic curvature in the cross-section of a bent rectangular beam. 

Problem 9.10 What load can a beam 4 m long carry at its centre, if the cross-section is a 
hollow square 30 cm by 30 cm outside and 4 cm thick, the permissible 
longitudinal stress being 75 MN/m*? 

Solution 

We must find the second moment of area of cross-section about its neutral axis. The inside is a 
square 22 cm by 22 cm. Then 

1 - (0.34 - O Z 4 )  = 0.47 x l O - 3  m 4  
12 

The length of the beam is 4 m; therefore if W N be a concentrated load at the middle, the 
maximum bending moment is 
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WL 
4 

Mx = - = WNm 

Hence the maximum stress is 

MXY W(0.15) ( J = - =  
4 0.47 x l O - 3  

If (J = 75 MN/m2 we must therefore have 

(75 x io6) (0.47 x io-3) = 235 kN w =  
0.15 

Problem 9.1 1 Estimate the elastic section modulus and the maximurn longitudinal stress in 
a built-up I-girder, with equal flanges carrying a load of 50 kN per metre run, 
with a clear span of 20 m. The web is of thickness 1.25 cm and the depth 
between flanges 2 m. Each flange consists of four 1 cm plates 65 cm wide, and 
is attached to the web by angle iron sections 10 cm by 10 cm by 1.25 cm thick. 
(Cam bridge) 

Solution 

The second moment of area of each flange about Cx is 

(0.04) (0.65) (1.02)2 = 0.0270 m 4  

The second moment of area of the web about Cx is 
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1 - (0.0125) (2)3 = 0.0083 m 4  
12 

The horizontal part of each angle section has an area 0.00125 m2, and its centroid is 0.944 m from 
the neutral axis. Therefore the corresponding second moment of area is approximately 

(0.00125) (0.994)2 = 0.0012 m 4  

The area of the vertical part of each angle section is 0.001093 m2, and its centroid is 0.944 m from 
the neutral axis. Therefore the corresponding second moment of area is approximately 

(0.001093) (0.944)2 = 0.00097 m 4  

The second moment of area of the whole section of the angle section about Cx is then 

0.0012 + 0.00097 = 0.0022 m 4  

The second moment of area of the whole cross-section of the beam is then 

I, = 2 (0.0270) + (0.0083) + 4 (0.0022) 

= 0.0711 m 4  

The elastic section modulus is therefore 

0.07 1 1 
1.04 

Ze = - = 0.0684 m 3  

The bending moment at the mid-span is 

The greatest longitudinal stress is then 
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Further problems (answers on page 692) 

9.12 A beam of I-section is 25 cm deep and has equal flanges 10 cm broad. The web is 0.75 
cm h c k  and the flanges 1.25 cm h c k .  If the beam may be stressed in bending to 120 
MNIm2, what bending moment will it carry? (Cambridge) 

The front-axle beam of a motor vehicle carries the loads shown. The axle is of I-section: 
flanges 7.5 cm by 2.5 cm, web 5 cm by 2.5 cm. Calculate the tensile stress at the bottom 
of the axle beam. (Cambridge) 

9.13 

9.14 A water trough 8 m long, is simply-supported at the ends. It is supported at its 
extremities and is filled with water. If the metal has a density 7840 kg/m3, and the water 
a density 1000 kg/m3, calculate the greatest longitudinal stress for the middle cross- 
section of the trough. (Cambridge) 

9.1 5 A built-up steel I-girder is 2 m deep over the flanges, each of which consists of four 1 
cm plates, 1 m wide, riveted together. The web is 1 cm thick and is attached to the 
flanges by four 9 cm by 9 cm by 1 cm angle sections. The girder has a clear run of 30 
m between the supports and carries a superimposed load of 60 kN per metre. Find the 
maximum longitudinal stress. (Cambridge) 

A beam rests on supports 3 m apart carries a load of 10 kN uniformly distributed. The 
beam is rectangular in section 7.5 cm deep. How wide should it be if the skin-stress 
must not exceed 60 MNIm’? (RNEC) 

9.1 6 


