
3 Shearing stress 

3.1 Introduction 

In Chapter 1 we made a study of tensile and compressive stresses, which we called direct stresses. 
There is another type of stress which plays a vital role in the behaviour of materials, especially 
metals. 

Consider a thin block of material, Figure 3.1, whch is glued to a table; suppose a thin plate is 
now glued to the upper surface of the block. If a horizontal force F is applied to the plate, the plate 
will tend to slide along the top of the block of material, and the block itself will tend to slide along 
the table. Provided the glued surfaces remain intact, the table resists the sliding of the block, and 
the block resists the sliding of the plate on its upper surface. Ifwe consider the block to be divided 
by any imaginary horizontal plane, such as ab, the part of the block above this plane will be trying 
to slide over the part below the plane. The material on each side of this plane will be trying to slide 
over the part below the plane. The material on each side of this plane is said to be subjected to a 
shearing action; the stresses arising from these actions are called shearing stresses. Shearing 
stresses act tangential to the surface, unllke direct stresses which act perpendicular to the surface. 

Figure 3.1 Shearing stresses caused 
by shearing forces. 

Figure 3.2 Shearing stresses in a rivet; shearing 
forces F is transmitted over the face ab of the 

rivet. 

In general, a pair of garden shears cuts the sterns of shrubs through shearing action and not 
bending action. Shearing stresses arise in many other practical problem. Figure 3.2 shows two 
flat plates held together by a single rivet, and carrying a tensile force F. We imagine the rivet 
divided into two portions by the plane ab; then the upper half of the rivet is tending to slide over 
the lower half, and a shearing stress is set up in the plane ab. Figure 3.3 shows a circular shaft a,  
with a collar c, held in bearing b, one end of the shaft being pushed with a force F; in this case 
there is, firstly, a tendency for the shaft to be pushed bodily through the collar, thereby inducing 
shearing stresses over the cylindncal surfaces d of the shaft and the collar; secondly, there is a 
tendency for the collar to push through the bearing, so that shearing stresses are set up on 
cylindrical surfaces such as e in the bearing. As a thud example, consider the case of a steel bolt 
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in the end of a bar of wood, Figure 3.4, the bolt being pulled by forces F; suppose the grain of the 
wood runs parallel to the length of the bar; then if the forces Fare large enough the block abed will 
be pushed out, shearing taking place along the planes ab and cd. 

Figure 3.3 Thrust on the collar of a shaft, generating 
shearing stress over the planes d. 

Figure 3.4 Tearing of the end of a timber member by a steel bolt, 
generating a shearing action on the planes ab and cd. 

3.2 Measurement of shearing stress 

Shearing stress on any surface is defined as the intensity of shearing force tangential to the surface. 
If the block of material of Figure 3.1 has an area A over any section such as ab, the average 
shearing stress T over the section ab is 

F 
A ‘ T = -  (3.1) 

In many cases the shearing force is not dstributed uniformly over any section; if 6F  is the shearing 
force on any elemental area 6A of a section, the shearing stress on that elemental area is 

6F dF 
T = Limit - = - 

S A + O  6 A  d4 (3.2) 

Problem 3.1 Three steel plates are held together by a 1.5 cm diameter rivet. If the load 
transmitted is 50 kN, estimate the shearing stress in the rivet. 
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Solution 

There is a tendency to shear across the planes in the rivet shown by broken lines. The area 
resisting shear is twice the cross-sectional area of the rivet; the cross-sectional area of the rivet is 

n 
A = - (0.015)2 = 0.177 x l O - 3  m2 

4 

The average shearing stress in the rivet is then 

25 x lo3 
= 141 m / m 2  

F 

A 0.177 x l O - 3  
T =  - =  

Problem 3.2 Two steel rods are connected by a cotter joint. If the shearing strength of the 
steel used in the rods and the cotter is 150 MN/m2, estimate which part of the 
joint is more prone to shearing failure. 

Solution 

Shearing failure may occur in the following ways: 

(i) Shearing of the cotter in the planes ab and cd. 
The area resisting shear is 2@772h) = 2(0.075 (0.015) = 2.25 x l O - 3  m2 
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For a shearing failure on these planes, the tensile force is 

P = T A  = (150 x IO6) (2.25 x lO-3) = 338 kN 

(ii) By the cotter tearing through the ends of the socket q, i.e. by shearing the planes efand gh. 
The total area resisting shear is 

A = 4(0.030) (0.035) = 4.20 x l O - 3  m2 

For a shearing failure on these planes 

P = TA = (150 x lo6) (4.20 x lO-3) = 630 kN 

(iii) By the cotter tearing through the ends of the rodp, i.e. by shearing in the planes kl and mn. 
The total area resisting shear is 

A = 2(0.035) (0.060) = 4.20 x lO-3  m2 

For a shearing failure on these planes 

P = TA = (150 x IO6) (4.20 x lO-3) = 630kN 

Thus, the connection is most vulnerable to shearing failure in the cotter itself, as discussed 
in (i); the tensile load for shearing failure is 338 kN. 

Problem 3.3 A lever is keyed to a shaft 4 cm in diameter, the width ofthe key being 1.25 cm 
and its length 5 cm. What load P can be applied at an ann of a = 1 m if the 
average shearing stress in the key is not to exceed 60 MN/m*? 

Solution 

The torque applied to the shaft is Pa. If this is resisted by a shearing force F on the plane ab of the 
key, then 

Fr = Pa 

where r is the radius of the shaft. Then 
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F = - - - -  Pa - P(1) - 5op 
r (0.02) 

The area resisting shear in the key is 

A = 0.0125 x 0.050 = 0.625 x lO-3 m 2  

The permissible shearing force on the plane ab of the key is then 

F = TA = (60 x lo6) (0.625 x lO-3) = 37.5 kN 

The permissible value of P is then 

F 
50 

P = - = 7 5 0 N  

3.3 Complementary shearing stress  

Let us return now to the consideration of the block shown in Figure 3.1. We have seen that 
horizontal planes, such as ab, are subjected to shearing stresses. In fact the state of stress is rather 
more complex than we have supposed, because for rotational equilibrium of the whole block an 
external couple is required to balance the couple due to the shearing forces F. Suppose the material 
of the block is divided into a number of rectangular elements, as shown by the full lines of Figure 
3.5. Under the actions of the shearing forces F, which together constitute a couple, the elements 
will tend to take up the positions shown by the broken lines in Figure 3.5. It will be seen that there 
is a tendency for the vertical faces of the elements to slide over each other. Actually the ends of 
the elements do not slide over each other in this way, but the tendency to so do shows that the 
shearing stress in horizontal planes is accompanied by shearing stresses in vertical planes 
perpendicular to the applied shearing forces. This is true of all cases of shearing action: a given 
shearing stress acting on one plane is always accompanied by a complementary shearing stress on 
planes at right angles to the plane on which the given stress acts. 

Figure 3.5 Tendency for a set of disconnected blocks 
to rotate when shearing forces are applied. 

Consider now the equilibrium of one of the elementary blocks of Figure 3.5. Let T~ be the 
shearing stress on the horizontal faces of the element, and T,,~ the complementary shearing stress' 

'Notice that the first suffix x shows the direction, the second the plane on which the stress acts; thus T~~ acts in 
direction of x axis on planes y = constant. 
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on vertical faces of the element, Figure 3.6. Suppose a is the length of the element, b its height, 
and that it has unit thickness. The total shearing force on the upper and lower faces is then 

Txy”  a x 1 = UT, 

while the total shearing force on the end faces is 

Tyx x b x 1 = bTYX 

For rotational equilibrium of the element we then have 

(UT,) x b = (hYJ x u 

and thus 

7, = Tyx 

Figure 3.6 Complementary shearing stresses over the faces 
of a block when they are connected. 

We see then that, whenever there is a shearing stress over a plane passing through a given line, 
there must be an equal complementary shearing stress on a plane perpendicular to the given plane, 
and passing through the given line. The directions of the two shearing stresses must be either both 
towards, or both away from, the line of intersection of the two planes in which they act. 

It is extremely important to appreciate the existence of the complementary shearing stress, for 
its necessary presence has a direct effect on the maximum stress in the material, as we shall see 
later in Chapter 5. 
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3.4 Shearing strain 

Shearing stresses in a material give rise to shearing strains. Consider a rectangular block of 
material, Figure 3.7, subjected to shearing stresses T in one plane. The shearing stresses hstort the 
rectangular face of the block into a parallelogram. If the right-angles at the comers of the face 
change by amounts y, then y is the shearing strain. The angle y is measured in radians, and is non- 
dimensional therefore. 

Figure 3.7 Shearing strain in a rectangular block; small values of y lead 
to a negligible change of volume in shear straining. 

For many materials shearing strain is linearly proportional to shearing stress withm certain limits. 
This linear dependence is similar to the case of drect tension and compression. Within the limits 
of proportionality 

T = G ~ ,  (3.3) 

where G is the shearing modulus or modulus of rigidity, and is similar to Young's modulus E, for 
direct tension and compression. For most materials E is about 2.5 times greater than G. 

It should be noted that no volume changes occur as a result of shearing stresses acting alone. 
In Figure 3.7 the volume of the strained block is approximately equal to the volume of the original 
rectangular prism if the angular strain y is small. 

3.5 Strain energy due to shearing actions 

In shearing the rectangular prism of Figure 3.7, the forces acting on the upper and lower faces 
undergo displacements. Work is done, therefore, during these displacements. If the strains are 
kept within the elastic limit the work done is recoverable, and is stored in the form of strain energy. 
Suppose all edges of the prism of Figure 3.7 are of unit length; then the prism has unit volume, and 
the shearing forces on the sheared faces are 7. Now suppose T is increased by a small amount, 
causing a small increment of shearing strain 6y. The work done on the prism during this small 
change is 76y, as the force 7 moves through a distance 6y. The total work done in producing a 
shearing strain y is then 

1.4 
0 
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While the material remains elastic, we have from equation (3.3) that T = Gy, and the work done 
is stored as strain energy; the strain energy is therefore 

1.4 = I@. = ; C y 2  (3.4) 
0 0 

per unit volume. In terms of T this becomes 

2 

= shear strain energy per unit volume (3.5) 
1 2 7  -@ =- 
2 2G 

Further problems (answers on page 691) 

3.4 Rivet holes 2.5 cm diameter are punched in a steel plate 1 cm thick. The shearing 
strength of the plate is 300 hIN/m2. Find the average compressive stress in the punch at 
the time of punching. 

The diameter of the bolt circle of a flanged coupling for a shaft 12.5 cm in diameter is 
37.5 cm. There are six bolts 2.5 cm diameter. What power can be transmitted at 150 
revlmin if the shearing stress in the bolts is not to exceed 60 MNIm2? 

A pellet canying the stnking needle of a fuse has a mass of 0.1 kg; it is prevented from 
moving longitudinally relative to the body of the fuse by a copper pin A of diameter 0.05 
cm. It is prevented from turning relative to the body of the fuse by a steel stud B. A fits 
loosely in the pellet so that no stress comes on A due to rotation. If the copper shears at 
150 MNIm2, find the retardation of the shell necessary to shear A .  (RNC) 

3.5 

3.6 

3.7 A lever is secured to a shaft by a taper pin through the boss of the lever. The shaft is 4 
cm diameter and the mean diameter of the pin is 1 cm. What torque can be applied to 
the lever without causing the average shearing stress in the pin to exceed 60 MN/m2. 
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3.8 A cotter joint connects two circular rods in tension. Taking the tensile strength of the 
rods as 350 MN/m2, the shearing strength of the cotter 275 MN/m2, the permissible 
bearing pressure between surfaces in contact 700 MN/mz, the shearing strength of the rod 
ends 185 MN/m2, calculate suitable dimensions for the joint so that it may be equally 
strong against the possible types of failure. Take the thickness of the cotter = d/4, and 
the taper of the cotter 1 in 48. 

3.9 A horizontal arm, capable of rotation about a vertical shaft, cames a mass of 2.5 kg, 
bolted to it by a 1 cm bolt at a distance 50 cm from the axis of the shaft. The axis of the 
bolt is vertical. If the ultimate shearing strength of the bolt is 50 MN/m2, at what speed 
will the bolt snap? (RNEC) 

A copper disc 10 cm in diameter and 0.0125 cm thick, is fitted in the casing of an air 
compressor, so as to blow and safeguard the cast-iron case in the event of a serious 
compressed air leak. If pressure inside the case is suddenly built up by a burst cooling 
coil, calculate at what pressure the disc will blow out, assuming that failure occurs by 
shear round the edges of the disc, and that copper will normally fail under a shearing 
stress of 120 MN/m2. (RNEC) 

3.10 


