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27.1 Introduction

Piers provide vertical supports for spans at intermediate points and perform two main functions:
transferring superstructure vertical loads to the foundations and resisting horizontal forces acting
on the bridge. Although piers are traditionally designed to resist vertical loads, it is becoming more
and more common to design piers to resist high lateral loads caused by seismic events. Even in
some low seismic areas, designers are paying more attention to the ductility aspect of the design.
Piers are predominantly constructed using reinforced concrete. Steel, to a lesser degree, is also used
for piers. Steel tubes filled with concrete (composite) columns have gained more attention recently.

This chapter deals only with piers or columns for conventional bridges, such as grade separations,
overcrossings, overheads, underpasses, and simple river crossings. Reinforced concrete columns will
be discussed in detail while steel and composite columns will be briefly discussed. Substructures
for arch, suspension, segmental, cable-stayed, and movable bridges are excluded from this chapter.
Chapter 28 discusses the substructures for some of these special types of bridges.

27.2 Structural Types

27.2.1 General

Pier is usually used as a general term for any type of substructure located between horizontal spans and
foundations. However, from time to time, it is also used particularly for a solid wall in order to
distinguish it from columns or bents. From a structural point of view, a column is a member that resists
the lateral force mainly by flexure action whereas a pier is a member that resists the lateral force mainly
by a shear mechanism. A pier that consists of multiple columns is often called a bent.

There are several ways of defining pier types. One is by its structural connectivity to the super-
structure: monolithic or cantilevered. Another is by its sectional shape: solid or hollow; round,
octagonal, hexagonal, or rectangular. It can also be distinguished by its framing configuration: single
or multiple column bent; hammerhead or pier wall.
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27.2.2 Selection Criteria

Selection of the type of piers for a bridge should be based on functional, structural, and geometric
requirements. Aesthetics is also a very important factor of selection since modern highway bridges
are part of a city’s landscape. Figure 27.1 shows a collection of typical cross section shapes for
overcrossings and viaducts on land and Figure 27.2 shows some typical cross section shapes for
piers of river and waterway crossings. Often, pier types are mandated by government agencies or
owners. Many state departments of transportation in the United States have their own standard
column shapes.

Solid wall piers, as shown in Figures 27.3a and 27.4, are often used at water crossings since they
can be constructed to proportions that are both slender and streamlined. These features lend
themselves well for providing minimal resistance to flood flows.

Hammerhead piers, as shown in Figure 27.3b, are often found in urban areas where space
limitation is a concern. They are used to support steel girder or precast prestressed concrete
superstructures. They are aesthetically appealing. They generally occupy less space, thereby provid-
ing more room for the traffic underneath. Standards for the use of hammerhead piers are often
maintained by individual transportation departments.

A column bent pier consists of a cap beam and supporting columns forming a frame. Column
bent piers, as shown in Figure 27.3c and Figure 27.5, can either be used to support a steel girder
superstructure or be used as an integral pier where the cast-in-place construction technique is used.
The columns can be either circular or rectangular in cross section. They are by far the most popular
forms of piers in the modern highway system.

A pile extension pier consists of a drilled shaft as the foundation and the circular column extended
from the shaft to form the substructure. An obvious advantage of this type of pier is that it occupies
a minimal amount of space. Widening an existing bridge in some instances may require pile
extensions because limited space precludes the use of other types of foundations.

FIGURE 27.1 Typical cross-section shapes of piers for overcrossings or viaducts on land.

FIGURE 27.2 Typical cross-section shapes of piers for river and waterway crossings. 
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Selections of proper pier type depend upon many factors. First of all, it depends upon the type
of superstructure. For example, steel girder superstructures are normally supported by cantilevered
piers, whereas the cast-in-place concrete superstructures are normally supported by monolithic
bents. Second, it depends upon whether the bridges are over a waterway or not. Pier walls are
preferred on river crossings, where debris is a concern and hydraulics dictates it. Multiple pile
extension bents are commonly used on slab bridges. Last, the height of piers also dictates the type
selection of piers. The taller piers often require hollow cross sections in order to reduce the weight
of the substructure. This then reduces the load demands on the costly foundations. Table 27.1
summarizes the general type selection guidelines for different types of bridges.

27.3 Design Loads

Piers are commonly subjected to forces and loads transmitted from the superstructure, and forces
acting directly on the substructure. Some of the loads and forces to be resisted by the substructure
include:

• Dead loads

• Live loads and impact from the superstructure

• Wind loads on the structure and the live loads

• Centrifugal force from the superstructure

• Longitudinal force from live loads

• Drag forces due to the friction at bearings

• Earth pressure

• Stream flow pressure

• Ice pressure

• Earthquake forces

• Thermal and shrinkage forces

• Ship impact forces

• Force due to prestressing of the superstructure

• Forces due to settlement of foundations

The effect of temperature changes and shrinkage of the superstructure needs to be considered
when the superstructure is rigidly connected with the supports. Where expansion bearings are used,
forces caused by temperature changes are limited to the frictional resistance of bearings.

FIGURE 27.3 Typical pier types for steel bridges. 
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Readers should refer to Chapters 5 and 6 for more details about various loads and load combi-
nations and Part IV about earthquake loads. In the following, however, two load cases, live loads
and thermal forces, will be discussed in detail because they are two of the most common loads on
the piers, but are often applied incorrectly.

27.3.1 Live Loads

Bridge live loads are the loads specified or approved by the contracting agencies and owners. They
are usually specified in the design codes such as AASHTO LRFD Bridge Design Specifications [1].
There are other special loading conditions peculiar to the type or location of the bridge structure
which should be specified in the contracting documents.

Live-load reactions obtained from the design of individual members of the superstructure should
not be used directly for substructure design. These reactions are based upon maximum conditions

FIGURE 27.4 Typical pier types and configurations for river and waterway crossings. 
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for one beam and make no allowance for distribution of live loads across the roadway. Use of these
maximum loadings would result in a pier design with an unrealistically severe loading condition
and uneconomical sections.

For substructure design, a maximum design traffic lane reaction using either the standard truck
load or standard lane load should be used. Design traffic lanes are determined according to AASHTO

FIGURE 27.5 Typical pier types for concrete bridges. 

TABLE 27.1 General Guidelines for Selecting Pier Types

Applicable Pier Types

Steel Superstructure

Over water Tall piers Pier walls or hammerheads (T-piers) (Figures 27.3a and b); hollow cross sections for most 
cases; cantilevered; could use combined hammerheads with pier wall base and step tapered 
shaft

Short piers Pier walls or hammerheads (T-piers) (Figures 27.3a and b); solid cross sections; cantilevered
On land Tall piers Hammerheads (T-piers) and possibly rigid frames (multiple column bents)(Figures 27.3b and c); 

hollow cross sections for single shaft and solid cross sections for rigid frames; cantilevered
Short piers Hammerheads and rigid frames (Figures 27.3b and c); solid cross sections; cantilevered

Precast Prestressed Concrete Superstructure

Over water Tall piers Pier walls or hammerheads (Figure 27.4); hollow cross sections for most cases; cantilevered; 
could use combined hammerheads with pier wall base and step-tapered shaft

Short piers Pier walls or hammerheads; solid cross sections; cantilevered
On land Tall piers Hammerheads and possibly rigid frames (multiple column bents); hollow cross sections for 

single shafts and solid cross sections for rigid frames; cantilevered
Short piers Hammerheads and rigid frames (multiple column bents) (Figure 27.5a); solid cross sections; 

cantilevered

Cast-in-Place Concrete Superstructure

Over water Tall piers Single shaft pier (Figure 27.4); superstructure will likely cast by traveled forms with balanced 
cantilevered construction method; hollow cross sections; monolithic; fixed at bottom

Short piers Pier walls (Figure 27.4); solid cross sections; monolithic; fixed at bottom
On land Tall piers Single or multiple column bents; solid cross sections for most cases, monolithic; fixed at bottom

Short piers Single or multiple column bents (Figure 27.5b); solid cross sections; monolithic; pinned at 
bottom
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LRFD [1] Section 3.6. For the calculation of the actual beam reactions on the piers, the maximum
lane reaction can be applied within the design traffic lanes as wheel loads, and then distributed to
the beams assuming the slab between beams to be simply supported. (Figure 27.6). Wheel loads
can be positioned anywhere within the design traffic lane with a minimum distance between lane
boundary and wheel load of 0.61 m (2 ft).

The design traffic lanes and the live load within the lanes should be arranged to produce beam
reactions that result in maximum loads on the piers. AASHTO LRFD Section 3.6.1.1.2 provides
load reduction factors due to multiple loaded lanes.

FIGURE 27.6 Wheel load arrangement to produce maximum positive moment.
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Live-load reactions will be increased due to impact effect. AASHTO LRFD [1] refers to this as
the dynamic load allowance, IM. and is listed here as in Table 27.2.

27.3.2 Thermal Forces

Forces on piers due to thermal movements, shrinkage, and prestressing can become large on short,
stiff bents of prestressed concrete bridges with integral bents. Piers should be checked against these
forces. Design codes or specifications normally specify the design temperature range. Some codes
even specify temperature distribution along the depth of the superstructure member.

The first step in determining the thermal forces on the substructures for a bridge with integral
bents is to determine the point of no movement. After this point is determined, the relative
displacement of any point along the superstructure to this point is simply equal to the distance to
this point times the temperature range and times the coefficient of expansion. With known dis-
placement at the top and known boundary conditions at the top and bottom, the forces on the pier
due to the temperature change can be calculated by using the displacement times the stiffness of
the pier.

The determination of the point of no movement is best demonstrated by the following example,
which is adopted from Memo to Designers issued by California Department of Transportations [2]:

Example 27.1
A 225.55-m (740-foot)-long and 23.77-m (78-foot) wide concrete box-girder superstructure is
supported by five two-column bents. The size of the column is 1.52 m (5 ft) in diameter and the
heights vary between 10.67 m (35 ft) and 12.80 m (42 ft). Other assumptions are listed in the
calculations. The calculation is done through a table. Please refer Figure 27.7 for the calculation for
determining the point of no movement.

27.4 Design Criteria

27.4.1 Overview

Like the design of any structural component, the design of a pier or column is performed to fulfill
strength and serviceability requirements. A pier should be designed to withstand the overturning,
sliding forces applied from superstructure as well as the forces applied to substructures. It also needs
to be designed so that during an extreme event it will prevent the collapse of the structure but may
sustain some damage.

A pier as a structure component is subjected to combined forces of axial, bending, and shear.
For a pier, the bending strength is dependent upon the axial force. In the plastic hinge zone of a
pier, the shear strength is also influenced by bending. To complicate the behavior even more, the
bending moment will be magnified by the axial force due to the P-∆ effect.

In current design practice, the bridge designers are becoming increasingly aware of the adverse
effects of earthquake. Therefore, ductility consideration has become a very important factor for
bridge design. Failure due to scouring is also a common cause of failure of bridges. In order to
prevent this type of failure, the bridge designers need to work closely with the hydraulic engineers
to determine adequate depths for the piers and provide proper protection measures.

TABLE 27.2 Dynamic Load Allowance, IM

Component IM

Deck joints — all limit states 75%
All other components
• Fatigue and fracture limit state 15%
• All other limit states 33%
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FIGURE 27.7 Calculation of points of no movement.
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27.4.2 Slenderness and Second-Order Effect

The design of compression members must be based on forces and moments determined from an
analysis of the structure. Small deflection theory is usually adequate for the analysis of beam-type
members. For compression members, however, the second-order effect must be considered. Accord-
ing to AASHTO LRFD [1], the second-order effect is defined as follows:

The presence of compressive axial forces amplify both out-of-straightness of a component and
the deformation due to non-tangential loads acting thereon, therefore increasing the eccentricity
of the axial force with respect to the centerline of the component. The synergistic effect of this
interaction is the apparent softening of the component, i.e., a loss of stiffness.

To assess this effect accurately, a properly formulated large deflection nonlinear analysis can be
performed. Discussions on this subject can be found in References [3,4] and Chapter 36. However,
it is impractical to expect practicing engineers to perform this type of sophisticated analysis on a
regular basis. The moment magnification procedure given in AASHTO LRFD [1] is an approximate
process which was selected as a compromise between accuracy and ease of use. Therefore, the
AASHTO LRFD moment magnification procedure is outlined in the following.

When the cross section dimensions of a compression member are small in comparison to its
length, the member is said to be slender. Whether or not a member can be considered slender is
dependent on the magnitude of the slenderness ratio of the member. The slenderness ratio of a
compression member is defined as, KLu/r, where K is the effective length factor for compression
members; Lu is the unsupported length of compression member; r is the radius of gyration = ;
I is the moment of inertia; and A is the cross-sectional area.

When a compression member is braced against side sway, the effective length factor, K = 1.0 can
be used. However, a lower value of K can be used if further analysis demonstrates that a lower value
is applicable. Lu is defined as the clear distance between slabs, girders, or other members which is
capable of providing lateral support for the compression member. If haunches are present, then,
the unsupported length is taken from the lower extremity of the haunch in the plane considered
(AASHTO LRFD 5.7.4.3). For a detailed discussion of the K-factor, please refer to Chapter 52.

For a compression member braced against side sway, the effects of slenderness can be ignored as
long as the following condition is met (AASHTO LRFD 5.7.4.3):

(27.1)

where
M1b = smaller end moment on compression member — positive if member is bent in single cur-

vature, negative if member is bent in double curvature
M2b = larger end moment on compression member — always positive

For an unbraced compression member, the effects of slenderness can be ignored as long as the
following condition is met (AASHTO LRFD 5.7.4.3):

(27.2)

If the slenderness ratio exceeds the above-specified limits, the effects can be approximated through
the use of the moment magnification method. If the slenderness ratio KLu/r exceeds 100, however,
a more-detailed second-order nonlinear analysis [Chapter 36] will be required. Any detailed analysis
should consider the influence of axial loads and variable moment of inertia on member stiffness
and forces, and the effects of the duration of the loads.
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The factored moments may be increased to reflect effects of deformations as follows:

(27.3)

where
M2b = moment on compression member due to factored gravity loads that result in no appreciable

side sway calculated by conventional first-order elastic frame analysis, always positive
M2s = moment on compression member due to lateral or gravity loads that result in side sway, ∆,

greater than Lu/1500, calculated by conventional first-order elastic frame analysis, always
positive

The moment magnification factors are defined as follows:

(27.4)

(27.5)

where
Pu = factored axial load
Pc = Euler buckling load, which is determined as follows:

(27.6)

Cm, a factor which relates the actual moment diagram to an equivalent uniform moment diagram,
is typically taken as 1.0. However, in the case where the member is braced against side sway and
without transverse loads between supports, it may be taken by the following expression:

(27.7)

The value resulting from Eq. (27.7), however, is not to be less than 0.40.
To compute the flexural rigidity EI for concrete columns, AASHTO offers two possible solutions,

with the first being:

(27.8)

and the second, more-conservative solution being:

(27.9)
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where Ec is the elastic modulus of concrete, Ig is the gross moment inertia, Es is the elastic modules
of reinforcement, Is is the moment inertia of reinforcement about centroidal axis, and β is the
ratio of maximum dead-load moment to maximum total-load moment and is always positive. It
is an approximation of the effects of creep, so that when larger moments are induced by loads
sustained over a long period of time, the creep deformation and associated curvature will also
be increased.

27.4.3 Concrete Piers and Columns

27.4.3.1 Combined Axial and Flexural Strength
A critical aspect of the design of bridge piers is the design of compression members. We will use
AASHTO LRFD Bridge Design Specifications [1] as the reference source. The following discussion
provides an overview of some of the major criteria governing the design of compression members.

Under the Strength Limit State Design, the factored resistance is determined with the product of
nominal resistance, Pn, and the resistance factor, φ. Two different values of φ are used for the nominal
resistance Pn. Thus, the factored axial load resistance φPn is obtained using φ = 0.75 for columns
with spiral and tie confinement reinforcement. The specifications also allows for the value φ to be
linearly increased from the value stipulated for compression members to the value specified for
flexure which is equal to 0.9 as the design axial load φPn decreases from  to zero.

Interaction Diagrams
Flexural resistance of a concrete member is dependent upon the axial force acting on the member.
Interaction diagrams are usually used as aids for the design of the compression members. Interaction
diagrams for columns are usually created assuming a series of strain distributions, and computing
the corresponding values of P and M. Once enough points have been computed, the results are
plotted to produce an interaction diagram.

Figure 27.8 shows a series of strain distributions and the resulting points on the interaction
diagram. In an actual design, however, a few points on the diagrams can be easily obtained and can
define the diagram rather closely.

• Pure Compression:

The factored axial resistance for pure compression, φPn, may be computed by:

For members with spiral reinforcement:

(27.10)

For members with tie reinforcement:

(27.11)

For design, pure compression strength is a hypothetical condition since almost always there will be
moments present due to various reasons. For this reason, AASHTO LRFD 5.7.4.4 limits the nominal
axial load resistance of compression members to 85 and 80% of the axial resistance at zero eccen-
tricity, Po, for spiral and tied columns, respectively.

• Pure Flexure:

The section in this case is only subjected to bending moment and without any axial force. The
factored flexural resistance, Mr, may be computed by

0 10. ′f Ac g

P P P f A A A fr n o c g st st y= = = ′ −( ) +[ ]φ φ φ0 85 0 85 0 85. . .

P P P f A A A fr n o c g st st y= = = ′ −( ) +[ ]φ φ φ0 80 0 80 0 85. . .
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(27.12)

where

• Balanced Strain Conditions:

Balanced strain conditions correspond to the strain distribution where the extreme concrete strain
reaches 0.003 and the strain in reinforcement reaches yield at the same time. At this condition, the
section has the highest moment capacity. For a rectangular section with reinforcement in one face,
or located in two faces at approximately the same distance from the axis of bending, the balanced
factored axial resistance, Pr, and balanced factored flexural resistance, Mr, may be computed by

(27.13)

FIGURE 27.8 Strain distributions corresponding to points on interaction diagram.
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and

(27.14)

where

and

where fy is in MPa.

Biaxial Bending
AASHTO LRFD 5.7.4.5 stipulates that the design strength of noncircular members subjected to
biaxial bending may be computed, in lieu of a general section analysis based on stress and strain
compatibility, by one of the following approximate expressions:

(27.15)

when the factored axial load, 

(27.16)

when the factored axial load, 
where
Prxy = factored axial resistance in biaxial flexure
Prx, Pry = factored axial resistance corresponding to Mrx, Mry

Mux, Muy = factored applied moment about the x-axis, y-axis
Mrx, Mry = uniaxial factored flexural resistance of a section about the x-axis and y-axis corresponding

to the eccentricity produced by the applied factored axial load and moment, and
Po = 

27.4.3.2 Shear Strength
Under the normal load conditions, the shear seldom governs the design of the column for conven-
tional bridges since the lateral loads are usually small compared with the vertical loads. However,
in a seismic design, the shear is very important. In recent years, the research effort on shear strength
evaluation for columns has been increased remarkably. AASHTO LRFD provides a general shear
equation that applies for both beams and columns. The concrete shear capacity component and
the angle of inclination of diagonal compressive stresses are functions of the shear stress on the
concrete and the strain in the reinforcement on the flexural tension side of the member. It is rather
involved and hard to use.
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Alternatively, the equations recommended by ATC-32 [5] can be used with acceptable accuracy.
The recommendations are listed as follows.

Except for the end regions of ductile columns, the nominal shear strength provided by concrete,
Vc, for members subjected to flexure and axial compression should be computed by

(27.17)

If the axial force is in tension, the Vc should be computed by

(27.18)

(note that Nu is negative for tension),

where
Ag = gross section area of the column (mm2)
Ae = effective section area, can be taken as 0.8Ag (mm2)
Nu = axial force applied to the column (N)

 = compressive strength of concrete (MPa)

For end regions where the flexural ductility is normally high, the shear capacity should be reduced.
ATC-32 [5] offers the following equations to address this interaction.

With the end region of columns extending a distance from the critical section or sections not
less than 1.5D for circular columns or 1.5h for rectangular columns, the nominal shear strength
provided by concrete subjected to flexure and axial compression should be computed by

(27.19)

When axial load is tension, Vc can be calculated as

(27.18)

Again, Nu should be negative in this case.
The nominal shear contribution from reinforcement is given by

(27.20)

for tied rectangular sections, and by

(27.21)

for spirally reinforced circular sections. In these equations, Av is the total area of shear reinforcement
parallel to the applied shear force, Ah is the area of a single hoop, fyh is the yield stress of horizontal
reinforcement, D′ is the diameter of a circular hoop, and s is the spacing of horizontal reinforcement.
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27.4.3.3 Ductility of Columns
The AASHTO LRFD [1] introduces the term ductility and requires that a structural system of bridge
be designed to ensure the development of significant and visible inelastic deformations prior to
failure.

The term ductility defines the ability of a structure and selected structural components to deform
beyond elastic limits without excessive strength or stiffness degradation. In mathematical terms, the
ductility µ is defined by the ratio of the total imposed displacement ∆ at any instant to that at the
onset of yield ∆y. This is a measure of the ability for a structure, or a component of a structure, to
absorb energy. The goal of seismic design is to limit the estimated maximum ductility demand to
the ductility capacity of the structure during a seismic event.

For concrete columns, the confinement of concrete must be provided to ensure a ductile column.
AASHTO LRFD [1] specifies the following minimum ratio of spiral reinforcement to total volume
of concrete core, measured out-to-out of spirals:

(27.22)

The transverse reinforcement for confinement at the plastic hinges shall be determined as follows:

(27.23)

for which

The total cross-sectional area (Ash) of rectangular hoop (stirrup) reinforcement for a rectangular
column shall be either

(27.24)

or,

(27.25)

whichever is greater,

where
a = vertical spacing of hoops (stirrups) with a maximum of 100 mm (mm)
Ac = area of column core measured to the outside of the transverse spiral reinforcement (mm2)
Ag = gross area of column (mm2)
Ash = total cross-sectional area of hoop (stirrup) reinforcement (mm2)

 = specified compressive strength of concrete (Pa)
fyh = yield strength of hoop or spiral reinforcement (Pa)
hc = core dimension of tied column in the direction under consideration (mm)
ρs = ratio of volume of spiral reinforcement to total volume of concrete core (out-to-out of spiral)
Pu = factored axial load (MN)
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Example 27.2 Design of a Two-Column Bent
Design the columns of a two-span overcrossing. The typical section of the structure is shown in
Figure 27.9. The concrete box girder is supported by a two-column bent and is subjected to HS20
loading. The columns are pinned at the bottom of the columns. Therefore, only the loads at the
top of columns are given here. Table 27.3 lists all the forces due to live load plus impact. Table 27.4
lists the forces due to seismic loads. Note that a load reduction factor of 5.0 will be assumed for
the columns.

Material Data

= 4.0 ksi (27.6 MPa) Ec = 3605 ksi (24855 MPa)

Es = 29000 ksi (199946 MPa) fy = 60 ksi (414 MPa)

Try a column size of 4 ft (1.22 m) in diameter. Provide 26-#9 (26-#30) longitudinal reinforcement.
The reinforcement ratio is 1.44%.

FIGURE 27.9 Example 27.2 — typical section.

TABLE 27.3 Column Group Loads — Service

Live Load + Impact

Long 
Force

Centrifugal 
Force-My

Dead 
Load

Case 1 Case 2 Case 3
Wind 
on LLTrans My-max Long Mx-max Axial N-max

Win
d Temp.

My (k-ft) 220 75 15 32 532 153 208 127 180

Mx (k-ft) 148 67 599 131 192 86 295 2 0

P (k) 1108 173 131 280 44 17 12 23 0

TABLE 27.4 Unreduced Seismic Loads (ARS)

Case 1 
Max. Transverse

Case 2 
Max. Longitudinal

My — Trans (k-ft) 4855 3286

Mx — Long (k-ft) 3126 3334

P — Axial (k) –282 –220

′fc
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Section Properties

Ag = 12.51 ft2 (1.16 m2) Ast = 26.0 in2 (16774 mm2)

Ixc = Iyc = 12.46 ft4 (0.1075 m4) Ixs = Iys = 0.2712 ft4 (0.0023 m4)

The analysis follows the procedure discussed in Section 27.4.3.1. The moment and axial force
interaction diagram is generated and is shown in Figure 27.10.

Following the procedure outlined in Section 27.4.2, the moment magnification factors for each
load group can be calculated and the results are shown in Table 27.5.

In which:

Ky = Kx = 2.10

KyL/R = Kx L/R = 2.1 × 27.0/(1.0) = 57

where R = radio of gyration = r/2 for a circular section.

22 < KL/R < 100 ∴ Second-order effect should be considered.

FIGURE 27.10 Example 27.2 — interaction diagram.
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The calculations for Loading Group III and Case 2 will be demonstrated in the following:

Bending in the longitudinal direction: Mx

Factored load = 1.3[βDD + (L + I) + CF + 0.3W + WL + LF]

βD = 0.75 when checking columns for maximum moment or maximum eccentricities and associated
axial load. βd in Eq. (27.8) = max dead-load moment, MDL/max total moment, Mt.

MDL = 148 × 0.75 = 111 k-ft (151 kN·m)

Mt = 0.75 × 148 + 599 + 0.3 × 192 + 86 + 295 + 2 = 1151 k-ft (1561 kN·m)

βd = 111/1151 = 0.0964

 

 

Cm = 1.0 for frame braced against side sway

 

The magnified factored moment = 1.344 × 1.3 × 1151 = 2011 k-ft (2728 kN·m)

TABLE 27.5 Moment Magnification and Buckling Calculations

Axial
Load
P(k)

Load P (k) Moment Magnification Cracked Transformed Section Critical Buckling

Group Case Trans. Magy Long Magx Comb. Mag E*Iy (k-ft2) E*Ix (k-ft2) Trans. Pcy (k) Long Pcx (k)

I 1 1.571 1.640 1.587 1,738,699 1,619,399 5338 4972 1455
I 2 1.661 1.367 1.384 1,488,966 2,205,948 4571 6772 1364
I 3 2.765 2.059 2.364 1,392,713 1,728,396 4276 5306 2047
II 1.337 1.385 1.344 1,962,171 1,776,045 6024 5452 1137
III 1 1.406 1.403 1.405 2,046,281 2,056,470 6282 6313 1360
III 2 1.396 1.344 1.361 1,999,624 2,212,829 6139 6793 1305
III 3 1.738 1.671 1.708 1,901,005 2,011,763 5836 6176 1859
IV 1 1.437 1.611 1.455 1,864,312 1,494,630 5723 4588 1306
IV 2 1.448 1.349 1.377 1,755,985 2,098,586 5391 6443 1251
IV 3 1.920 1.978 1.936 1,635,757 1,585,579 5022 4868 1805
V 1.303 1.365 1.310 2,042,411 1,776,045 6270 5452 1094
VI 1 1.370 1.382 1.373 2,101,830 2,056,470 6453 6313 1308
VI 2 1.358 1.327 1.340 2,068,404 2,212,829 6350 6793 1256
VI 3 1.645 1.629 1.640 1,980,146 2,011,763 6079 6176 1788
VII 1 1.243 1.245 1.244 2,048,312 2,036,805 6288 6253 826
VII 2 1.296 1.275 1.286 1,940,100 2,053,651 5956 6305 888

Note: Column assumed to be unbraced against side sway.
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The analysis results with the comparison of applied moments to capacities are summarized in
Table 27.6.

Column lateral reinforcement is calculated for two cases: (1) for applied shear and (2) for
confinement. Typically, the confinement requirement governs. Apply Eq. 27.22 or Eq. 27.23 to
calculate the confinement reinforcement. For seismic analysis, the unreduced seismic shear forces
should be compared with the shear forces due to plastic hinging of columns. The smaller should
be used. The plastic hinging analysis procedure is discussed elsewhere in this handbook and will
not be repeated here.

The lateral reinforcement for both columns are shown as follows.

For left column:

Vu = 148 kips (659 kN) (shear due to plastic hinging governs)

φVn = 167 kips (743 kN) ∴ No lateral reinforcement is required for shear.

Reinforcement for confinement = ρs = 0.0057 ∴ Provide #4 at 3 in. (#15 at 76 mm)

For right column:

Vu = 180 kips (801 kN) (shear due to plastic hinging governs)

φVn = 167 kips (734 kN)

φVs = 13 kips (58 kN) (does not govern)

Reinforcement for confinement =ρs = 0.00623 ∴ Provide #4 at 2.9 in. (#15 at 74 mm)

Summary of design:
4 ft (1.22 m) diameter of column with 26-#9 (26-#30) for main reinforcement and #4 at 2.9 in.
(#15 at 74 mm) for spiral confinement.

TABLE 27.6 Comparison of Factored Loads to Factored Capacity of the Column

Applied Factored Forces (k-ft) Capacity (k-ft)

Group Case Trans. My Long Mx Comb. M Axial P (k) φMn φ Ratio Mu/M Status

I 1 852 475 975 1455 2924 0.75 3.00 OK
I 2 566 1972 2051 1364 2889 0.75 1.41 OK
I 3 1065 981 1448 2047 3029 0.75 2.09 OK
II 1211 546 1328 1137 2780 0.75 2.09 OK
III 1 1622 1125 1974 1360 2886 0.75 1.46 OK
III 2 1402 2011 2449 1305 2861 0.75 1.17 OK
III 3 1798 1558 2379 1859 3018 0.75 1.27 OK
IV 1 1022 373 1088 1306 2865 0.75 2.63 OK
IV 2 813 1245 1487 1251 2837 0.75 1.91 OK
IV 3 1136 717 1343 1805 3012 0.75 2.24 OK
V 1429 517 1519 1094 2754 0.75 1.81 OK
VI 1 1829 1065 2116 1308 2864 0.75 1.35 OK
VI 2 1617 1905 2499 1256 2842 0.75 1.14 OK
VI 3 2007 1461 2482 1788 3008 0.75 1.21 OK
VII 1 1481 963 1766 826 2372 0.67 1.34 OK
VII 2 1136 1039 1540 888 2364 0.65 1.54 OK

Notes:
1.  Applied factored moments are magnified for slenderness in accordance with AASHTO LRFD.
2.  The seismic forces are reduced by the load reduction factor R = 5.0.

L = 27.00 ft,  = 4.00 ksi, Fy = 60.0 ksi, Ast = 26.00 in.2′fc
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27.4.4 Steel and Composite Columns

Steel columns are not as commonly used as concrete columns. Nevertheless, they are viable solutions
for some special occasions, e.g., in space-restricted areas. Steel pipes or tubes filled with concrete
known as composite columns (Figure 27.11) offer the most efficient use of the two basic materials.
Steel at the perimeter of the cross section provides stiffness and triaxial confinement, and the
concrete core resists compression and prohibits local elastic buckling of the steel encasement. The
toughness and ductility of composite columns makes them the preferred column type for earth-
quake-resistant structures in Japan. In China, the composite columns were first used in Beijing
subway stations as early as 1963. Over the years, the composite columns have been used extensively
in building structures as well as in bridges [6–9].

In this section, the design provisions of AASHTO LRFD [1] for steel and composite columns are
summarized.

Compressive Resistance
For prismatic members with at least one plane of symmetry and subjected to either axial compres-
sion or combined axial compression and flexure about an axis of symmetry, the factored resistance
of components in compression, Pr, is calculated as

Pr = φcPn

where
Pn = nominal compressive resistance
φc = resistance factor for compression = 0.90

The nominal compressive resistance of a steel or composite column should be determined as

(27.26)

in which

For steel columns:

(27.27)

FIGURE 27.11 Typical cross sections of composite columns.
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For composite column:

(27.28)

(27.29)

(27.30)

where
As = cross-sectional area of the steel section (mm2)
Ac = cross-sectional area of the concrete (mm2)
Ar = total cross-sectional area of the longitudinal reinforcement (mm2)
Fy = specified minimum yield strength of steel section (MPa)
Fyr = specified minimum yield strength of the longitudinal reinforcement (MPa)

= specified minimum 28-day compressive strength of the concrete (MPa)
E = modules of elasticity of the steel (MPa)
L = unbraced length of the column (mm)
K = effective length factor
n = modular ratio of the concrete
rs = radius of gyration of the steel section in the plane of bending, but not less than 0.3 times the width

of the composite member in the plane of bending for composite columns, and, for filled tubes,

C1 = 1.0; C2 = 0.85; C3 = 0.40

In order to use the above equation, the following limiting width/thickness ratios for axial com-
pression of steel members of any shape must be satisfied:

(27.31)

where
k = plate buckling coefficient as specified in Table 27.7
b = width of plate as specified in Table 27.7
t = plate thickness (mm)

Wall thickness of steel or composite tubes should satisfy:

For circular tubes:
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For rectangular tubes:

where
D = diameter of tube (mm)
b = width of face (mm)
t = thickness of tube (mm)

Flexural Resistance
The factored flexural resistance, Mr, should be determined as

(27.32)

where
Mn = nominal flexural resistance
φf = resistance factor for flexure, φf = 1.0

The nominal flexural resistance of concrete-filled pipes that satisfy the limitation

may be determined:

(27.33)

TABLE 27.7 Limiting Width-to-Thickness Ratios

k b

Plates Supported along One Edge

Flanges and projecting 0.56 Half-flange width of I-section
leg or plates Full-flange width of channels

Distance between free edge and first line of bolts or welds in plates
Full-width of an outstanding leg for pairs of angles on continuous contact

Stems of rolled tees 0.75 Full-depth of tee
Other projecting elements 0.45 Full-width of outstanding leg for single-angle strut or double-angle strut with 

separator
Full projecting width for others

Plates Supported along Two Edges

Box flanges and cover plates 1.40 Clear distance between webs minus inside corner radius on each side for box flanges
Distance between lines of welds or bolts for flange cover plates

Webs and other plates elements 1.49 Clear distance between flanges minus fillet radii for webs of rolled beams
Clear distance between edge supports for all others

Perforated cover plates 1.86 Clear distance between edge supports
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(27.34)

where
Mps = plastic moment of the steel section
Myc = yield moment of the composite section

Combined Axial Compression and Flexure
The axial compressive load, Pu, and concurrent moments, Mux and Muy, calculated for the factored
loadings for both steel and composite columns should satisfy the following relationship:

(27.35)

(27.36)

where
Pr = factored compressive resistance
Mrx, Mry = factored flexural resistances about x and y axis, respectively
Mux, Muy = factored flexural moments about the x and y axis, respectively
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